分形与多重分形
- 格式:pdf
- 大小:1.56 MB
- 文档页数:49
不同雷诺数下圆柱绕流多重分形研究圆柱绕流是一种常见的流体力学问题,其中水流绕过一个圆柱体时会产生涡流。
雷诺数是衡量流体动态特征的重要参数,它可以用来表示流体的粘性、压力和流速之间的相对关系。
在不同雷诺数下,圆柱绕流的形态可能会有所不同。
在低雷诺数(Re < 40)的情况下,流体的粘性较大,因此圆柱绕流的形态会呈现出较为平滑的涡旋结构。
随着雷诺数的增加,流体的粘性会逐渐减小,圆柱绕流的形态也会逐渐变得复杂。
在雷诺数较高的情况下(Re > 40),圆柱绕流的形态会呈现出多重分形的特征,即流体中出现了多个涡旋结构,这种现象被称为“多重涡旋”。
在研究圆柱绕流多重分形的过程中,通常会使用数值模拟的方法来研究圆柱绕流的动态特征。
常用的数值模拟方法包括有限差分法、有限元法和有限体积法等。
这些方法可以用来求解流体动力学方程,从而研究不同雷诺数下圆柱绕流的形态变化。
在研究圆柱绕流多重分形的过程中,还可以使用实验方法来研究圆柱绕流的形态变化。
例如,可以使用流动可视化的方法来观察圆柱绕流的形态,或者使用绕流量测量仪器来测量绕流的强度。
除了使用数值模拟和实验方法研究圆柱绕流的多重分形之外,还可以使用理论分析的方法来研究这一现象。
例如,
可以使用流体力学的理论模型来分析圆柱绕流的形态变化,或者使用分形理论来研究圆柱绕流的多重分形现象。
总的来说,圆柱绕流多重分形是一个比较复杂的研究课题,需要综合运用数值模拟、实验和理论分析的方法才能全面地研究这一现象。
分形几何的粒子结构理论毛志彤11(扬州市安装防腐工程有限公司, 江苏江都225200)摘要: 为认识自然界物质的结构和作用各方面的统一性,通过三维空间拓展的分形几何模型,以新结构描述亚原子粒子和原子核,描述暗物质暗能量、微观粒子直到原子结构关系,分析在分形几何结构逻辑基础上的四种基本力和瞬态粒子结构形式,显示分形几何与微分几何在物质结构及规范理论中的有相关联系,揭示一些潜在研究价值,分形几何与微分几何的结合可能成为超弦/M理论第三次革命的分析手段,分形几何模型在亚原子粒子模型、物质结构方面开拓一个全新的结构形式。
关键词: 分形几何;粒子结构;微分几何;无限螺旋分形闭合环;超弦/M理论中图分类号: O4 ;文献标识码: A1研究的动机几何对自然科学特别是物理学发展的意义已经为现代科学界公认,可以看到近代物理学的逻辑在几何原理中得到深刻的阐述,我们并不奢望任意一种几何学都会对物理学的发展产生深刻的意义,但是我们可以尝试任何一种几何可能的应用,特别是一种新颖的几何学分支-分形几何学。
从1986年至今,约24年的研究过程中,我们试图以直接直观的方式更加深刻地理解弦、超弦、超弦/M理论的多维度空间,并给空间与作用力以直观形象的反映,直到2004年,我们通过理论和实验各种矛盾的分析,认为有这么一种可能,分形才是物质的基本单位-亚原子粒子的结构形式,并且其结构蕴含了亚原子粒子四种物理作用力的统一基础:振动与约束对偶耦合规范及其规范场的振荡-电磁波粒子生产和吸收效应,这种亚原子粒子分形结构就是无限螺旋分形闭合环形式。
2分形几何2.1 分形几何学被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。
客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。
适当的放大或缩小几何尺寸,整个结构并不改变。
不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。
分类号O469 学校代码10495UDC530 学号0145023006武汉科技学院硕士学位论文无序系统中的分形生长研究作者姓名:田志华指导教师:田巨平教授学科门类:工学专业:机械设计及理论研究方向:分形与多孔介质完成日期:二零零七年四月Wuhan University of Science and EngineeringM. S. DissertationThe study of fractal growthin disorder systemByTIAN Zhi-huaDirected byProfessor TIAN Ju-pingApril 2007独创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。
除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担。
