纳米碳酸钙的制备技术与生产
- 格式:doc
- 大小:39.00 KB
- 文档页数:7
类球状纳米碳酸钙的制备类球状纳米碳酸钙的制备随着纳米材料的广泛应用和研究,纳米粒子的学科研究越来越活跃。
在生物医学、材料科学、能源储存和转换等领域中,类球状纳米碳酸钙的制备成为研究热点。
因此,本文将着重介绍类球状纳米碳酸钙的制备方法及其应用。
一、类球状纳米碳酸钙的制备方法目前,类球状纳米碳酸钙的制备方法主要有两种:化学合成和生物法制备。
1. 化学合成法化学合成法是通过化学反应将碳酸钙合成成类球状纳米粒子,该方法需要使用化学试剂并进行严格的实验室操作。
一般而言,化学合成法主要分为两个步骤:沉淀法与稳定化法。
(1)沉淀法:将钙离子与碳酸根离子置于反应体系中,通过加入酸或碱,使得钙离子与碳酸根离子发生反应,生成沉淀物。
其中有一种常见分解沉淀物的方法――高温水热法。
将制备好的碳酸钙沉淀物置于高压釜内进行水热处理,可得到类球状纳米碳酸钙。
(2)稳定化法:将碳酸钙分散于水或其他介质中,通过添加表面活性剂等化学品,使其能够稳定地存在于溶液中,从而制得类球状纳米碳酸钙。
2. 生物法制备生物制备法是利用微生物、植物、动物等生物体或其代谢物产生的物质合成类球状纳米碳酸钙。
与传统化学合成法相比,生物制备法更加环保、易操作,且得到的产物质量较高。
主要包括细胞外合成法、微生物发酵法和植物提取法等。
(1)细胞外合成法:将酵母、细菌等微生物细胞培养于含有钙离子和碳酸根离子的培养基中,启动微生物代谢过程并利用其外泌物中产生的物质合成类球状纳米碳酸钙。
(2)微生物发酵法:将钙离子和碳酸根离子加入到发酵培养基中,使用发酵菌(如甘露聚糖)进行发酵,同时利用发酵泥中的生物体或其代谢产物合成类球状纳米碳酸钙。
(3)植物提取法:从植物的坚硬组织部分提取出含有钙离子和碳酸根离子的物质,使用植物的细胞壁组分并通过水热处理,最终制备出类球状纳米碳酸钙。
二、类球状纳米碳酸钙的应用1. 医药领域类球状纳米碳酸钙被广泛应用于医药领域,主要是因为它们具有出色的生物相容性、可降解性、易吸附等性质。
常见纳米碳酸钙的制备工艺及特点简介
纳米技术是当前粉体技术的热点,纳米技术和材料的研究、生产及其应用在我国已经初见成效,纳米碳酸钙是其中最具代表性的产品之一。
我国目前纳米碳酸钙的生产工艺种类较多,本文选取了几种常见的工艺技术介绍给各位读者,期望能起到一些科普和技术推广的作用。
1、夹套反应釜法
该工艺方法是将25℃以下的氢氧化钙乳液泵入碳化反应罐中,通入二氧化碳,在搅拌状态下,进行碳化反应,通过控制反应温度、浓度、搅拌速度、添加剂等工艺条件制备纳米碳酸钙。
该法因搅拌气-液接触面积大,反应较均匀,产品粒径分布较窄等,已成为近几年纳米碳酸钙生产的主要方法。
夹套反应釜法因受温度变化的影响,粒径变化频率较大,且碳酸钙生产过程中的碳化过程是一种放热反应,要保证产品细度,就要严格要求控制温度。
由于制冷设备的投入、维护费用和电能消耗相对较高。
2、乳液法
乳液法大致可分为两种: 一种是微乳液法,另一种为乳状液膜法。
微乳液法主要利用微乳液中液滴大小可控的特性, 将可溶性碳酸盐与钙盐分别溶于组成完全相同的微乳液中, 再混合反应,由于反应被控制在较小的区域内进行,因而可得到纳米级碳酸钙晶粒, 再将其与溶剂分离,即得产品。
