度量空间中自列紧集、紧集、连通集与连续映射
- 格式:pdf
- 大小:475.73 KB
- 文档页数:6
第4章连通性本章讨论拓扑空间的几种拓扑不变性质,包括连通性,局部连通性和弧连通性,并且涉及某些简单的应用.这些拓扑不变性质的研究也使我们能够区别一些互不同胚的空间.§4.1连通空间本节重点:掌握连通与不连通的定义;掌握如何证明一个集合的连通与否;掌握连通性的拓扑不变性、有限可积性、可商性.我们先通过直观的方式考察一个例子.在实数空间R中的两个区间(0,l)和[1,2),尽管它们互不相交,但它们的并(0,1)∪[l,2)=(0,2)却是一个“整体”;而另外两个区间(0,1)和(1,2),它们的并(0,1)∪(1,2)是明显的两个“部分”.产生上述不同情形的原因在于,对于前一种情形,区间(0,l)有一个凝聚点1在[1,2)中;而对于后一种情形,两个区间中的任何一个都没有凝聚点在另一个中.我们通过以下的定义,用术语来区别这两种情形.定义4.1.1 设A和B是拓扑空间X中的两个子集.如果则称子集A和B是隔离的.明显地,定义中的条件等价于和同时成立,也就是说,A与B无交并且其中的任何一个不包含另一个的任何凝聚点.应用这一术语我们就可以说,在实数空间R中,子集(0,1)和(1,2)是隔离的,而子集(0,l)和[1,2)不是隔离的.又例如,易见,平庸空间中任何两个非空子集都不是隔离的,而在离散空间中任何两个无交的子集都是隔离的.定义4.1.2 设X是一个拓扑空间.如果X中有两个非空的隔离子集A和B使得X=A∪B,则称X是一个不连通空间;否则,则称X是一个连通空间.显然,包含着多于两个点的离散空间是不连通空间,而任何平庸空间都是连通空间.定理4.1.1 设X是一个拓扑空间.则下列条件等价:(l)X是一个不连通空间;(2)X中存在着两个非空的闭子集A和B使得A∩B=和A∪B=X成立;(3)X中存在着两个非空的开子集A和B使得A∩B=和A∪B=X成立;(4)X中存在着一个既开又闭的非空真子集.证明条件(l)蕴涵(2):设(1)成立.令A和B是X中的两个非空的隔离子集使得A∪B=X,显然A∩B=,并且这时我们有因此B是X中的一个闭子集;同理A也是一个X中的一个闭子集.这证明了集合A和B满足条件(2)中的要求.条件(2)蕴涵(3).如果X的子集A和B满足条件(2)中的要求,所以A、B为闭集,则由于这时有A=和B=,因此A、B也是开集,所以A 和B也满足条件(3)中的要求.条件(3)蕴涵(4).如果X的子集A和B满足条件(3)中的要求,所以A、B是开集,则由A=和B=易见A和B都是X中的闭集,因此A、B 是X中既开又闭的真(∵A、B≠,A∪B=X,∴A、B≠X)子集,所以条件(4)成立.条件(4)蕴涵(l).设X中有一个既开又闭的非空真子集A.令B=.则A和B都是X中的非空的闭子集,它们是无交的并且使得A∪B=X.易见两个无交的闭子集必定是隔离的(因为闭集的闭包仍为自己).因此(l)成立.例4.1.1 有理数集Q作为实数空间R的子空间是一个不连通空间.这是因为对于任何一个无理数r∈R-Q,集合(-∞,r)∩Q=(-∞,r]∩Q是子空间Q中的一个既开又闭的非空真子集.定理4.1.2 实数空间R是一个连通空间.证明我们用反证法来证明这个定理.假设实数空间R是不连通空间.则根据定理4.1.1,在R中有两个非空闭集A和B使得A∩B=和A∪B=R成立.任意选取a∈A和b∈B,不失一般性可设a<b.令=A∩[a,b],和=B∩[a,b].于是和是R中的两个非空闭集分别包含a和b,并且使得∩=和∪=[a,b]成立.集合有上界b,故有上确界,设为.由于是一个闭集,所以∈,并且因此可见<b,因为=b将导致b∈∩,而这与∩=矛盾.因此(,b].由于是一个闭集,所以∈.这又导致∈∩,也与∩=矛盾.定义4.1.3 设Y是拓扑空间X的一个子集.如果Y作为X的子空间是一个连通空间,则称Y是X的一个连通子集;否则,称Y是X的一个不连通子集.拓扑空间X的子集Y是否是连通的,按照定义只与子空间Y的拓扑有关(即Y的连通与否与X的连通与否没有关系.).因此,如果,则Y是X 的连通子集当且仅当Y是Z的连通子集.这一点后面要经常用到.定理4.1.3 设Y是拓扑空间X的一个子集,A,B Y.则A和B是子空间Y中的隔离子集当且仅当它们是拓扑空间X中的隔离子集.因此,Y是X的一个不连通子集,当且仅当存在Y中的两个非空隔离子集A和B使得A∪B=Y(定义)当且仅当存在X中的两个非空隔离子集A和B使得A∪B=Y.证明用、分别表示A在Y,X中的闭包.因为因此根据隔离子集的定义可见定理成立.定理4.1.4 设Y是拓扑空间X中的一个连通子集.如果X中有隔离子集A和B使得Y AUB,则或者Y A,或者Y B.证明如果A和B是X中的隔离子集使得Y AUB,则这说明A∩Y和B∩Y也是隔离子集.然而(A∩Y)∪(B∩Y)=(A∪B)∩Y=Y因此根据定理4.1.3,集合A∩Y和B∩Y中必有一个是空集.如果A∩Y=,据上式立即可见Y B,如果B∩Y=,同理可见Y A.定理 4.1.5 设Y是拓扑空间X的一个连通子集,Z X满足条件.则Z也是X的一个连通子集.证明假设Z是X中的一个不连通子集.根据定理4.1.3,在X中有非空隔离子集A和B使得Z=A∪B,因此Y AUB.由于Y是连通的,根据定理4.1.4,或者Y A.或者Y B,同理,.这两种情形都与假设矛盾.定理4.1.6 设是拓扑空间X的连通子集构成的一个子集族.如果,则是X的一个连通子集.证明设A和B是X中的两个隔离子集,使得,=A∪B.任意选取x∈,不失一般性,设x∈A.对于每一个γ∈Γ,由于连通,根据定理 4.1.4,或者或者;由于x∈∩A,所以.根据定理4.1.3,这就证明了是连通的.定理4.1.7 设Y是拓扑空间X中的一个子集.如果对于任意x,y∈Y存在X中的一个连通子集使得x,y∈Y,则Y是X中的一个连通子集.证明如果Y=,显然Y是连通的.下设Y≠,任意选取a∈Y,容易验证Y=并且a∈.应用定理4.1.6,可见Y是连通的.我们曾经说过,拓扑学的中心任务便是研究拓扑不变性质(参见§2.2).所谓拓扑不变性质,乃是为一个拓扑空间具有必为任何一个与其同胚的拓扑空间所具有的性质.事实上,如果拓扑空间的某一个性质,它是藉助于开集或者藉助于经由开集定义的其他概念表达的,则此性质必然是拓扑不变性质.拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个在连续映射下保持不变的性质.因为同胚是连续的满射,所以在连续映射下保持不变的性质必然是拓扑不变性质.拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个可商性质.因为拓扑空间到它的商空间的自然的投射是一个连续的满射,所以在连续映射下保持不变的性质必然是可商性质.以下定理4.1.8指出,连通性(即一个拓扑空间是连通的这一性质)是一个在连续映射下保持不变的性质.因此,它是拓扑不变性质,也是可商性质.定理4.1.8 设f:X→Y是从连通空间X到拓扑空间Y的一个连续映射.则f(X)是Y的一个连通子集.证明如果f(X)是Y的一个不连通子集,则存在Y的非空隔离子集A 和B使得f(X)=A∪B.于是(A)和(B)是X的非空子集,并且所以(A)和(B)是X的非空隔离子集.此外,(A)∪(B)=(A∪B)=(f(X))=X这说明X不连通.与定理假设矛盾.拓扑空间的某种性质P称为有限可积性质,如果任意n>0个拓扑空间都具有性质p,蕴涵着积空间也具有性质p.例如,容易直接证明,如果拓扑空间都是离散空间(平庸空间),则积空间也是离散空间(平庸空间),因此我们可以说拓扑空间的离散性和平庸性都是有限可积性质.根据定理3.2.9以及紧随其后的说明可见:假设已知拓扑空间的某一个性质p是一个拓扑不变性质.为了证明性质p是一个有限可积性质,我们只要证明任何两个具有性质p的拓扑空间的积空间也是具有性质p的拓扑空间.定理4.1.9 设是n个连通空间.则积空间也是连通空间.证明根据前一段中的说明,我们只要对于n=2的情形加以证明.首先我们指出:如果两个点有一个坐标相同,则有一个连通子集同时包含x和y不失一般性,设定义映射k:使得对于任何有.由于是取常值的映射,为恒同映射,它们都是连续映射,其中分别是到第1和第2个坐标空间的投射.因此,k是一个连续映射.根据定理4.1.8,k()是连通的.此外易见,,因此它同时包含x和y.现在来证明:中任何两个点同时属于的某一个连通子集.这是因为这时若令,则根据前段结论,可见有的一个连通子集同时包含x和z,也有的一个连通子集同时包含y和z.由于z∈,因此根据定理4.1.6,是连通的,它同时包含x和y.于是应用定理4.1.7可见是一个连通空间.因为n维欧氏空间是n个实数空间R的笛卡儿积,而实数空间R又是一个连通空间,所以应用这个定理可见,n维欧氏空间是一个连通空间.作业:P116 3.5.6.8.14.§4.2连通性的某些简单应用本节重点:掌握实数空间R中的连通子集的“形状”掌握实数空间R的子集中常见的连通子集与不连通子集.掌握常见的几种空间的同胚与否的事实.让我们回忆实数集合R中区间的精确定义:R的子集E称为一个区间,如果它至少包含两个点,并且如果a,b∈E,a<b,则有[a,b]={x∈R|a≤x≤b} E读者熟知,实数集合R中的区间共有以下9类:(-∞,∞),(a,∞),[a,∞),(-∞,a),(-∞,a](a,b),(a,b],[a,b),[a,b]因为,一方面以上9类集合中的每一个显然都是区间;另一方面,如果ER是一个区间,可视E有无上(下)界,以及在有上(下)界的情形下视其上(下)确界是否属于E,而将E归入以上9类之一在定理4.1.2中我们证明了实数空间R是一个连通空间.