学位论文作者签名:签字日期:年月日学位论文版权使用授权书本学位论文作者完全了解武汉科技学院有关保留、使用学位论文的规定。
特授权武汉科技学院可以将学位论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。
同意学校向国家有关部门或机构送交论文的复印件和磁盘。
(保密的学位论文在解密后适用本授权说明)学位论文作者签名:导师签名:签字日期:年月日签字日期:年月日论文题目:无序系统中的分形生长研究专业:机械设计及理论硕士生:指导老师:摘要本文首先概述了分形理论的发展,分形和分形维数的定义,以及产生分形的物理机制与生长机制。
简要介绍了模拟分形生长的扩散置限凝聚(DLA)、电介质击穿 (DBM)、粘性指延(Viscous Fingering)、渗流等模型。
本文采用映射膨胀法构造了两种不同的Sierpinski地毯,运用Monte Carlo 方法研究了两种Sierpinski地毯中的有限扩散凝聚(DLA)生长。
基于EEMD与多重分形的心电信号特征提取与分类
叶莉华;李秋生;卢清
【期刊名称】《信号处理》
【年(卷),期】2023(39)1
【摘要】心电信号的快速分类在心脏病医学诊断领域具有至关重要的作用,为了降低人工识别的成本,提高心电信号分类的准确率。
文章以正常搏动、房性早搏、室性早搏、左束支传导阻滞及右束支传导阻滞信号为研究对象,用集合经验模态分解分解心电信号,并结合相关系数来选取本征模态函数进行重构心电信号。
从心电信号的非线性动力学角度出发,用多重分形理论进行分析,研究其质量指数曲线、广义分形维数和多重分形谱,提取合适的多重分形特征,用于支持向量机的训练。
实验结果表明,用该方法训练测试30次得到的分类准确率平均值为96.09%,单次实验对正常搏动、左束支传导阻滞信号的分类精确率可达97%以上,证明该方法在心电信号分类中的有效性。
【总页数】11页(P143-153)
【作者】叶莉华;李秋生;卢清
【作者单位】赣南师范大学物理与电子信息学院;赣南师范大学智能控制工程技术研究中心
【正文语种】中文
【中图分类】TN911.7
【相关文献】
1.基于多重分形维数的改进信号特征提取算法
2.基于多重分形的膝关节摆动信号特征提取与分类
3.基于多重分形和小波变换的声目标信号特征提取
4.基于EEMD和关联维数的矿山微震信号特征提取和分类
5.基于多重分形去趋势波动分析的脑电信号特征提取及分类方法
因版权原因,仅展示原文概要,查看原文内容请购买。
土壤的分形维数计算引言概述:土壤是地球上重要的自然资源之一,对于生物生存和农业发展起着重要作用。
土壤的性质和特征对于农作物的生长和发展具有重要影响。
土壤的分形维数计算是研究土壤结构和特性的一种有效方法。
本文将从五个大点出发,详细阐述土壤的分形维数计算方法及其在土壤研究中的应用。
正文内容:1. 土壤分形维数的概念1.1 土壤分形维数的定义土壤分形维数是描述土壤结构复杂性的一个重要指标,它反映了土壤内部空间的分布和形态特征。
土壤分形维数越大,表示土壤结构越复杂,孔隙分布更加均匀。
1.2 土壤分形维数的计算方法土壤分形维数的计算方法有多种,常用的方法包括盒计数法、面积-周长法和多重分形法等。
其中,盒计数法是最常用的方法之一。
该方法通过将土壤图像分成不同大小的盒子,并计算每个盒子中包含的土壤像素的数量,从而得到土壤的分形维数。
1.3 土壤分形维数的意义土壤分形维数可以反映土壤的孔隙分布和连通性,对于土壤的水分保持、气体交换和养分运输等过程具有重要影响。
通过计算土壤分形维数,可以深入了解土壤的结构特征,为土壤改良和农作物生长提供科学依据。
2. 土壤分形维数计算的关键技术2.1 土壤图像获取土壤分形维数的计算需要获取土壤的图像数据,常用的方法包括数字摄影、光学显微镜和扫描电子显微镜等。
不同的方法可以提供不同层次的土壤结构信息,选择适合的方法对于准确计算土壤分形维数至关重要。
2.2 图像处理与分析土壤图像获取后,需要进行图像处理与分析,以提取土壤结构的特征参数。
常用的图像处理方法包括二值化、滤波和边缘检测等。
通过这些处理方法,可以准确提取土壤图像中的孔隙和颗粒等结构特征。
2.3 分形维数计算算法土壤分形维数的计算需要借助计算机算法进行,常用的算法包括盒计数法、面积-周长法和多重分形法等。
这些算法可以通过对土壤图像的像素点进行统计和分析,得到土壤的分形维数。
3. 土壤分形维数计算的应用3.1 土壤质量评价土壤分形维数可以反映土壤的孔隙分布和连通性,通过计算土壤分形维数可以评价土壤的质量和适宜性。