而乳状液膜法则是利用孔径为几个微米活几十微米的膜材料作为分散介质,分散相压入到连续相中时,被微小孔膜剪切成微小粒径的液滴, 进入连续相,从而实现微米尺度的相互混合。
纳米碳酸钙粉体材料超重力法合成新技术摘要:纳米科学是上世纪末产生的一门学科,经过几十年的发展,如今纳米技术已经成为各国研究的重点。
纳米材料是纳米技术实现的基础,在纳米科学研究中占据重要的地位。
如今,纳米技术已经被广泛应用在了化工、电子、国防等领域,在未来高新技术的发展过程中具备极大的发展潜力。
纳米碳酸钙是其中的代表,因为自身的有一特性,纳米碳酸钙粉末成为了一种重要的无机化工产品,并被作为一种填充剂应用在了橡胶、塑料、涂料、油墨等的生产加工中,不仅仅能够提高工业产品的产量,同时还能够提升产品的质量,使得这些工业材料能够具备更加广泛的应用场景。
因此纳米碳酸钙粉体的制备成为了现在研究的重点。
本文针对纳米碳酸钙粉体的应用进行了简要分析,同时针对超重力合成法在纳米碳酸钙制备中的应用进行了介绍。
关键词:纳米碳酸钙,超重力合成,应用引言:新材料能够为工业和社会发展提供新的机遇,在材料技术不断发展壮大的今天,科学家们不仅仅充分利用了自然界原本拥有的材料物质,同时还创造了许多原本不存在的物质,比如塑料。
这些物质给我们的生活带来了巨大的方便,也在很大程度上推动了社会的进步。
而纳米材料是近几年出现在我们生活中的一种高科技材料,与传统材料相比,它的体积要小很多,单位在微米级别,而纳米碳酸钙粉体便是其中的典型代表。
这种物质现在主要用于生产橡胶、塑料等材料时的添加剂,在提高材料产量和质量方面有显著的效果。
所以近几年,针对这种材料的制备方法研究一直是学术界关注的重点。
纳米碳酸钙粉体的制备工艺有多种,主要有间歇碳化法、连续喷雾碳化法等,近几年的研究发现,通过超重力合成技术能够提高该材料的制备效率。
利用超重力RPB反应器能够实现更加稳定、安全的生产,同时在提高生产效率方面也有巨大的进步。
一、纳米碳酸钙粉体材料在化工领域的应用特性纳米碳酸钙是指粒径为1-100纳米的功能性无机填料,广泛应用于橡胶、塑料、造纸、油墨、涂料、密封胶与胶粘剂、医药、牙膏、食品等领域。
纳米碳酸钙超重力法纳米碳酸钙的超重力法是一种制备技术,通过利用高速离心力和超重力环境,实现物质组分的分离和纯化。
在这种技术中,含有碳酸钙前体物的水溶液在远超于地球重力场的条件下进行离心分离操作,形成具有纳米级别粒径的碳酸钙。
这种制备方法具有较好的分散性和表面活性,且能保证所有晶核具有相同的生长时间,使产物浓度空间均匀分布,满足较高的产物过饱和度。
在橡胶工业中,纳米碳酸钙作为一种重要的填充剂,具有广泛的应用。
它可以提高橡胶的力学性能、热稳定性和阻隔性,改善橡胶制品的加工流动性和耐老化性。
此外,纳米碳酸钙在塑料、涂料、油墨等高分子材料中也有广泛应用,可以提高材料的力学性能、耐热性、阻隔性、透明性和加工流动性等。
超重力法制备纳米碳酸钙的优点:超重力法制备纳米碳酸钙具有许多优点。
首先,该方法可以在常温常压下进行,避免了高温高压对设备的高要求,降低了生产成本。
其次,超重力法可以快速地完成碳酸钙的成核和生长过程,缩短了生产周期。
此外,超重力法可以获得高纯度的纳米碳酸钙,减少了后续处理和提纯的步骤。
最重要的是,超重力法可以精确控制纳米碳酸钙的粒径和形貌,使其满足不同应用领域的需求。