因为区间(a,∞),(-∞,a)和(a,b)都同胚于R(请读者自己写出必要的同胚映射),所以这些区间也都是连通的;由于根据定理4.1.5可见区间[a,∞),(-∞,a],[a,b),(a,b]和[a,b]都是连通的.另一方面,假设E是R的一个子集,并且它包含着不少于两个点.如果E不是一个区间,则,也就是说,存在a<c<b,使得;从而,若令A=(-∞,c)∩E,B=(c,∞)∩E则可见A和B都是E的非空开集,并且有A∪B=E和A∩B=,因此E不连通.综合以上两个方面,我们已经证明了:定理4.2.1 设E是实数空间R的一个子集.E是包含着不少于两个点的一个连通子集当且仅当E是一个区间.定理4.2.2 设X是一个连通空间,f:X→R是一个连续映射.则f(X)是R 中的一个区间.因此,如果x,y∈X,则对于f(x)与f(y)之间的任何一个实数t(即当f(x)≤f(y)时,f(x)≤t≤f(y);当f(y)≤f(x)时,f(y)≤t≤f(x)),存在z∈X 使得f(z)=t.证明这个定理的第一段是定理4.1.8和定理4.2.1的明显推论.以下证明第二段.设x,y∈X.如果f(x)=f(y),则没有什么要证明的.现在设f(x)≠f(y),并且不失一般性,设f(x)<f(y).由于f(X)是一个区间,所以[f(x),f(y)]f(X).因此对于任何t,f(x)≤t≤f(y),有t∈f(X),所以存在z∈X,使得f(z)=t.根据定理4.2.2,立即可以推出数学分析中的介值定理和不动点定理.定理4.2.3[介值定理]设f:[a,b]→R是从闭区间[a,b]到实数空间R的一个连续映射.则对于f(a)与f(b)之间的任何一个实数r,存在z∈[a,b]使得f(z)=r.定理4.2.4[不动点定理] 设f:[0,1]→[0,1]是一个连续映射.则存在z∈[0,1]使得f(z)=z证明如同数学分析中的证法那样,只需构造F(x)=x-f(x), 再利用介值定理即可证得.容易证明欧氏平面中的单位圆周是连通的.这是因为如果定义映射f:R→使得对于任意t∈R有f(t)=(cos2πt,sin2πt)∈,则易于验证f是一个连续映射,并且f(R)=.因此是连通空间R在一个连续映射下的象,所以它是连通的.设点称为点x的对径点.映射r:使得任何x∈,有r(x)=-x,称为对径映射.对径映射是一个连续映射,因为它是欧氏平面到自身的反射l:在单位圆周上的限制.其中,映射l 定义为对于任何,有l(x)=-x,容易验证(请读者自行验证)是一个连续映射.定理4.2.5[Borsuk-Ulam定理] 设f:→R是一个连续映射.则在中存在一对对径点x和-x,使得f(x)=f(-x).证明(略)我们已经知道n维欧氏空间是连通空间,下面进一步指出:定理4.2.6 n>1维欧氏空间的子集-{0}是一个连通子集,其中0=(0,0,…,0)∈.证明我们只证明n=2的情形.根据定理4.1.9,中的子集(-∞,0)×R和(0,∞)×R都是连通的.由于所以根据定理4.1.5,Rn中的子集A=[0,∞)×R-{0}是连通的;同理,子集B=(-∞,0]×R-{0}是连通的.由于A∩B≠以及A∪B=-{0},因此根据定理4.1.6可见,-{0}是连通的.一般情形的证明类似,请读者自行补证.定理4.2.6可以得到进一步的改善(参见习题第4题)定理4.2.7 欧氏平面和实数空间R不同胚.证明假设与R同胚,并且设f:→R是一个同胚.因此对于连续映射我们有.但根据定理 4.2.6,-{0}是连通的,而根据定理4.2.1,R-{f(0)}是不连通的.这与定理4.1.8矛盾.定理4.2.7给出了利用拓扑不变性质判定两个空间不同胚的第一个实例.定理4.2.4,定理4.2.5和定理4.2.7尽管简单但确有意思,特别是这几个定理都有高维“版本”,我们分别陈述如下:定理4.2.8[Brouwer不动点定理] 设f:是一个连续映射,其中是n维球体.则存在z∈使得f(z)=z.定理4.2.9[Borsuk-Ulam定理] 设f:是一个连续映射,其中n≥m,则存在x∈使得f(x)=f(-x).定理4.2.10 如果n≠m,则欧氏空间和不同胚.这些定理的证明(除去我们已经证明过的情形)一般都需要代数拓扑知识,例如同调论或同伦论,请参阅有关的专门书籍.作业:P121 4.§4.3连通分支本节重点:掌握连通分支的定义(即连通”类”的分法);掌握连通分支的性质(定理4.3.1).从前面两节中的内容可以看出,知道一个拓扑空间是否连通给我们处理一些问题带来很大的方便.这导致我们去考察一个我们并不知道是否连通的拓扑空间中的“最大”连通子集(即连通分支).定义4.3.1 设X是一个拓扑空间,x,y∈X.如果X中有一个连通子集同时包含x和y,我们则称点x和y是连通的.(注意:是点连通) 根据定义可见,如果x,y,z都是拓扑空间X中的点,则(1)x和x连通(因为每一个单点集都是连通子集);(2)如果x和y连通,则y和x也连通;(显然)(3)如果x和y连通,并且y和z连通,则x和z连通.(这是因为,这时存在X中的连通子集A和B使得x,y∈A和y,z∈B.从而由于y∈A∩B 可见A∪B连通,并且x,z∈A∪B.因此x和z连通.)以上结论归结为:拓扑空间中点的连通关系是一个等价关系.定义4.3.2 设X是一个拓扑空间.对于X中的点的连通关系而言的每一个等价类称为拓扑空间X的一个连通分支.如果Y是拓扑空间X的一个子集.Y作为X的子空间的每一个连通分支称为X的子集Y的一个连通分支.拓扑空间X≠的每一个连通分支都不是空集;X的不同的连通分支无交;以及X的所有连通分支之并便是X本身.此外,x,y∈X属于X的同一个连通分支当且仅当x和y连通.拓扑空间X的子集A中的两个点x和y属于A的同一个连通分支当且仅当A有一个连通子集同时包含点x和y.定理4.3.1 设X是一个拓扑空间,C是拓扑空间X的一个连通分支.则(1)如果Y是X的一个连通子集,并且Y∩C≠;(2)C是一个连通子集;(3)C是一个闭集.本定理中的条件(1)和(2)说明,拓扑空间的每一个连通分支都是X的一个最大的连通子集.证明(1)任意选取x∈Y∩C.对于任何y∈Y由于x和y连通,故y∈C.这证明Y C.(2)对于任何x,y∈C,根据定义可见,存在X的一个连通子集使得x,y∈.显然∩C≠,故根据(1),C.应用定理4.1.7可知,C是连通的.(3)因为C连通,根据定理4.1.5,连通.显然,.所以根据(1),.从而C是一个闭集.但是,一般说来连通分支可以不是开集.例如考虑有理数集Q(作为实数空间R的子空间).设x,y∈Q,x≠y.不失一般性,设x<y.如果Q的一个子集E同时包含x和y,令A=(-∞,r)∩E和B=(r,∞)∩E,其中r是任何一个无理数,x<r<y.此时易见A和B都是Q的非空开集,并且E=A∪B.因此E不连通.以上论述说明E中任何一个包含着多于两个点的集合都是不连通的,也就是说,Q的连通分支都是单点集.然而易见Q中的每一个单点集都不是开集.记住这个事实:任一个集合A都可以由含于它内部的所有连通分支的并而成(且这些连通分支互不相交).即使是离散空间,它的每一个点自成连通分支,这个结论也成立.作业:P123 1.3.4.8.§4.4局部连通空间本节重点:掌握局部连通的定义与性质(定理4.4.1-4.4.3);掌握连通与局部连通的关系.引进新的概念之前,我们先来考察一个例子.例4.4.1 在欧氏平面中令S={(x,sin(1/x))|x∈(0,1]}.T={0}×[-1,1],其中S被称作拓扑学家的正弦曲线,它是区间(0,1]在一个连续映射下的象,因此是连通的.此外,也容易验证=S∪T,因此=S∪T也是连通的.尽管如此,倘若我们查看中的点,容易发现它们明显地分为两类:S中的每一个点的任何一个“较小的”邻域中都包含着一个连通的邻域,而T中的每一个点的任何一个邻域都是不连通的.我们用以下的术语将这两个类型的点区别开来.定义4.4.1 设X是一个拓扑空间,x∈X.如果x的每一个邻域U中都包含着x的某一个连通的邻域V,则称拓扑空间X在点x处是局部连通的.如果拓扑空间X在它的每一个点处都是局部连通的,则称X是一个局部连通空间.回到例4.4.1中所定义的拓扑空间.容易证明,在其属于S的每一个点处是局部连通的,而在其属于T的每一个点处都不是局部连通的.也因此,尽管是一个连通空间,但它却不是一个局部连通的空间.局部连通的拓扑空间也不必是连通的.例如,每一个离散空间都是局部连通空间,但包含着多于两个点的离散空间却不是连通空间.又例如,n维欧氏空间的任何一个开子空间都是局部连通的(这是因为每一个球形邻域都同胚于整个欧氏空间,因而是连通的),特别,欧氏空间本身是局部连通的.另一方面,欧氏空间中由两个无交的非空开集的并作为子空间就一定不是连通的(请读者自己证明).此外根据定义立即可见:拓扑空间X在点x∈X处是局部连通的当且仅当x 的所有连通邻域构成点x处的一个邻域基,定理4.4.1 设X是一个拓扑空间.则以下条件等价:(1)X是一个局部连通空间;(2)X的任何一个开集的任何一个连通分支都是开集;(3)X有一个基,它的每一个元素都是连通的.证明(1)蕴涵(2).设C是X的一个连通分支,.如果x∈C,由于U是x的一个邻域,所以当(1)成立时x有一个连通邻域V包含于U.又由于V∩C包含着点x,所以不是空集,根据定理4.3.1可见.因此C∈.这证明C是属于它的任何一个点x的邻域,因此C是一个开集.条件(2)蕴涵(3).若(2)成立,则X的所有开集的所有连通分支(它们都是开集)构成的集族,由于每一个集合是它的所有连通分支之并,恰是X 的一个基.