纳米碳酸钙的制备
- 格式:ppt
- 大小:942.50 KB
- 文档页数:31
类球状纳米碳酸钙的制备类球状纳米碳酸钙的制备随着纳米材料的广泛应用和研究,纳米粒子的学科研究越来越活跃。
在生物医学、材料科学、能源储存和转换等领域中,类球状纳米碳酸钙的制备成为研究热点。
因此,本文将着重介绍类球状纳米碳酸钙的制备方法及其应用。
一、类球状纳米碳酸钙的制备方法目前,类球状纳米碳酸钙的制备方法主要有两种:化学合成和生物法制备。
1. 化学合成法化学合成法是通过化学反应将碳酸钙合成成类球状纳米粒子,该方法需要使用化学试剂并进行严格的实验室操作。
一般而言,化学合成法主要分为两个步骤:沉淀法与稳定化法。
(1)沉淀法:将钙离子与碳酸根离子置于反应体系中,通过加入酸或碱,使得钙离子与碳酸根离子发生反应,生成沉淀物。
其中有一种常见分解沉淀物的方法――高温水热法。
将制备好的碳酸钙沉淀物置于高压釜内进行水热处理,可得到类球状纳米碳酸钙。
(2)稳定化法:将碳酸钙分散于水或其他介质中,通过添加表面活性剂等化学品,使其能够稳定地存在于溶液中,从而制得类球状纳米碳酸钙。
2. 生物法制备生物制备法是利用微生物、植物、动物等生物体或其代谢物产生的物质合成类球状纳米碳酸钙。
与传统化学合成法相比,生物制备法更加环保、易操作,且得到的产物质量较高。
主要包括细胞外合成法、微生物发酵法和植物提取法等。
(1)细胞外合成法:将酵母、细菌等微生物细胞培养于含有钙离子和碳酸根离子的培养基中,启动微生物代谢过程并利用其外泌物中产生的物质合成类球状纳米碳酸钙。
(2)微生物发酵法:将钙离子和碳酸根离子加入到发酵培养基中,使用发酵菌(如甘露聚糖)进行发酵,同时利用发酵泥中的生物体或其代谢产物合成类球状纳米碳酸钙。
(3)植物提取法:从植物的坚硬组织部分提取出含有钙离子和碳酸根离子的物质,使用植物的细胞壁组分并通过水热处理,最终制备出类球状纳米碳酸钙。
二、类球状纳米碳酸钙的应用1. 医药领域类球状纳米碳酸钙被广泛应用于医药领域,主要是因为它们具有出色的生物相容性、可降解性、易吸附等性质。
纳米碳酸钙生产工艺及合成专利技术分析(纳米碳酸钙)是指尺寸在纳米数量级的碳酸钙,中国是于上世纪80时代初开始活性碳酸钙制备技术的讨论,80时代末实现工业化生产。
传统的碳酸钙生产,是将精制的石灰石原材料煅烧,得到氧化钙和窑气二氧化碳;消化氧化钙,并将生成的悬乳液氢氧化钙在高剪力作用下粉碎,多级悬液分别,除去颗粒和杂质,得到肯定浓度的精制氢氧化钙悬乳液。
通入二氧化碳气体,加入适当的添加剂掌控晶型,碳化至尽头,得到要求晶型的碳酸钙乳液。
进行脱水、干燥、表面处理,最后得到所要求的碳酸钙产品。
1生产工艺1.1.间歇搅拌式碳化法在湿法碳酸钙的生产中,大多采纳传统的间歇搅拌式碳化法。
生产活性碳酸钙是在生产轻质碳酸钙的基础上,更改碳化工艺(加入改性剂、结晶掌控剂)掌控晶型和粒径,沉淀(加沉淀剂)后经分别、干燥、粉碎、包装,制得不同晶型、颗粒均匀的活性碳酸钙。
间歇搅拌式碳化法工艺投资较少、操作简单,该法因气—液接触面积大,反应较均匀,产品粒径分布较窄等,已成为近几年活性碳酸钙生产的重要方法。
1.2连续喷雾碳化法喷雾碳化法一般采纳两段或三段连续碳化工艺,即石灰乳经第一碳化塔碳化得到反应混合液,然后喷入第二段碳化塔制得最后产品,或再喷入第三段碳化塔碳化得到最后产品。
由于碳化过程分段进行,因此可对晶体的成核和生长过程分段掌控,从而掌控晶体的粒径、晶型。