超重力法制备纳米碳酸钙的应用前景随着科技的不断发展,纳米碳酸钙的应用领域也在不断扩展。
在橡胶工业中,随着绿色轮胎的发展,对纳米碳酸钙的需求量不断增加。
在塑料行业中,随着人们对环保意识的提高,使用可降解的塑料制品已成为趋势,这需要大量的纳米碳酸钙作为增韧剂和增强剂。
此外,纳米碳酸钙在涂料、油墨、化妆品等领域也有广泛的应用前景。
超重力法制备纳米碳酸钙具有良好的应用前景。
首先,超重力法可以制备出高纯度、高分散性的纳米碳酸钙,满足不同领域对材料性能的要求。
其次,超重力法可以精确控制纳米碳酸钙的粒径和形貌,使其在应用中发挥最佳性能。
此外,超重力法具有高效、环保、低成本的优点,有利于推动纳米碳酸钙的广泛应用。
结论超重力法制备纳米碳酸钙是一种高效、环保、低成本的方法,具有良好的应用前景。
纳米碳酸钙的生产工艺及用途碳酸钙是自然界存在的一种很广泛的矿物质,也是一种传统的无机盐化工产品。
近年来,随着碳酸钙的超细化及表面改性技术的发展,纳米碳酸钙制备技术及应用,已成为国内外竞相开发的研究热点。
本文就有关纳米碳酸钙的主要生产技术及其应用领域作一简介。
【阳山县中棋实业有限公司】关键词纳米碳酸钙生产用途碳酸钙(化学式为CaCO3)在自然界广泛存在,它至少有6种矿物形式[1]:无定形碳酸钙(amorphous CaCO3)、球霰石(vaterite)、文石(aragonite)、方解石(calcite)、单水方解石(monohydro calcite)和六水方解石(ikaite,CaCO3·6H2O),是大理石、石灰石、白垩等天然矿物的主要成分,也是贝壳、珊瑚礁、珍珠的构成成分。
在工业上,碳酸钙作为一种重要的无机盐化工产品,物美价廉。
根据生产方法不同,碳酸钙分为两大类、多种型号,以满足不同行业、不同用途的需要[2]。
以方解石、大理石、白垩、贝壳、石灰石等为原料经机械粉碎及超细研磨等用物理方法制取的碳酸钙粉体产品称重质碳酸钙,以GCC表示;以石灰石为原料经煅烧、消化、碳酸化、分离、干燥分级等化学方法制取的产品称轻质碳酸钙,以PCC表示。
普通型的重质碳酸钙和轻质碳酸钙,通常作一般填料和白色颜料使用。
纳米碳酸钙是20世纪80年代运用纳米技术加工发展而成的一种新型轻质碳酸钙产品,粒径通常在20~100 nm之间。
由于碳酸钙粒子的超细化,其晶体结构和表面电子结构发生变化,产生了普通碳酸钙所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应,且粒径细而均匀、分布窄、比表面积大、表面活性及分散性好、表面能高,使其在实际使用中体现了很多普通碳酸钙材料所不具备的更加优异的性能,用途更为广泛。
如可广泛大量应用于注塑、挤出、PVC型材、管材、汽车涂料、密封胶、粘结剂涂料、油墨、橡胶等行业,碳酸钙产品的附加值得到很大提高,很快引起了世界各国的普遍关注,现已成为无机非金属材料研究和企业竞争投资的热点[3]。
纳米碳酸钙碳化过程全文共四篇示例,供读者参考第一篇示例:纳米碳酸钙(CaCO3)是一种具有微纳米尺度结构的无机材料,具有广泛的应用领域,如医药、食品、涂料等领域。
它易于合成,在自然界中也有丰富的来源。
碳酸钙在制备过程中可以经历碳酸盐形成、碳酸盐矿化和碳酸盐生长三个主要阶段。
碳化过程对纳米碳酸钙的性质起着至关重要的作用。
碳酸钙碳化过程主要包括碳酸盐形成、碳酸盐矿化和碳酸盐生长三个关键步骤。