条件(3)蕴涵(1).显然.我们常用到定理4.4.1的一个推论:局部连通空间的每一个连通分支都是开集.定理4.4.2 设X和Y都是拓扑空间,其中X是局部连通的.又设f:X→Y 是一个连续开映射.则 f(X)是一个局部连通空间.证明根据定理4.4.1,可设B是X的一个基,其中的每一个元素都是连通的.对于每一个B∈B,集合f(B)是连通的,并且由于f是一个开映射,f(B)是Y中的一个开集,因此也是f(X)的一个开集.这证明集族B1={f(B)|B∈B}}是一个由f(X)的连通开集构成的族.我们指出B1是f(X)的一个基,这是因为,如果U是f(X)中的一个开集,则(U)是X中的一个开集,因此是B1中某些元素之并.于是根据定理4.4.l可知f(X)是局部连通的.根据定理4.4.2易见,拓扑空间的局部连通性是一个拓扑不变性质.定理 4.4.3设是n≥1个局部连通空间.则积空间也是局部连通空间.证明(略)应用这些定理,有些事情说起来就会简单得多.例如,实数空间R由于所有的开区间构成它的一个基,所以它是局部连通的;n维欧氏空间是n个R 的积空间,所以它也是局部连通的.当然这些事情我们早就知道了.作业:P127 1.2.3.§4.5道路连通空间较之于连通空间的概念,道路连通空间这个概念似觉更符合我们的直觉因而易于理解些.我们先定义“道路”.定义4.5.1 设X是一个拓扑空间.从单位闭区间[0,1]→X的每一个连续映射f:[0,1]→X叫做X中的一条道路,并且此时f(0)和f(1)分别称为道路f的起点和终点.当x=f(0)和y=f(1)时,称f是X中从x到y的一条道路.起点和终点相同的道路称为闭路,并且这时,它的起点(也是它的终点)称为闭路的基点.如果f是X中的一条道路,则道路f的象集f([0,l])称为X中的一条曲线或弧,并且这时道路f的起点和终点也分别称为曲线f([0,1])的起点和终点.或许应当提醒读者,“道路”这个词在这里所表达的意思已经与我们对它原有的理解颇有不同,希望读者不要因此而混淆了我们在这里严格定义的道路和曲线这两个不同的概念.定义4.5.2 设X是一个拓扑空间.如果对于任何x,y,存在着X中的一条从x到y的道路(或曲线),我们则称X是一个道路连通空间.X中的一个子集Y称为X中的一个道路连通子集,如果它作为X的子空间是一个道路连通空间.(Y是否道路连通与X是否道路连通没有关系)实数空间R是道路连通的.这是因为如果x,y∈R,则连续映射f:[0,1]→R 定义为对于任何t∈[0,1]有f(t)=x+t(y-x),便是R中的一条以x为起点以y 为终点的道路、也容易验证任何一个区间都是道路连通的.定理4.5.1 如果拓扑空间X是一个道路连通空间,则X必然是一个连通空间.证明对于任何x,y∈X,由于X道路连通,故存在从x到y的一条道路f:[0,l]→X这时曲线f([0,1]),作为连通空间[0,l]在连续映射下的象,是X中的一个连通子集,并且我们有x,y∈f([0,1]).因此根据定理4.1.7可见X是一个连通空间.连通空间可以不是道路连通的.我们已经指出例4.4.l中的是一个连通空间.不难证明(留作习题,见习题第3题)它不是道路连通的.道路连通与局部连通之间更没有必然的蕴涵关系、例如离散空间都是局部连通的,然而包含着多于两个点的离散空间不是连通空间,当然也就不是道路连通空间了.定理4.5.2 设X和Y是两个拓扑空间,其中X是道路连通的,f:X→Y是一个连续映射.则 f(X)是道路连通的.证明设.由于X是道路连通的,故X中有从到的一条道路g:[0,1]→X.易见,映射h:[0,1]→f(X),定义为对于任意t∈[0,1]有h(t)=f g(t),是f(X)中从到的一条道路.这证明f(X)是道路连通的.根据定理4.5.2可见,空间的道路连通性是一个拓扑不变性质,也是一个可商性质.定理 4.5.3设是n≥1个道路连通空间.则积空间也是道路连通空间.证明我们只需要对n=2的情形加以证明.设对于i=l,2,由于是道路连通空间,故在中有从到的一条道路:[0,1]→.定义映射f:[0,1]→,使得对于任何t∈[0,l]有f(t)=().容易验证(应用定理3.2.7)f是连续的,并且有f(0)=x,f(1)=y.这也就是说f是中从x到y的一条道路.这证明是一个道路连通空间.作为定理4.5.3的一个直接的推论立即可见:n维欧氏空间是一个道路连通空间.(这个结论也容易直接验证.)为了今后的需要我们证明以下引理,定理4.5.4[粘结引理] 设A和B是拓扑空间X中的两个开集(闭集),并且有X=A∪B.又设Y是一个拓扑空间,:A→Y和:B→Y是两个连续映射,满足条件:定义映射f:X→Y使得对于任何x∈X,f(x)=则f是一个连续映射.证明首先注意,由于,映射f的定义是确切的.因为当x∈A∩B时,有.其次,我们有:对于Y的任何一个子集Z有这是由于现在设U是Y的一个开集.由于都连续,所以分别是A和B的开集.然而A和B都是X的开集,所以也都是X的开集.因此是X的一个开集.这便证明了f是一个连续映射.当A和B都是X的闭集时,证明是完全类似的.我们现在按建立连通分支概念完全类似的方式建立道路连通分支的概念.定义4.5.3 设X是一个拓扑空间,x,y∈X.如果X中有一条从x到y 的道路,我们则称点x和y是道路连通的.(注意:是“点”道路连通) 根据定义可见,如果x,y,z都是拓扑空间X中的点,则(1)x和x道路连通;(因为取常值的映射f: [0,1]→X(它必然是连续的)便是一条从x到x的道路.)(2)如果x和y连通,则y和x也连通;(设f:[0,1]→X是X中从x到y的一条道路.定义映射j:[0,l]→X,使得对于任何t∈[0,l]有j(t)=f(1-t).容易验证j是一条从y到x的道路.)(3)如果x和y连通,并且y和z连通,则x和z连通.(设:[0,1]→X分别是X中从x到y和从y到z的道路.定义映射f:[0,1]→X使得对于任何t∈[0,l],应用粘结引理立即可见f是连续的,此外我们有f(0)=(0)=x和f(1)=(1)=z.因此f是从x到z的一条道路.)以上结论归结为:拓扑空间中点的道路连通关系是一个等价关系.。
第6讲 紧性与连续映射教学目的:掌握紧集的概念与基本属性。
授课要点:1、 紧集、相对紧集和完全有界集的定义与序列式刻划。
2、 紧集在连续映射下的特性。
3、 某些空间中紧子集的特征。
我们称集族{覆盖};Λλλ∈B A ,若.A B ⊃∈λΛλ∪定义1 设是度量空间,X X A ⊂.(1)称A 是紧的,若X 中的任一开集族覆盖A 时,其中存在有限个开集仍覆盖A . (2)A 称为是相对紧的,若A 紧.(3)称是X E ⊂A 的ε网,若 .A x O Ex ⊃∈),(ε∪(4)称A 是完全有界的,若 0>∀ε,中存在由有限个元素构成的X A 的ε网.注意,在定义1(3)中,作为A 的ε网的集合,并没有要求. 对于一个集合来说,是否要求并不改变其完全有界性.E X E ⊂X E ⊂首先让我们来看一个例子.对于,若 ,则.令,则2 =X ),0,1,0,,0(nn e =1||||2=n e }1;{≥=n e A n A 不是紧集.实际上,∀,n m ≠2||=−n e ||m e .若取21,n e O =n B ,则{是}1,≥n B n A 的开覆盖.但由于每个只包含一个,故其中不包含任何有限子族覆盖n B n e A .注意A 是 中的有界集,由于2A 中不存在Cauchy 序列,所以它还是闭集.此例告诉我们在无穷维空间情况,有界闭集并不一定是紧集,其中每个无穷序列也不必有收敛的子序列.换句话说在无穷维空间,Bolzano-Weierstrass 定理并不成立.思考题(1) 证明定义1(4)下面“注意”中所说的事实。
(2) 证明完全有界集一定是有界集.定理1 设是度量空间,X X A ⊂,则下面两条件等价: (1)A 是紧集.(2)A 中任一无穷序列{包含有子序列{,并且}n x }kn x x x kn →A x ∈.证明 先设A 紧, 是}{n x A 中的无穷序列.若{无子序列收敛于}n x A 中的元,则,∃和自然数,使得.注意到,由A x ∈∀0>x r x n ∅=}≥;{),(x n x n n x r x O ∩A x O Ax ⊃∈(∪r x ),A的紧性,存在,使得.但当时,,从而k x ′x ′,,1∅=}A r x O jx j kj ⊃′′=),(1∪},max{kx x n n ′,1′ m ≥≥m ′′,(r x O x j j;{n x n ∩)∅=≥′⊂≥′=};{),(};{1m n x r x O m n x n x j kj n j∩∪,矛盾.反之,为证A 紧,设{是};Λλλ∈B A 的一族开覆盖.x A ∀∈,B λ∃,.是开集,故存在,O .记,显然.我们证明(称r 是λB x ∈0>λB 0>r 0λB r ⊂),x (},Λλλ∈B ),(;sup{⊂r x O r r =x x r 0inf 0>=∈x Ax r r A 的Lebesque 数).由下确界定义, n x A ∃∈0k ,r . 根据定理中条件,存在子序列,x .不妨设,于是存在,当时,0r nx →0k k ≥nn x A x nn ∈→000λB x ∈∈2,00xn r x O x n,此时 (),2,0λB r x O r x O x x n n⊂⊂. 于是)(200k k r xx kn ≥>r ,02lim 00>≥=∞→xx k r r r kn .(这说明紧集的Lebesque 数大于0.)现在任取,若并且,则覆盖A x ∈1A r x O ⊃),(011),(01λB r x O ⊂1λB A .