依据需要,掌控适合的喷雾液滴大小、氢氧化钙浓度、碳化塔内的气液比、反应温度、各段的碳化率等条件,即可制得不同晶型的碳酸钙产品。
1.3超重力碳化法超重力技术起源于1976年的太空试验。
在太空微重力状态下,化工分别单元操作无法完成,从而引发超重力技术的研发,并在1980年得到充分进展。
超重力技术产生的离心加速度不仅可以比重力加速度大2~3个数量级,而且可以调整。
利用离心力场不仅使化工单元操作在太空成为可能,而且可以大大提高化工单元操作效率。
将超重力技术应用于碳酸钙的生产使这一生产过程发生了革命性变化。
工业生产技术的不断革新,给许多新型的产品生产带来可能,其中一种纳米级的碳酸钙颗粒就可运用于多个行业中去。
目前主要采用的制作工艺可以分为炭化法、连续喷雾碳化法、超重力碳化法等。
我们来一一去进行了解。
制备纳米碳酸钙的方法有物理法和化学法。
物理法就是对天然石灰石、白垩石进行机械粉碎而得到。
但是粉碎的粒度是有限的,只有采用特殊的方法和机械才有可能达到0.1μm以下。
所以生产纳米碳酸钙主要采用化学法。
(一)碳化法这种制备方法是主要的一种生产方式。
将精选的石灰石煅烧,得到氧化钙和窑气。
使氧化钙消化,并将生成的悬浮氢氧化钙在高剪切力作用下粉碎,多级旋液分离除去颗粒及杂质,得到一定浓度的精制氢氧化钙悬浮液;然后通入CO2气体,加入适当的晶型控制剂,碳化至终点,得到要求晶型的碳酸钙浆液;再进行脱水、干燥、表面处理,得到纳米碳酸钙产品。
按照碳化过程中CO2气体与氢氧化钙悬浮液接触方式的不同,可将碳化法分为间歇鼓泡碳化法、连续喷雾碳化法和超重力碳化法,以及在间歇鼓泡碳化法基础上改进的非冷冻法。
该法投资少,易于转化,为国内外大多数厂家所采用。
但是这种方法生产效率低、气液接触差、碳化时间长、粒径粗且不均匀。
(二)连续喷雾碳化法喷雾碳化法是将石灰乳用喷头喷成雾状,从塔顶喷下,将一定浓度的CO2以某一速度从塔底上升,与雾状石灰乳发生反应。
对于连续喷雾碳化,则重复进行以上过程,最后可获得粒径小于0.1μm的纳米碳酸钙。
该法生产纳米碳酸钙效率高,经济效益可观,并能实现连续自动大规模生产,另外,具有很高的科学性和技术性。
但设备投资较大。
(三)超重力碳化法利用旋转造成一种稳定的、比地球重力加速度高的多的超重力环境,极大地增加气液接触面积,强化气-液之间的传质过程,从而提高碳化速度。
同时,由于乳液在旋转床中得到高度分散,限制了晶粒的长大,即使不添加晶形控制剂,也可以制备出粒径为15~30nm的纳米碳酸钙。
纳米碳酸钙制备工艺分析纳米碳酸钙(nano-CaCO3)是一种具有广泛应用前景的新型纳米材料,可用于陶瓷制品、橡胶制品、塑料制品和涂料等多个行业。
其制备工艺主要包括溶液法、加热碳化法和高压碳酸盐法。
本文将对这些制备工艺进行详细的分析。
首先是溶液法。
该方法通过将硝酸钙和碳酸钠等钙源溶解在水中,然后通过化学反应沉淀出纳米碳酸钙。
这种方法的优点是简单易行,可控性好,能够得到均一分散度较好的纳米碳酸钙颗粒。
然而,溶液法存在一些问题,如反应溶液的酸碱度、温度和搅拌速度等因素对纳米碳酸钙的形貌和颗粒大小具有较大影响,需要进行严密的实验条件控制。
其次是加热碳化法。
该方法通过将一定质量比的钙源与一定比例的碳源混合,在高温下加热反应,使其发生碳化反应生成纳米碳酸钙。
这种方法具有高效、高产出等优点,制备出的纳米碳酸钙具有较好的纯度和形貌。
然而,加热碳化法也存在一些问题,如反应条件的控制较为困难,高温容易引起固相和气相反应的竞争,而且产生的纳米碳酸钙颗粒分散性较差。