碳酸盐形成阶段是碳酸钙合成的首要步骤,通常在水热条件下进行。
在碳酸盐形成过程中,钙离子与碳酸根离子结合形成亚微米级的碳酸钙核心颗粒。
这些核心颗粒具有高度结晶度和特定的结构,是后续碳酸盐矿化和生长的基础。
在碳酸盐矿化阶段,碳酸盐核心颗粒经历矿化作用,使其结构更加稳定和坚固。
这个过程对于纳米碳酸钙的形成和性质至关重要。
矿化作用可以发生在溶液中,也可以由固体表面介导进行。
在溶液中的矿化主要是由于溶液中矿化剂的作用,如硅酸盐、硫酸盐等。
而固体表面介导的矿化则是由于固体表面的化学反应引发的。
碳酸盐生长阶段是碳酸钙颗粒在后续过程中的进一步生长和形成。
在这个阶段,碳酸钙颗粒会逐渐增大,并形成具有纳米尺度的晶体结构。
这些纳米碳酸钙颗粒具有特殊的物理和化学性质,例如高比表面积、优异的生物相容性和可控的形貌。
这些性质为纳米碳酸钙在各种应用领域中的应用提供了广阔的可能性。
碳酸钙碳化过程是制备纳米碳酸钙的关键步骤之一,影响着纳米碳酸钙的结构和性质。
通过对碳化过程的深入研究和优化,可以制备出具有良好性能和应用潜力的纳米碳酸钙材料,为相关领域的发展和创新提供有力支持。
希望未来能够进一步深入研究碳酸钙碳化过程,推动纳米碳酸钙在生物医药、材料科学等领域的应用和发展。
【完】.第二篇示例:纳米碳酸钙碳化是一种重要的碳化反应,通过将碳酸钙粉末暴露在高温和气体流动的环境中进行处理,可以得到纳米级碳酸钙碳化产物。
这种碳化过程具有许多独特的特性和潜在的应用价值,对于提高材料性能和促进碳中和技术的发展具有重要意义。
纳米碳酸钙的生产工艺纳米碳酸钙是一种具有广泛应用前景的纳米材料,其生产工艺的优化对于提高产品质量和降低生产成本至关重要。
本文将介绍纳米碳酸钙的生产工艺,并探讨其中的关键步骤和技术。
一、原料准备纳米碳酸钙的制备首先需要准备适当的原料。
通常使用的原料是石灰石或大理石,这些矿石富含碳酸钙。
在原料准备阶段,矿石首先被破碎和磨细,以获得适合生产纳米碳酸钙的颗粒尺寸。
二、碱法制备碱法制备是生产纳米碳酸钙的主要方法之一。
该方法将石灰石与碱性溶液反应,生成碳酸钙沉淀。
具体步骤如下:1. 将石灰石与碱性溶液(如氢氧化钠溶液)混合,调节pH值到适当范围。
2. 在搅拌条件下,使溶液中的碳酸钙沉淀形成。
3. 通过过滤和洗涤,将碳酸钙沉淀分离出来。
4. 将分离得到的碳酸钙沉淀进行干燥,得到纳米碳酸钙产品。
三、超声波法制备超声波法制备纳米碳酸钙是一种新兴的制备方法,其通过超声波作用下的物理过程来产生纳米级的碳酸钙颗粒。
具体步骤如下:1. 将石灰石颗粒悬浮在溶液中,并加入表面活性剂以提高悬浮液的稳定性。
2. 使用超声波设备,对悬浮液进行超声波处理。
超声波的作用下,石灰石颗粒逐渐破碎,并形成纳米级的碳酸钙颗粒。
3. 对悬浮液进行离心分离,以分离出纳米碳酸钙颗粒。
4. 将分离得到的纳米碳酸钙颗粒进行干燥,得到最终产品。
四、气相沉积法制备气相沉积法是一种高温下制备纳米碳酸钙的方法。
该方法通过热分解碳源来产生纳米碳酸钙颗粒。
具体步骤如下:1. 将适量的碳源(如甲烷)和氧化钙(CaO)混合,形成反应气体。
2. 将反应气体引入高温反应炉中,通过热分解反应生成纳米碳酸钙颗粒。
3. 控制反应条件,如温度、气体流速等,以控制纳米碳酸钙颗粒的尺寸和形貌。
4. 将反应产物冷却,并进行收集和分离。