否则存在.若并且,则,)i =21∪,(\012r x O A x ∈A r ⊃),0x O i (2)0λB r ⊂,(2x O 1λB 2B λ覆盖A .否则又存在,….如果这一过程可以无限进行,由此得到序列{,显然.无收敛子序列,与(2)矛盾.于是对于某个有)0r )n ≠,(\213x O A x i i =∈∪(),(0m r x x d n m ≥}n x }{n x 0n001(,)n i i O x r A =⊃∪.设O ,则iB r x i λ⊂),(0()00011,i n n i i i B O x r A λ==⊃⊃∪∪,A 被有限覆盖.{是任意的,由定义};Λλλ∈B A 是紧集.A }n x x x n →x A A X ⊂A x n ⊂}x kn→′E E X A A A }n x A A A x n ⊂⊂}}kn x X A ⊂}n x A A n y 1,,(,n n n A A A x A d x x n ′′∈∈若取X y y kn ∈→)′<.n y A y n ⊂} =y ∈1)(,)(k k n n kd y y d y n ≤+≤+(,d x ,)k n y y x kn →A A A A }2i x 推论1 每个紧集是有界闭集.紧集的每个闭子集是紧的.这是因为对于紧集中的每个序列{,若,必有子列.故A x kn ∈→闭.另一方面若紧,E 是闭的,则对于{,有子列x ,E 闭,故.所以紧.x ∈定理2 设为度量空间,X ⊂,则下面两条件等价: (1)是相对紧集.(2)中任一无穷序列{包含收敛子序列(极限点不必在中).证明 1°若紧,A {,由定理1,存在子序列{,x x kn ∈→.2°反之,设{是中的无穷序列,构造中的无穷序列{,},.,\n n nn x x x x ∈若则{.由(2),存在子列{,.显然}kn y A 并且)(,0k k n n y d x y ,→所以.由定理1知A 紧,从而A 相对紧.定理3 设是度量空间,X X A ⊂,则下面两条件等价: (1)是完全有界集.(2)中任一无穷序列{包含Cauchy 子序列. }n x 证明 1°若是完全有界的,{.取A x n ⊂}21=ε,则A 有有限21网,{是无限的,故至少有一个半径为}n x 21的球包含无穷多个,记它们为{,显然.{作为n x }1i x 1)<,(11j i x x d }1i x 的子集同样是完全有界的. 现在取221=ε, 有有限的}{1i x 221网,其中之一包含{中无穷多个元,记为{,显然}1i x 21)<j ,(22i x x d ,….如此下去,得到可数多个序列,每个序列是前面一个的子序列.利用对角线方法选取{,它是的子序列,由我们的取法知道,是Cauchy 序列.}nn x }{n x }{nn x 0A x O ,(1,(n x d i =21∪⊃/)0εA A Y →>∃δ(T d f A )(n x T X ∈x kn →)(0x T (T k=x d (12°若A 不是完全有界的,则存在,0>ε不具有有限网.换句话说任取,,故有,又,从而有.显然,{不包含任何Cauchy 子序列,矛盾.0εA A x ∈1A 0ε⊃/)0ε)≥m x )0,(\12εx O A x ∈}n x x O i ,( ,3x )(n m ≠推论2 设是度量空间,X X A ⊂. (1)A 是紧集则A 必是相对紧的.A 是相对紧的则A 必是完全有界的.(2)若A 是闭集,则A 紧当且仅当A 相对紧. (3)若完备,则X A 相对紧当且仅当完全有界. (4)整个空间是紧的当且仅当完备并且完全有界. X X 推论3 设n A Φ⊂,则以下条件等价: (1)A 是有界集. (2)A 是完全有界集. (3)A 是相对紧集. 特别地,在有限维线性赋范空间中A 是紧集当且仅当是有界闭集.证明 (3)(2)⇒(1)是显然的.(1)⇒(3)根据Bolzano-Weierstrass 定理得到.⇒定理4 设,Y 是度量空间,其中紧,T 是连续映射,则 X X X :(1)T 是紧集.)(X (2)T 在上一致连续. 即X 0>∀ε,0,对于任何X x x ∈′,,只要δ<′),(x x d ,则ε<′))),(x (x T .(3)若是上的实值连续函数,则在f X 上可以达到上、下确界.证明 1° 若,不妨设,,.紧,故存在{,,记.)(X T y n ∈)(00x T =n y =x n 1≥n X }kn x X x ∈0y T 连续,故.由定理1, 紧.)(X )→0y ∈=T kn x y n )(X T 2°若不然,则存在,00>εX x x nn ∈′,,nx n n ),<′,但.0))(),((ε≥′nn x T x T d A 紧,故存在{,.从而}kn x X x x k n ∈→00x x kn →′,由T 在的连续性,0x )0x )(0x ((x T kn T →))0),())(((≤′kT kn d x )(x f x T d 0))(ε≥′knx T )(x f R a →)((kn x T x (X }n x n x a =)(Ω,(d Ω)Ω)(|sup t x t Ω∈∀||x ||)(ΩK >εδ<)<−|)()21t x ∀)(ΩC (C 0ε∀>0>δδ<,(t t δn t t ,,1 Ωi ∃δ)i t |)()<−i t x })K ∈(,),((1t x t x n = {~K =n Φ)T →,T ()x kn′. 0))(),((((),0→′+kkn n n x T x T d x T T x这与d 矛盾. ),3°由1°,在中紧,故是有界集,记. 由上确界定义,存在,f .)(sup x f a Xx ∈=X x n ∈n 紧,故 中有子列{,x ,所以,.对于下确界同样证明.{}kX x k n ∈→0)()(0x f x f kn →x f )(0 紧性在很多学科中都会用到,有时候知道某空间或其中的某个子集是紧或相对紧的是很重要的.例1 空间C 中的相对紧集.设)是紧度量空间,(ΩC 是上定义的标量值连续函数全体.定义|,||||x =)(ΩC x ∈. (1)容易验证,||有确定的意义(即有限实数),||⋅是)(ΩC 上的范数并且)(ΩC 是Banach 空间.C 的子集称为是等度连续的函数族,若0∀,存在0)(>=εδδ使得∀,,则Ω∈21,t t ,2t (1t d ε(|t x ,K x ∈.(2)定理5(Arzela-Ascoli ) K ⊂是相对紧集当且仅当K 是)(ΩC 中范数有界的等度连续函数族.证明 充分性.由于)Ω的完备性只须证明K 完全有界.,由等度连续性,取使得当′)d 时,3|)()(|ε<′−t x t x .Ω是紧空间,故有有限网,使得∈t ∀,,d .此时<,t (3(|εt x . (3)记,(:))~t x x K ~是中的点集,并且对于每个K x ~~∈,∞<≤≤∈∈≤≤=∑|)(|sup sup |)(|max |)(|112t x n t x n t x t K x i ni ni i Ω即K ~为n Φ中的有界集,从而是完全有界集(推论3).对于ε,K ~有有限3ε网k x x ~,,~1 ,我们证明,与k x x ~,,~1 相应的函数是k x x ,,1 K 的ε网.实际上,∀,对应的,从而有使得K x ∈K t x t x x n ~))(,),((~1∈= ))(,),((~1n j j j t x t x x =3|)()(|12ε<−∑=ni i i j t x t x , (4)此时3|)()(|ε<−i i j t x t x , n i ≤≤1.Ω∈∀t ,取t ,使d ,则由(3),(4),i δ<),(i t t εεεε=++<−+−+−≤−333|)()(||)()(||)()(||)()(|t x t x t x t x t x t x t x t x j i j i j i i j .所以εΩ<−=−∈|)()(|max ||||t x t x x x j t j ,即.),(εj x O x ∈K 是完全有界的.必要性.设K 是相对紧集,则K 是范数有界集. 为证明K 等度连续,∀0>ε,设为k x x ,,1 K 的3ε网,每个i x )1(k i ≤≤在Ω上连续,从而一致连续.于是存在0>δ,当δ<′),(t t d 时,3|)()(|ε<′−t x t x i i , 1i k ≤≤.对于每个,K x ∈|)()(||)()(||)()(||)()(|t x t x t x t x t x t x t x t x i i i i ′−′+′−+−≤′−|)()(|||||2t x t x x x i i i ′−+−< εεε=+<332. 故得之.思考题1、 若函数族|在紧集|)(t f n A 上等度连续并且点点收敛,则||在)(t f n A 上一致收敛.2、 设,有界且满足],[b a C E ⊂E )10(≤<αα阶Lipschitz 条件1212|()()|||x t x t L t t α−≤−,t ,],[,21b a t ∈E x ∈∀,则是C 中的相对紧集.E ],[b a。
度量空间中邻域、有界集、开集、聚点、闭集、自列紧集、紧集和连通集的概念 设X 是度量空间,0x X ∈,A X ⊆ 。
1.邻域设δ是正实数,点0x X ∈ 的“δ邻域”是指集合(){}0,,x d x x x X δ<∈ ,记作()(){}00,,,U x x d x x x X δδ=<∈ 。