最后是高压碳酸盐法。
该方法通过将高压二氧化碳气体与钙氢氧化物反应,生成纳米碳酸钙。
这种方法具有操作简便、反应效果好等优点,制备出的纳米碳酸钙颗粒形状规整、分散性好。
然而,高压碳酸盐法也存在一些问题,如需要较高的压力和温度,设备要求较高。
总的来说,纳米碳酸钙制备工艺各有优缺点,选择合适的制备工艺需要考虑到具体应用的要求以及成本和技术条件的综合因素。
未来的研究方向可以是改进现有制备工艺,提高纳米碳酸钙的颗粒分散性和控制其形貌的技术,以满足不同应用领域对纳米碳酸钙的需求。
纳米碳酸钙的合成工艺研究纳米碳酸钙(Nano CaCO3)是一种颗粒尺寸小于100纳米的碳酸钙粉体材料。
与传统的微米级碳酸钙相比,纳米碳酸钙具有较大的比表面积、高反应活性、良好的机械性能和透明度等特点,广泛应用于领域,如橡胶、塑料、涂料、纺织品、食品、医药等。
本文将介绍纳米碳酸钙的合成工艺研究。
纳米碳酸钙的合成方法多种多样,常用的合成工艺包括溶液法、气相法和固相法等。
以下将分别介绍这三种常用工艺。
溶液法是一种常用的纳米碳酸钙合成方法。
一般来说,该方法通过在钙盐溶液中加入碳酸盐溶液,通过化学反应使碳酸盐与钙盐反应生成纳米碳酸钙。
在该方法中,反应温度、pH值、反应时间等条件对纳米碳酸钙的产率和粒径均具有重要影响。
较高的温度和碱性条件有利于产生较小颗粒尺寸的纳米碳酸钙。
此外,对溶液饱和度的控制也是纳米碳酸钙合成的关键。
通过合理调节溶液浓度和反应时间,可以控制纳米碳酸钙的尺寸和分布。
气相法是另一种常用的纳米碳酸钙合成方法。
该方法主要通过在高温环境下将有机碳源与氧化钙进行热解反应,生成纳米碳酸钙。
常用的有机碳源包括甲烷、丙烷等。
热解温度、反应时间和气体流速等因素对纳米碳酸钙的形貌和分布起着重要作用。
通常情况下,较高的热解温度和较长的反应时间有利于产生较小的颗粒尺寸和较窄的分布。
固相法是一种低成本的纳米碳酸钙合成方法。
该方法通过在固相条件下进行反应,使钙源和碳源在高温下发生化学反应,生成纳米碳酸钙。
常用的钙源包括石灰石和氢氧化钙,而常用的碳源包括葡萄糖、醋酸钠等。
反应温度、反应时间和原料比例等因素对纳米碳酸钙的合成具有重要影响。
较高的反应温度和较长的反应时间有利于生成较小的颗粒尺寸和较高的产率。
纳米碳酸钙的合成工艺研究主要集中在优化合成条件、控制颗粒尺寸和分布以及提高产率等方面。
例如,通过合理调节反应温度、pH值和反应时间等条件,可以获得所需的纳米碳酸钙颗粒尺寸和形貌。
此外,利用表面活性剂和分散剂等添加剂可以改善纳米碳酸钙颗粒的分散性和稳定性。
纳米碳酸钙的原材料
纳米碳酸钙是一种新型材料,由于其高度纯净、粒径小、比表面积大
等特点,在各种领域都得到了广泛的应用。
那么,纳米碳酸钙的原材
料是什么呢?本文将会一一介绍。
1. 碳酸盐矿物
纳米碳酸钙的主要原材料是碳酸盐矿物,如方解石、白垩、珊瑚等。
这些天然矿物在地壳中广泛存在,并且相对容易开采,可以充分利用
地球资源。
2. 化学法制备
除了天然矿物外,化学法制备也是纳米碳酸钙的重要原材料。
主要包
括碳酸和钙源。
碳酸源可以来自一氧化碳或氧气与甲烷或二氧化碳反
应得到的一氧化碳,而钙源则是钙盐溶液。
这种制备方法可以制备纯
净的纳米碳酸钙,并且粒径也可以控制。
3. 生物法制备
生物法制备是利用生物质或微生物制备纳米碳酸钙。
这种方法环保,
可再生,但是生产成本较高。
生物法制备可以从乳清、脱脂奶、鱼骨
等来源中提取碳酸钙。