5. 对分离得到的纳米碳酸钙颗粒进行干燥和粒度分析,得到最终产品。
五、应用前景纳米碳酸钙具有广泛的应用前景。
在橡胶、塑料、涂料等材料中,纳米碳酸钙可以作为增强剂和填充剂,提高材料的力学性能和热稳定性。
纳米碳酸钙的制备和应用技术纳米碳酸钙在众多领域的应用相当广泛,它具有很强的生物相容性和可降解性能。
因此,纳米碳酸钙的制备和应用技术成为了研究和开发的热门选项。
本文就从制备和应用两个角度,对纳米碳酸钙的相关技术展开探讨。
一、纳米碳酸钙的制备技术1. 溶胶-凝胶法溶胶-凝胶法是一种常用的纳米碳酸钙制备方法,其优点是简便易操作、反应速度快、控制性好。
首先,将所需原料经过适当的处理(如溶解、乳化等)得到一种亚微米级别的胶体溶液。
随后在适当的条件下采用热、化学、光等方式对溶胶进行凝胶化处理,待凝胶化结束后,对凝胶进行干燥、烧结等处理即可得到所需产物。
2. 水相沉淀法水相沉淀法是一种比较常用的制备纳米碳酸钙的方法,其过程相对简单,且所需原料容易寻找。
该方法的具体实施过程为,将Ca2+和CO3 2-的水溶液混合,搅拌反应,沉淀产物后进行洗涤、干燥或烧结等处理得到所需产物。
3. 水热法水热法是制备纳米碳酸钙颗粒的经典方法之一,该方法适用于生成一定规模的均匀颗粒。
具体方法是在水中加入适量的氢氧化钙和碳酸氢钠,搅拌反应后直接通过调节反应温度和时间来控制所得产物的大小和形貌。
二、纳米碳酸钙的应用技术1. 生物医学领域纳米碳酸钙在生物医学领域中的应用主要是基于其良好的生物相容性和可降解性能而实现的,比如在骨骼修复、药物输送、医学成像等方面。
研究表明,纳米碳酸钙颗粒具有较低的毒性和对身体无害的特点,可以作为骨骼修复材料或药物携带平台,用于治疗骨质疏松症、癌症等疾病。
2. 环保领域纳米碳酸钙在环保领域中的应用主要涉及农业、水处理、环保建材等方面。
在农业方面,由于其具有优异的土壤改良能力,可以降低土壤酸化程度、改善土壤结构和肥力,从而提高农业产量。
在水处理方面,碳酸钙可以通过与重金属离子形成络合物,有效地降低水中重金属离子含量,净化水源。
在环保建材方面,纳米碳酸钙透明、耐候性强,可以应用于玻璃、涂料、纸张等产品的制造。
3. 食品工业纳米碳酸钙在食品工业中的应用主要体现在食品增稠剂、酸化剂等方面。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
纳米碳酸钙的制备及应用摘要:纳米碳酸钙是一种新型的无机纳米材料,可应用于塑料、橡胶、油墨、造纸、日用化工、胶黏剂和密封材料、医药、食品等许多领域。
本文概述了纳米碳酸钙常用的制备方法,列出了纳米碳酸钙表面改性的途径以及纳米碳酸钙在应用过程中所表现出的与普通轻质碳酸钙所不同的、反常的物理化学特性以及各方面特性的应用领域。
对进一步拓展纳米碳酸钙的应用、不断优化其性能、突出其纳米特性、提升其潜在的价值等提出展望.关键词:纳米碳酸钙;表面改性;应用1.前言纳米碳酸钙是80年代后期开发出的新产品,通常认为l00~.m以下粒径的产品为纳米级,碳酸钙主要用于涂料、橡胶、塑料、油墨、胶粘剂、造纸、化妆品、医药等方面,当前随着不断改良的产品制备工艺,获得的纳米碳酸钙产品质量也不断提高,纳米级和亚纳米级超细碳酸钙用量呈现持续增长趋势,产品市场前景乐观,该产业具有极大的发展潜力和应用空间【1]。