2.有界集集合A X ⊆是“有界集”是指:存在点0x X ∈和正实数δ使得()0,A U x δ⊆。
3.开集集合A X ⊆是“开集”是指:对任意点x A ∈,存在正数x ε,使得(),x U x A ε⊆。
4.聚点和孤立点点0x X ∈是集合A X ⊆的“聚点”是指:0x 的任意邻域包含有A 中的点。
点0x X ∈是集合A 的“孤立点”是指:0x A ∈但点0x 不是A 的聚点。
5.闭集集合A X ⊆是“闭集”是指:A 的所有聚点都属于A (或A 没有聚点)。
6.自列紧集集合A X ⊆是“自列紧集”是指:A 的任意序列有收敛于A 中某点的子序列。
7.紧集集合A X ⊆是“紧集”是指:A 的任意开覆盖可以选出有限覆盖。
8.连通集集合A X ⊆是“连通集”是指:不存在X 的非空开子集M 、N 满足M A ⋂≠∅、N A ⋂≠∅、A M N ⊆⋃且M N ⋂=∅。
(等价说法:度量空间X 是连通的,若存在X 的非空开子集M 、N 满足X M N =⋃且M N ⋂=∅。
两个说法等价性在于:前一个说法中,若把A 看作X 的度量子空间,那么M A ⋂和N A ⋂实际上是A 的开子集。
)度量空间中开集、闭集、自列紧集和紧集的之间的关系 1.度量空间的开子集的余集是闭集。
证明:设X 是度量空间,A 是X 的开子集,\B X A = 。
(1)若B 没有聚点,那么B 是闭集。
(2)若B 有聚点,任取B 的一个聚点x ,那么x 的任意邻域含B 中的点,所以x 的任意邻域都不包含于A 。
又因为A 是开集,所以x A ∉,所以x B ∈。
《实变函数》试卷及参考答案《实变函数》试卷一一、单项选择题(3分×5=15分)1、1、下列各式正确的是( ),,,,limAA,,,limAA,,,(A); (B); nknk,,,,nnkn11nknn,,,,,,,,limAA,,,limAA,,,(C); (D); nknk,,,,nnkn1,,nkn1,,n2、设P为Cantor集,则下列各式不成立的是( ),'P,mP,0(A) c (B) (C) (D) P,PP,P3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D)波雷耳集都可测fx()E是上的有限的可测函数列,则下面不成立的是( ) 4、设ae..,,n sup()fxfxfx()(),fxfx()(),(A)若, 则 (B) 是可测函数 ,,nnnnfxfx()(), (C)是可测函数;(D)若,则可测 inf()fxfx(),,nnn5、设f(x)是上有界变差函数,则下面不成立的是( ) [a,b](A) 在上有界 (B) 在上几乎处处存在导数 f(x)[a,b]f(x)[a,b]b'f'(x)dx,f(b),f(a)f(x)(C)在上L可积 (D) [a,b],a二. 填空题(3分×5=15分)()(())CACBAAB,,,,,1、_________ sso'E0,12、设是上有理点全体,则=______,=______,=______. EEE,, nET3、设是中点集,如果对任一点集都有R1 (第页,共47页)EL_________________________________,则称是可测的、可测的________条件是它可以表成一列简单函数的极限函数. 4f(x)(填“充分”,“必要”,“充要”)ab,ab,5、设为上的有限函数,如果对于的一切分划,使fx(),,,,ab,______________________,则称为上的有界变差函数。
第2章 度量空间与赋范线性空间度量空间在泛函分析中是最基本的概念。
事实上,它是n 维欧几里得空间n R 的推广,它为统一处理分析学各分支的重要问题提供了一个共同的基础。
它研究的范围非常广泛,包括了在工程技术、物理学、数学中遇到的许多很有用的函数空间。
因而,度量空间理论已成为从事科学研究所不可缺少的知识。
2.1 度量空间的基本概念 2.1.1 距离(度量)空间的概念在微积分中,我们研究了定义在实数空间R 上的函数,在研究函数的分析性质,如连续性,可微性及可积性中,我们利用了R 上现有的距离函数d ,即对y x y x d R y x -=∈),(,,。
度量是上述距离的一般化:用抽象集合X 代替实数集,并在X 上引入距离函数,满足距离函数所具备的几条基本性质。
【定义2.1】 设X 是一个非空集合,),(∙∙ρ:[)∞→⨯,0X X 是一个定义在直积X X ⨯上的二元函数,如果满足如下性质:(1) 非负性 y x y x y x X y x =⇔=≥∈0,(,0),(,,ρρ; (2) 对称性 ),(),(,,x y y x X y x ρρ=∈(3) 三角不等式 ),(),(),(,,,y z z x y x X z y x ρρρ+≤∈;则称),(y x ρ是X 中两个元素x 与y 的距离(或度量)。
此时,称X 按),(∙∙ρ成为一个度量空间(或距离空间),记为),(ρX 。
注:X 中的非空子集A ,按照X 中的距离),(∙∙ρ显然也构成一个度量空间,称为X 的子空间。
当不致引起混淆时,),(ρX 可简记为X ,并且常称X 中的元素为点。
例2.1 离散的距离空间设X 是任意非空集合,对X 中任意两点,,x y X ∈令1 (,)0 x yx y x y ρ≠⎧=⎨=⎩显然,这样定义的),(∙∙ρ满足距离的全部条件,我们称(,)X ρ是离散的距离空间。
这种距离是最粗的。
它只能区分X 中任意两个元素是否相同,不能区分元素间的远近程度。
度量空间中邻域、有界集、开集、聚点、闭集、自列紧集、紧集和连通集的概念 设X 是度量空间,0x X ∈,A X ⊆ 。
1.邻域设δ是正实数,点0x X ∈ 的“δ邻域”是指集合(){}0,,x d x x x X δ<∈ ,记作()(){}00,,,U x x d x x x X δδ=<∈ 。
2.有界集集合A X ⊆是“有界集”是指:存在点0x X ∈和正实数δ使得()0,A U x δ⊆。
3.开集集合A X ⊆是“开集”是指:对任意点x A ∈,存在正数x ε,使得(),x U x A ε⊆。
4.聚点和孤立点点0x X ∈是集合A X ⊆的“聚点”是指:0x 的任意邻域包含有A 中的点。
点0x X ∈是集合A 的“孤立点”是指:0x A ∈但点0x 不是A 的聚点。
5.闭集集合A X ⊆是“闭集”是指:A 的所有聚点都属于A (或A 没有聚点)。
6.自列紧集集合A X ⊆是“自列紧集”是指:A 的任意序列有收敛于A 中某点的子序列。
7.紧集集合A X ⊆是“紧集”是指:A 的任意开覆盖可以选出有限覆盖。
8.连通集集合A X ⊆是“连通集”是指:不存在X 的非空开子集M 、N 满足M A ⋂≠∅、N A ⋂≠∅、A M N ⊆⋃且M N ⋂=∅。
(等价说法:度量空间X 是连通的,若存在X 的非空开子集M 、N 满足X M N =⋃且M N ⋂=∅。
两个说法等价性在于:前一个说法中,若把A 看作X 的度量子空间,那么M A ⋂和N A ⋂实际上是A 的开子集。
)度量空间中开集、闭集、自列紧集和紧集的之间的关系 1.度量空间的开子集的余集是闭集。
证明:设X 是度量空间,A 是X 的开子集,\B X A = 。
(1)若B 没有聚点,那么B 是闭集。
(2)若B 有聚点,任取B 的一个聚点x ,那么x 的任意邻域含B 中的点,所以x 的任意邻域都不包含于A 。
又因为A 是开集,所以x A ∉,所以x B ∈。
第7章紧致性§7.1 紧致空间本节重点:掌握紧致子集的定义及判断一个子集是紧致子集的方法.(这些方法哪些是充要条件);掌握紧致性是否是连续映射可保留的,是否是可遗传的、有限可积的.在§5.3中,我们用关于开覆盖和子覆盖的术语刻画了一类拓扑空间,即Lindeloff空间.现在来仿照这种做法,即将Lindeloff空间定义中的“可数子覆盖”换成“有限子覆盖”,以定义紧致空间.读者在数学分析中早已见过的Heine-Borel定理断言:实数空间R的任何一个子集为有界闭集的充分必要条件是它的每一个开覆盖都有一个有限子覆盖.(在§7.3中我们将要推广这个定理.)因此我们现在作的事也应当在意料之中.定义7.1.1 设X是一个拓扑空间.如果X的每一个开覆盖有一个有限子覆盖,则称拓扑空间X是一个紧致空间.明显地,每一个紧致空间都是Lindeloff空间.但反之不然,例如包含着无限但可数个点的离散空间是一个Lindeloff空间,但它不是一个紧致空间.例7.1.1实数空间R不是一个紧致空间.这是因为如果我们设A={(-n,n)R|b∈Z+},则A的任何一个有限子族{ },由于它的并为(-max{},max{})所以不是R的一个子覆盖.因此R的开覆盖A没有任何一个有限子覆盖.定义7.1.2 设X是一个拓扑空间,Y是X中的一个子集,如果Y作为X的子空间是一个紧致空间,则称Y是拓扑空间X的一个紧致子集.根据定义,拓扑空间X中的一个子集Y是X的紧致子集意味着每一个由子空间Y中的开集构成的Y的开覆盖有一个有限子覆盖,这并不明显地意味着由X中的开集构成的每一个Y的覆盖都有有限子覆盖.所以陈述以下定理是必要的.定理7.1.1 设X是一个拓扑空间,Y是X中的一个子集.则Y是X的一(此个紧致子集当且仅当每一个由X中的开集构成的Y的覆盖都有有限子覆盖.定理表明开覆盖中的开子集可以是X的,也可以是Y的)证明必要性设Y是拓扑空间X中的一个紧致子集,A是Y的一个覆盖,它由X中的开集构成.则容易验证集族A}也是Y的一个覆盖,它由Y中的开集构成.因此A有一个有限子覆盖,设为{},于是A的有限子族覆盖Y.充分性,假定每一个由X的开集构成的Y的覆盖都有一个有限子覆盖.