综上所述,纳米碳酸钙的原材料主要来源于天然矿物、化学合成、生
物法制备三种方法。
不同的制备方式由于原材料来源和生产工艺不同,纳米碳酸钙的纯净度,粒径大小和比表面积等特性也有所不同。
在实
际应用中,我们可以选择适合自己需求的纳米碳酸钙。
纳米碳酸钙的制备及粒径、形貌控制
纳米碳酸钙的制备方法有很多,常见的有化学共沉淀法、溶胶凝胶法、水热法等。
其中,化学共沉淀法是一种简单易操作、成本较低的方法,也是应用最广泛的制备方法之一。
化学共沉淀法的制备步骤如下:
1. 将钙盐和碳酸盐的溶液混合,将pH值调节到8左右。
2. 加入一定量的表面活性剂,如CTAB、SDS等,使反应产物均匀分散。
3. 在搅拌的条件下,缓慢滴加含有碱性离子的溶液,如氢氧化钠溶液,使溶液pH值升高,从而促进反应。
4. 继续搅拌反应一定时间,然后离心、洗涤、干燥,得到纳米碳酸钙粉末。
通过控制反应条件,可以实现纳米碳酸钙的粒径、形貌控制。
主要的影响因素包括反应温度、pH值、反应时间、离子浓度、添加剂种类等。
例如,提高反应温度和pH值可以促进反应速度,但同时也容易导致晶体生长,从而增大颗粒大小;添加适量的表面活性剂可以提高反应产物的稳定性和均匀性,有利于得到较为均一的纳米颗粒。
除了化学共沉淀法,还可以采用其他方法来实现纳米碳酸钙的制备和粒径、形貌控制。
例如,溶胶凝胶法可通过不同的预处理和处理条件实现纳米颗粒的控制,水热法可以获得形貌较为复杂的纳米颗粒等。
纳米碳酸钙的生产工艺纳米碳酸钙是一种具有广泛应用前景的纳米材料,其生产工艺的优化对于提高产品质量和降低生产成本至关重要。
本文将介绍纳米碳酸钙的生产工艺,并探讨其中的关键步骤和技术。
一、原料准备纳米碳酸钙的制备首先需要准备适当的原料。
通常使用的原料是石灰石或大理石,这些矿石富含碳酸钙。
在原料准备阶段,矿石首先被破碎和磨细,以获得适合生产纳米碳酸钙的颗粒尺寸。
二、碱法制备碱法制备是生产纳米碳酸钙的主要方法之一。
该方法将石灰石与碱性溶液反应,生成碳酸钙沉淀。
具体步骤如下:1. 将石灰石与碱性溶液(如氢氧化钠溶液)混合,调节pH值到适当范围。
2. 在搅拌条件下,使溶液中的碳酸钙沉淀形成。
3. 通过过滤和洗涤,将碳酸钙沉淀分离出来。
4. 将分离得到的碳酸钙沉淀进行干燥,得到纳米碳酸钙产品。
三、超声波法制备超声波法制备纳米碳酸钙是一种新兴的制备方法,其通过超声波作用下的物理过程来产生纳米级的碳酸钙颗粒。
具体步骤如下:1. 将石灰石颗粒悬浮在溶液中,并加入表面活性剂以提高悬浮液的稳定性。
2. 使用超声波设备,对悬浮液进行超声波处理。
超声波的作用下,石灰石颗粒逐渐破碎,并形成纳米级的碳酸钙颗粒。
3. 对悬浮液进行离心分离,以分离出纳米碳酸钙颗粒。
4. 将分离得到的纳米碳酸钙颗粒进行干燥,得到最终产品。
四、气相沉积法制备气相沉积法是一种高温下制备纳米碳酸钙的方法。
该方法通过热分解碳源来产生纳米碳酸钙颗粒。
具体步骤如下:1. 将适量的碳源(如甲烷)和氧化钙(CaO)混合,形成反应气体。
2. 将反应气体引入高温反应炉中,通过热分解反应生成纳米碳酸钙颗粒。
3. 控制反应条件,如温度、气体流速等,以控制纳米碳酸钙颗粒的尺寸和形貌。
4. 将反应产物冷却,并进行收集和分离。
5. 对分离得到的纳米碳酸钙颗粒进行干燥和粒度分析,得到最终产品。
五、应用前景纳米碳酸钙具有广泛的应用前景。
在橡胶、塑料、涂料等材料中,纳米碳酸钙可以作为增强剂和填充剂,提高材料的力学性能和热稳定性。