2.合成方法近年来,随着碳酸钙的超细化、结构复杂化及表面改性技术的发展,它的应用价值极大地提高了。
不同形态的超细碳酸钙的制备技术已成为许多先进国家开发的热点。
纳米碳酸钙具有普通碳酸钙所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应。
这些特殊的纳米材料特性使得纳米碳酸钙在磁性、光热阻、催化性、熔点等方面显示出极大的优越性【2]。
纳米碳酸钙的化学制备方法工业生产中多采用化学方法生产纳米碳酸钙。
化学法分为碳化法、复分解法、乳液法等,其中碳化法是目前最为主要的一种生产方法。
以下我们将对这几种化学制备纳米碳酸钙的方法做一介绍和说明。
2.1碳化法首先用精选石灰石进行煅烧,获得氧化钙和窑气;使氧化钙消化,并将生成的悬浮氢氧化钙在高剪切力作用下粉碎,多级旋液分离除去颗粒及杂质,得到一定浓度的精制氢氧化钙悬浮液;然后通入C0 气体,加入适当的晶型控制剂,碳化至终点,得到要求晶型的碳酸钙浆液;最后再经过脱水、干燥、表面处理得到纳米碳酸钙产品,这种方法称之为碳化法。
纳米碳酸钙的制备及应用侯亮(西安文理学院化学与化工系,西安,710065)摘要: 碳酸钙是化学实验室常见的一种无机试剂,也是一种常见的无机盐化工产品。
近年来对于纳米碳酸钙的制备及应用已越来越受到关注。
本文综述了工业上制备纳米碳酸钙的主要方法,介绍了纳米碳酸钙在工业上的应用。
关键词: 纳米碳酸钙制备应用纳米碳酸钙是指粒径在0~100nm范围内的碳酸钙产品,它包括超细碳酸钙(粒径0.02~0.1um)和超微细碳酸钙(粒径小于或等于0.02um)两种碳酸钙产品[1],它们是新型高档功能性填充材料。
我国CaCO3 资源丰富,分布广泛,优质矿床遍及全国各地,CaCO3 作为一种优质填料和白色颜料广泛应用于橡胶、塑料、造纸等许多行业。
1 纳米碳酸钙的制备方法1.1 物理法物理法制备纳米CaCO3 是指从原材料到粒子的整个制备过程没有化学反应发生的制备方法,即对CaCO3 含量高的天然石灰石、白垩石等进行机械粉碎而得到纳米CaCO3 产品的方法。
但是用粉碎机粉碎到1um 以下相当困难,只有采用特殊的方法和机械设备才有可能达到0.1um 以下。
采用日本细川粉体工学研究所的纳米工业制造系统可以得到平均粒径为0.5—0.7um的微细CaCO3 。
1.2 复分解法复分解法是指将水溶性钙盐[ 如CaCl2 与水溶性碳酸盐(如(NH4)2CO3 或Na2CO3 )] 在适宜条件下反应而制得纳米CaCO3 的方法。
这种方法可通过控制反应物浓度及生成CaCO3 的过饱和度,并加入适当的添加剂,得到球形的、粒径极小、比表面积很大、溶解性很好的无定形CaCO3 。
该法可制取纯度高、白度好的优良产品;但吸附在CaCO3 上的大量Cl-很难除尽,生产中使用的倾析法往往需要大量的时间和洗涤用水。
1.3 碳化法碳化法是将精选的石灰石煅烧,得到CaO和窑气,使CaO消化,并将生成的悬浮Ca(OH)2 在高剪切力作用下粉碎,多级旋液分离除去颗粒及杂质,得到一定浓度的精制Ca(OH)2 悬浮液;然后通入CO2 气体,加入适当的晶型控制剂,碳化至终点,得到要求晶型的CaCO3 浆液; 再进行脱水、干燥、表面处理,得到纳米CaCO3 产品。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。