设A是Y的一个覆盖,它由Y中的开集构成.则对于每一个A∈A存在X中的一个开集使得A=∩Y.因此A}是由X中的开集构成的Y的一个覆盖,所以有一个有限子覆盖,设为{}此时易见A的子族{}覆盖Y.这证明Y是X的一个紧致子集.下面介绍关于紧致性的一个等价说法.定义7.1.3 设A是一个集族.如果A的每一个有限子族都有非空的交(即如果是A的一个有限子族,则),则称A是一个具有有限交性质的集族.定理7.1.2 设X是一个拓扑空间.则X是一个紧致空间当且仅当X中的每一个具有有限交性质的闭集族都有非空的交.证明:设X是一个紧致空间.用反证法.设F是X中的一个具有有限交性质的闭集族.设F≠.如果,则令A={∈F}.由于所以A是X的一个开覆盖.于是A有一个有限子覆盖,设为{}.从而这说明F 不具有有限交性质.矛盾.“”,设X中的每一个具有有限交性质的闭集族都有非空的交.为证明X是一个紧致空间,设A是X的一个开覆盖.我们需要证明A有一个有限子覆盖.如果A=,则,这蕴涵X=以及A的每一个子族都是X的覆盖.以下假定A≠.此时F={|A∈A}便是X中的一个非空闭集族,并且因此,它不具有有限交性质.也就是说,它有一个有限子族其交为空集.设F的这个有限子族为{},则是X的一个有限子覆盖.如果B是紧致空间X的一个基,那么由B中的元素构成的X的一个覆盖当然是一个开覆盖,因此有有限子覆盖.下述定理指出,为验证拓扑空间的紧致性,只要验证由它的某一个基中的元素组成的覆盖有有限子覆盖.定理7.1.3 设B*是拓扑空间X的一个基,并且X的由B*中的元素构成的每一个覆盖有一个有限子覆盖.则X是一个紧致空间.证明A*设是X的一个开覆盖.对于每一个A∈A*存在B*的一个子族使得令由于故是一个由B*的元素构成的X的一个覆盖,所以有一个有限子覆盖,设为,对于每一个,i=1,2,…,n,于是对于A*的有限于族{}有也就是说A*有一个有限子覆盖{ }.这证明X是一个紧致空间.定理7.1.4 设X和Y是两个拓扑空间,f:X→Y是一个连续映射.如果A 是X的一个紧致子集,则f(A)是Y的一个紧致子集.证明设C*是f(A)的一个覆盖,它由Y中的开集组成.对于每一个C∈C*,由于f是一个连续映射,(C)是X中的一个开集所以A={(C)|C∈C*}是A的一个开覆盖.由于A是X的一个紧致子集,所以A有一个有限子族,设为{},覆盖A即{}是C*的一个子族并且覆盖f(A).这证明f(A)是Y的一个紧致子集.由上述定理可见,拓扑空间的紧致性是连续映射所保持的性质,因此是拓扑不变性质,也是一个可商性质.由此可见,由于实数空间R不是紧致空间,而每一个开区间都是与它同胚的,所以每一个开区间(作为子空间)都不是紧致空间.定理7.1.5 紧致空间中的每一个闭子集都是紧致子集.证明设Y是紧致空间X中的一个闭子集.如果A是Y的一个覆盖,它由X中的开集构成.则是X的一个开覆盖.设B1是B的一个有限子族并且覆盖X.则B1-{ }便是A的一个有限子族并且覆盖Y.这证明Y是X 的一个紧致子集.定理7.1.6 每一个拓扑空间必定是某一个紧致空间的开子空间.证明:设(X,T)是一个拓扑空间.令∞为任何一个不属于X的元素.令X*=X∪{∞}T*=T∪∪{X*}其中={E X*|X*-E是拓扑空间(X,T)中的一个紧致闭集}首先验证T*是集合X*的一个拓扑.(略)其次.证明(X*,T*)是一个紧致空间:设C*是X*的一个开覆盖.则存在C∈C*使得∞∈C.于是C∈,因此X*-C 是紧致的,并且C*-{C}是它的一个开覆盖.于是C*-{C}有一个有限子族,设为C1,覆盖X*-C.易见C1∪{C}是C*的一个有限子族,并且覆盖X*.最后,我们指出拓扑空间(X,T)是拓扑空间(X*,T*)的一个开子空间.这是因为T =及X是X*的一个开集.在以上定理的证明中由拓扑空间(X,T)构造出来的紧致空间(X*,T*),通常称为拓扑空间(X,T)的一点紧化.由于非紧致空间(它是存在的)是它的一点紧化的一个子空间,因此紧致性不是可遗传的性质.但由定理7.1.5可知紧致性是闭遗传的.以下定理表明紧致性是可积性质.定理7.1.7设是n≥1个紧致空间.则积空间是一个紧致空间.证明(略)作业:P188 1.4.5.§7.2紧致性与分离性公理本节重点:掌握紧致空间中各分离性公理的关系;掌握Hausdorff空间中紧致子集的性质.在本节中我们把第六章中研究的诸分离性公理和紧致性放在一起进行考察、我们将会发现在紧致空间中分离性公理变得十分简单了.此外在本节的后半部分,我们给出从紧致空间到Hausdorff空间的连续映射的一个十分重要的性质.定理7.2.1 设X是一个Hausdorff空间.如果A是X的一个不包含点x∈X 的紧致子集,则点x和紧致子集A分别有开邻域U和V使得U∩V=.证明设A是一个紧致子集,x∈.对于每一个y∈A,由于X是一个Hausdorff空间,故存在x的一个开邻域和y的一个开邻域.集族{|y∈A}明显是紧致子集A的一个开覆盖,它有一个有限子族,设为 {},覆盖A.令,它们分别是点x和集合A的开邻域.此外,由于对于每一个i=1,2,…,n有:所以推论7.2.2 Hausdorff空间中的每一个紧致子集都是闭集.证明设A是Hausdorff空间X的一个紧致子集.对于任何x∈X,如果x A,则根据定理7.2.1可见x不是A的凝聚点.因此凡A的凝聚点都在A中,从而A是一个闭集.推论7.2.2 结合定理7.1.5可见:推论7.2.3 在一个紧致的Hausdorff空间中,一个集合是闭集的充分必要条件是它是一个紧致子集.为了加强读者对定理7.1.5,推论7.2.2和推论7.2.3中的几个简单而常用的结论的印象,重新简明地列举如下:紧致空间:闭集紧致子集Hausdorff空间:闭集紧致子集紧致的hausdorff空间:闭集紧致子集推论7.2.4 每一个紧致的Haudorff空间都是正则空间.证明设A是紧致的Hausdorff空间X的一个闭子集,x是X中的一个不属于集合A的点.由于紧致空间中的闭子集是紧致的(参见定理7.1.5),所以A是一个紧致子集.又根据定理7.2.1,点x和集合A分别有开邻域U和V 使得U∩V=.这就证明了X是一个正则空间.定理7.2.5 设X是一个Hausdorff空间.如果A和B是X的两个无交的紧致子集,则它们分别有开邻域U和V使得U∩V=.证明设A和B是X的两个无交的紧致子集.对于任何x∈A,根据定理7.2.1,点x和集合B分别有开邻域.集族{|x∈A}是紧致子集A的一个开覆盖,它有一个有限子族,设为{ },覆盖A.令由于对于每一个i=1,2,…,n有∩V=,所以U∩V=.由于Hausdorff空间的每一个闭子集都是紧致子集,所以根据定理7.2.5立即有:推论7.2.6 每一个紧致的Hausdorff空间都是的,这个结论也可以根据推论7.2.4和定理6.4.3直接推出.根据这个推论联系着表6.1并且留意到每一个紧致空间都是Lindeloff空间这一事实,我们可有图表7.1.从这个图表中可以看出,在紧致空间中分离性公理显得特别简单.图表7.1:紧致空间中的分离性公理定理7.2.7 设X是一个正则空间.如果A是X中的一个紧致子集,U是A的一个开邻域,则存在A的一个开邻域V使得.证明设A是正则空间X中的一个紧致子集,U是A的一个开邻域.对于任何x∈A,点x有一个开邻域使得集族{|x∈A}是紧致子集A的一个开覆盖,它有有限子族,设为{ },覆盖A.令,它是A的一个开邻域,并且根据这个定理立即可见,每一个紧致的正则空间都是正规空间.然而这并不是什么新结论,因为每一个紧致空间都是Lindeloff空间,所以它明显地蕴涵于定理6.4.3中.然而紧致的正规空间可以不是正则空间.例子见于例6.2.3.在那个正规而非正则空间的例子中的拓扑空间只含有有限多个点,当然会是紧致的.定理7.2.8 从紧致空间到Hausdorff空间的任何一个连续映射都是闭映射.证明设X是一个紧致空间,Y是一个Hausdorff空间,f:X→Y是一个连续映射.如果A是紧致空间X中的一个闭子集.则它是紧致的(参见定理7.1.5),因此它的象集f(A)是Hausdorff空间Y中的一个紧致子集(参见定理7.1.4),所以又是闭集(参见推论7.2.2).这证明f是一个闭映射.因为一个既单且满的开(或闭)的连续映射即是一个同胚,所以我们有:推论7.2.9 从紧致空间到Hausdorff空间的任何一个既单且满的(即—一的)连续映射都是同胚.作业:P192 1.2.§7.3n维欧氏空间中的紧致子集定义7.3.1 设(X,ρ)是一个度量空间,A X.如果存在实数M>0使得ρ(x,y)<M对于所有x,y∈A成立,则称A是X的一个有界子集;如果X本身是一个有界子集,则称度量空间(X,ρ)是一个有界度量空间.定理7.3.1 紧致度量空间是有界的.证明设(X,ρ)是一个紧致度量空间.由球形邻域构成的集族{B(x,1)|x∈X}是X的一个开覆盖,它有一个有限子覆盖,设为{B(x1,1),B(x2,1),…,B(xn,1)}.令M=rnax{ρ(xi,xj)|1≤i,j≤n}十2如果x,y∈X,则存在i,j,1≤i,j≤n,使得x∈B(xi,l)和y∈B(xj,l).于是ρ(x,y)<ρ(x,xi)+ρ(xi,xj)十ρ(xj,y)<M因此度量空间中的每一个紧致子集都是有界子集.特别n维欧氏空间的每一个紧致子集都是有界的.下面作为引理给出单位闭区间[0,1]是一个紧致空间的证明.尽管读者可能早已熟知这个结论.引理7.3.2 单位闭区间[0,1]是一个紧致空间.证明设A是[0,1]的一个开覆盖.令P={x∈[0,l]|A有一个有限子族覆盖[0,x]}它是[0,1]的一个子集.对于集合P,我们依次证明,(l)P.因为显然0∈P;(2)P是一个开集.设x∈P.则A有一个有限子族,设为{ },覆盖[0,x].当x=1时,易见P=[0,l],它是一个开集.因此x是P的一个内点.下设x<1.这时对于某一个i0,1≤i0≤n,有x∈.由于是[0,1]中的一个开集,所以存在实数ε>0使得[x,x+ε).于是[0,x+ε)..这蕴涵[0,x+ε)P.由于[0,x+ε)是[0,1]中的一个包含x的开集,所以x是P的一个内点.以上证明了集合P中的任何一个点都是P的内点,所以它是一个开集.(3)P是一个闭集.设x∈=[0,1]-P.根据集合P的定义可见,[x,1].另外根据(1)可见.0<x.选取选取A∈A使得x∈A.由于A是一个开集,所以存在实数ε>0使得(x-ε,x]A.假如(x-ε,x]∩P≠,设z∈(x-ε,x]∩P.则A有一个有限子族A1覆盖[0,z],因此A的有限子族A1∪{A}覆盖[0,x],这与x P矛盾.所以(x-ε,x]∩P=,即(x-ε,x],从而(x-ε,1],因此x是的一个内点.这证明是一个开集,即P是一个闭集.根据上述三条,P是[0,l]中的一个既开又闭的非空子集.由于[0,1]是一个连通空间,所以P=[0,1],特别,1∈P.这也就是说A有一个有限子族覆盖[0,1].以上证明了[0,1]的任何一个开覆盖有有限子覆盖,故[0,1]是一个紧致空间.任何一个闭区间[a,b](a<b),由于它和单位闭区间[0,1]同胚,所以是紧致的.并且作为紧致空间的积空间,可见n维欧氏空间中任何一个闭方体(a<b)也是紧致空间.定理7.3.3 设A是n维欧氏空间中的一个子集.则A是一个紧致子集当且仅当A是一个有界闭集.证明设ρ是n维欧氏空间的通常度量.“”:如果A是一个紧致子集,则根据定理7.3.1,它是有界的;由于是一个Hausdorff空间,根据推论7.2.2,它是一个闭集.“”:设A是一个有界闭集.如果A=,则A是紧致的.下设A.于是存在实数M>0使得对于任何x,y∈A有ρ(x,y)<M.任意选取x0∈A,并且令N=M十ρ(0,x0),其中0=(0,0,…,0)∈.容易验证(根据三角不等式)A.因此A作为紧致空间中的一个闭子集必定是紧致的.定理7.3.4 设X是一个非空的紧致空间,f:X→R是一个连续映射.则存在x0,x1∈X使得对于任意x∈X有f(x0)≤f(x)≤f(x1)换言之,从非空的紧致空间到实数空间R的任何一个连续映射都可以取到最大点与最小点.证明由于X紧致,故根据定理7.1.4可见f(X)是实数空间R中的一个紧致子集.由于R是一个Hausdorff空间,所以f(X)是一个闭集.设m和M 分别为集合f(X)的下,上确界,则m,M∈f(X).因此存在x0,x1∈X使得f(x0)=m和f(x1)=M.根据上,下确界的定义立即可见,对于任何x∈X有f (x0)≤f(x)≤f(x1).此外,由于m维单位球面是一个有界闭集,所以是紧致的,n维欧氏空间不是紧致的,而紧致性又是一个拓扑不变性质,所以:定理7.3.5 设m,n∈Z+.则m维单位球面与n维欧氏空间不同胚.这是通过拓扑不变性质区分不同胚的拓扑空间的又一个例子.作业:P196 1. 2.§7.4几种紧致性以及其间的关系本节重点:掌握新定义的几种紧致性的定义及它们之间的关系.读者已从数学分析的学习中知道了以下命题:实数空间中的一个子集A 如果满足以下条件(l)~(4)中的任何一条,则满足其他的几条.(l)A是一个有界闭集;(2)A的每一个开覆盖都有有限子覆盖;(3)A中的每一个无限子集都有凝聚点在A中;(4)A中的每一个序列都有收敛的子序列收敛于A中的点.这几个条件的重要意义,读者应当早就有所体会了.不难发现这四条中以惟有(l)中涉及的概念有赖于度量,其余(2),(3)和(4)三条中所涉及的概念都只是牵连到拓扑.我们当然希望在一般的拓扑空间中还能建立条件(2),(3)和(4)的等价性;假如不能,讨论在何种条件下它们等价也是一件有意义的事.本节我们研究这个问题.为了研究问题时的方便,引进以下条件(5)作为讨论的中间站.(5)A的每一个可数开覆盖都有有限子覆盖.定义7.4.l 设X是一个拓扑空间.如果X的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X是一个可数紧致空间.以下两个定理的证明十分容易,请读者自己补证.定理7.4.1 每一个紧致空间都是可数紧致空间.定理7.4.2 每一个Lindeloff的可数紧致空间都是紧致空间.定义7.4.2 设X是一个拓扑空间.如果X的每一个无限子集都有凝聚点,则称拓扑空间X是一个列紧空间.定理7.4.3 每一个可数紧致空间都是列紧空间.证明设X是一个可数紧致空间.为了证明它是一个列紧空间,我们只要证明它的每一个可数的无限子集都有凝聚点,现在用反证法来证明这一点.假设X有一个可数无限子集A没有凝聚点.首先这蕴涵A是一个闭集.此外对于每一个a∈A,由于a不是A的凝聚点,所以存在a的一个开邻域使得∩A={a}.于是集族{|a∈A}∪{}是X的一个开覆盖.由于X是可数紧致空间,它有一个有限子覆盖,不妨设为{} 由于与A无交,所以{}必定覆盖A.因此,A=()∩A={a1,a2,…an}是一个有限集.这是一个矛盾.定义7.4.3 设是一个由集合构成的序列,如果它满足条件:对于每一个i∈Z+成立,即则称序列是一个下降序列.在某一个拓扑空间中的一个由非空闭集构成的下降序列也叫做一个非空闭集下降序列.引理7.4.4 设X是一个拓扑空间.则拓扑空间X是一个可数紧致空间当且仅当由X中任何一个非空闭集下降序列,有非空的交,即证明设可数紧致空间X中的非空闭集下降序列使得于是是X的一个开覆盖,它有一个有限子覆盖,设为{}由此可得这是一个矛盾.另一方面,设拓扑空间X中的每一个非空闭集下降序列都有非空的交.如果X不是一个可数紧致空间,则X有一个可数开覆盖,设为{ },没有有限子覆盖.对于每一个i∈Z+,令则{}也是X的一个开覆盖,没有有限子覆盖,并且满足条件:因此是一个非空闭集下降序列,所以.由此可见.也就是说{}不是X的一个覆盖,这是一个矛盾.定理7.4.5 每一个列紧的空间都是可数紧致空间.证明设X是一个列紧的空间.如果X不是一个可数紧致空间,则根据引理7.4.4,X中有一个非空闭集下降序列,使得在每一个中选取一点,并且考虑集合A={}如果A是一个有限集,则必有一点x∈A和一个正整数的严格递增序列n1,n2,…使得于是对于任何i∈Z+有x∈.这是因为,于是x∈,这与反证假设矛盾.设A是一个无限集.由于X是一个列紧空间,所以A有一个凝聚点,设为y.由于X是一个空间(它的每一个有限子集都是闭集),易见对于每一个i∈Z+,点y也是集合的一个凝聚点;又由于.这也与反证假定矛盾.定义7.4.4 设X是一个拓扑空间.如果X中的每一个序列都有一个收敛的子序列,称拓扑空间X是一个序列紧致空间.定理7.4.6 每一个序列紧致空间都是可数紧致空间.证明设X是一个序列紧致空间,{}是X中的一个非空闭集下降序列.在每.对于每一个i∈Z+,.根据引理7.4.4X 是一个可数紧致空间.定理7.4.7 每一个满足第一可数性公理的可数紧致空间都是序列紧致空间.证明设X是一个满足第一可数性公理的可数紧致空间,设.对于每一个i∈Z+,令和.于是是拓扑空间X中的一个非空闭集下降序列,因此根据引理7.4.4,我们有.由于X满足第一可数性公理,根据定理5.1.8,在点x处有一个可数邻域基{ }满足条件:对于任意j∈Z+成立.令对于每一个i>l,令,于是是一个严格递增的正整数序列.并且对于每一个i∈Z+成立.我们来证明序列{}的子序列{}收敛于x:设U是x的一个邻域.存在某一个k∈Z+,使得,于是当i>k时我们有根据本节中的各个定理,我们可以得到图表7.2.根据这个表立即可以知:推论7.4.8 设X是一个满足第二可数性公理的空间,A是X的一个子集.则下列条件等价:(l)A的每一个开覆盖都有有限子覆盖;(2)A的每一个可数开覆盖都有有限子覆盖;(3)A中的每一个序列都有子序列收敛于A中的点;(4)A中的每一个无限子集都有凝聚点在A中.特别,对于n维欧氏空间的子集以上推论成立,并且推论中的每一个条件都等价于A是一个有界闭集.作业:P201 1§7.5度量空间中的紧致性本节重点:掌握度量空间中的紧致空间、可数紧致空间、序列紧致空间、列紧空间之间的关系.由于度量空间满足第一可数性公理,同时也是空间,所以上一节中的讨论(参见表7.2)因此我们,一个度量空间是可数紧致空间当且仅当它是列紧空间,也当且仅当它是序列紧致空间.但由于度量空间不一定就是Lindeloff空间,因此从定理7.4.2并不能断定列紧的度量空间是否一定就是紧致空间.本节研究这个问题并给出肯定的回答.定义7.5.1 设A是度量空间(X,ρ)中的一个非空子集.集合A的直径diam(A)定义为diam(A)=sup{ρ(x,y)|x,y∈A}若A是有界的diam(A)=∞ 若A是无界的定义7.5.2 设(X,ρ)是一个度量空间,A是X的一个开覆盖.实数λ>0称为开覆盖A的一个Lebesgue数,如果对于X中的任何一个子集A,只要diam(A)<λ,则 A包含于开覆盖A的某一个元素之中.Lebesgue数不一定存在.例如考虑实数空间R的开覆盖{(-∞,1)}∪{(n-1/n,n+1+1/n) |n∈Z+}则任何一个正实数都不是它的Lebesgue数.(请读者自补证明.)定理7.5.1[Lebesgue数定理] 序列紧致的度量空间的每一个开覆盖有一个Lebesgue数.证明设X是一个序列紧致的度量空间,A是X的一个开覆盖.假若开覆盖A没有Lebesgue 数,则对于任何i∈Z+,实数1/i不是A的Lebesgue数,所以X有一个子集E,使得diam(E)<1/i并且Ei不包含于A的任何元素之中.在每一个之中任意选取一个点,由于X是一个序列紧致空间,所以序列有一个收敛的子序列.由于A是X的一个开覆盖,故存在A∈A使得y∈A,并且存在实数ε>0使得球形邻域B(y,ε)A.由于,所以存在整数M>0使得当i>M时.令k为任意一个整数,使得k>M+2/ε,则对于任何有ρ(x,y)≤ρ(x,)+ρ(,y)<ε这证明A与的选取矛盾.定理7.5.2 每一个序列紧致的度量空间都是紧致空间.证明设X是一个序列紧致的度量空间,A是X的一个开覆盖.根据定理7.5.1,X的开覆盖A有一个Lebesgue数,设为λ>0.令B={B(x,λ/3)}.它是X的一个开覆盖.我们先来证明B有一个有限子覆盖.假设B没有有限子覆盖.任意选取一点∈X.对于i>1,假定点已经取定,由于不是X的覆盖,选取.按照归纳原则,序列已经取定.易见对于任何i,j∈Z+,i≠j,有ρ()>λ/3.序列没有任何收敛的子序列.(因为任何y∈X的球形邻域B(y,λ/6)中最多只能包含这个序列中的一个点.)这与X是序列紧致空间相矛盾.现在设{}是开覆盖B的一个有限子覆盖.由于其中每一个元素的直径都小于λ,所以对于每一个i=1,2,…,n存在使得B(,λ/3).于是{}是A的一个子覆盖.因此,根据定理7.5.2以及前一节中的讨论可见:定理7.5.3 设X是一个度量空间.则下列条件等价:(1)X是一个紧致空间;(2)X是一个列紧空间;(3)X是一个序列紧致空间;(4)X是一个可数紧致空间.我们将定理7.5.3的结论列为图表7.3以示强调.作业:P205 1.本章总结:(1)重点是紧致性、紧致性与分离性的关系.(2)度量空间(特别是)中的紧致性性质要掌握.(3)紧致性是否是连续映射所能保持的、可积的、可遗传的?证明时牵涉到的闭集要注意是哪个空间的闭集.§7.6局部紧致空间,仿紧致空间本节重点:掌握局部紧致空间、仿紧致空间的定义.性质;掌握局部紧致空间、仿紧致空间中各分离性公理空间之间的关系;掌握局部紧致空间、仿紧致空间与紧致空间之间的关系.定义7.6.1 设X是一个拓扑空间,如果X中的每一个点都有一个紧致的邻域,则称拓扑空间X是一个局部紧致空间.由定义立即可见,每一个紧致空间都是局部紧致空间,因为紧致空间本身便是它的每一个点的紧致邻域.n维欧氏空间也是局部紧致空间,因为其中的任何一个球形邻域的闭包都是紧致的.定理7.6.1 每一个局部紧致的空间都是正则空间.证明设X是一个局部紧致的Hausdorff空间,设x∈X,U是x的一个开邻域.令D是x的一个紧致邻域,作为Hausdorff空间X的紧致子集,D是X中的闭集.由推论7.2.4,D作为子空间是一个紧致的Hausdorff空间,所以是一个正则空间.是x在子空间D中的一个开邻域,其中是集合D在拓扑空间X中的内部.从而x在子空间D中有一个开邻域V使得它在子空间D中的闭包包含于W.一方面V是子空间D中的一个开集,并且又包含于W,因此V 是子空间W中的一个开集,而W是X中的一个开集,所以V也是X中的开集.另一方面,由于D是X的闭集,所以V在D中的闭包便是V在X中的闭包因此点x在X中的开邻域V使得.因此X是一个正则空间.定理7.6.2 设X是一个局部紧致的正则空间,x∈X,则点x的所有紧致邻域构成的集族是拓扑空间X在点x处的一个邻域基.证明设U是x∈X的一个开邻域.令D为x的一个紧致邻域,则是x的一个开邻域.因为X是正则空间,所以存在x的开邻域V使得.闭。
开集与连续映射1.定义在度量空间的开子集上的函数,连续⇔开集的逆象是开集。
证明:设X 、Y 是度量空间,A 是X 的开子集,设有映射:f A Y →。
(1)充分性:设映射:f A Y →连续,需证开集的逆象是开集。
设S 是Y 的任一开子集,并设S 的逆象是()1R f S -=。
任取x R ∈,那么()f x S ∈。
因为A 是开集,所以存在正数x σ使得(),x U x A σ⊆。
因为S 是开集,所以存在正数x ε使得()(),x U f x S ε⊆。
因为:f A Y →是连续映射,故存在正数x τ使得()()()(),,x x f U x A U f x S τε⋂⊆⊆。
设{}min ,x x x δστ=,那么()(),,x x U x U x A δσ⊆⊆且()(),,x x U x U x δτ⊆,所以()()()()()()()(),,,,x x x x f U x f U x A f U x A U f x S δδτε=⋂⊆⋂⊆⊆,那么(),x U x R δ⊆。
所以S 的逆象()1R f S -=是开集。
(2)必要性:设开集的逆象是开集,需证映射:f A Y →连续。
任取x A ∈。
任取正数x ε,设()(),x S U f x ε=,显然S 是Y 的开子集。
设S 的逆象是()1R f S -=,那么R 是开集,所以存在正数x δ使得(),x U x R δ⊆ 。
因为()1R f S -= ,所以 ()()(),x f R S U f x ε⊆= 。
又因为(),x U x R δ⊆,所以()()()()(),,x x f U x f R S U f x δε⊆⊆= 。
所以映射:f A Y →连续。
自列紧集(列紧闭集)与连续映射1.度量空间的自列紧子集在连续映射下的象是自列紧集。
证明:设X Y 、是度量空间,A 是X 的自列紧子集。
设:f A Y →是连续映射,象集为()B f X Y =⊆。
设{}n y 是B 的序列。
对任意正整数k ,设k y 的某个原象是k x A X ∈⊆,这样得到X 的序列{}n x 。
因为X 是自列紧集,存在{}n x 的子列{}n N x 收敛于0x X ∈。
因为:f A Y →连续,所以序列{}(){}nnN N y f x =收敛于()0f x B ∈。
{}(){}n nN N y f x =是{}ny 的子序列,故象集B是自列紧集。
所以自列紧集在连续映射下的象是自列紧集。
2.度量空间的自列紧子集到实数集连续映射可以取到最大最小值。
证明:设X 是度量空间,A 是X 的自列紧子集。
设:R f A →是连续映射,象集为()R B f X =⊆。
那么B 是自列紧集。
由于实数集中的自列紧集是有界闭集,而有界闭集一定有最大最小值(若无,可构造出收敛于确界的序列,那么确界便为聚点,矛盾)。
所以:R f A →可以取到最大最小值。
3.n R 的非空子集有最值性质(任意到R 的连续映射有最大最小值)当且仅当它是自列紧集。
证明: 充分性:度量空间的自列紧子集具有最值性质已证。
n R 是度量空间,所以n R 的非空自列紧子集有最值性质。
必要性:假设A 是n R 的非自列紧子集,则A 是无界或不闭的(n R 中自列紧集等价于有界闭集)。
(1)若A 无界,定义函数()f x x =,该函数连续但是没有最大值。
(2)若A 不闭,存A 的序列{}n x 收敛于点0x A ∉。
定义函数()0f x x x =-,该函数没有最小值,因为它可以任意接近于0但是取不到0。
综上,n R 的非自列紧子集不具有最值性质。
所以n R 的非空子集有最值性质当且仅当它是自列紧集。
紧集与连续映射1.度量空间的紧子集在连续映射下的象是紧集。
证明:设X Y 、是度量空间,A 是X 的紧子集。
设:f A Y →是连续映射,象集为()B f X Y =⊆。
设B 的一个开覆盖为G 。
任意S G ∈是开集,所以对任意y S ∈,存在邻域(),y U y S ε⊆。
对于任意()1x f y -∈(()1f y -是y 的原象集),因为:f A Y →是连续映射,所以存在邻域(),x U x δ使得()()(),,x y f U x A U y δε⋂⊆。
对于每个y S ∈记()()1,x y x fy U U x δ-∈=,易知yU 是开集,且()()()()()()()11,,,y x f y x f y x x f U f U x f U x U y S δδε--∈∈⎛⎫==⊆⊆ ⎪ ⎪⎝⎭;对每个S G ∈,记S y y SR U ∈=,易知S R 是开集,且()()S y y Sf R f U S ∈=⊆;记{}|S F R S G =∈。
对于任意x A ∈,()f x B ∈。
而G 是B 的开覆盖,所以存在S G ∈使得()f x S ∈。
那么()S f x x U R ∈⊆,所以F 是A 的一个开覆盖。
因为A 是紧集,F 可以选出有限覆盖{}|1,2k R k n =,对应于G 的有限子集为{}|1,2k S k n =,其中()()kk y k y S f R f U S ∈=⊆。
所以 ()()111n nnk k k k k k B f A f R f R S ===⎛⎫=⊆=⊆⎪⎝⎭。
所以 {}|1,2k S k n = 是B 的有限覆盖。
所以B 是紧集。
2. 度量空间的紧子集到实数集连续映射可以取到最大最小值。
证明:设X 是度量空间,A 是X 的紧子集。
设:f A →R 是连续映射,象集为()B f X =⊆R 。
那么B 是紧集。
由于实数集中的紧集是有界闭集,而有界闭集一定有最大最小值(若无,可构造出收敛于确界的序列,那么确界便为聚点,矛盾)。
所以:f A →R 可以取到最大最小值。
3.n R 的非空子集具有最值性质当且仅当它是紧的。
证明:紧子集具有最值性质已证。
下面证明具有最值性质则一定是紧集。
假设A 是n R 的非紧子集,则A 是无界或不闭的(n R 中自列紧集等价于有界闭集)。
(1)若A 无界,定义函数()f x x =,该函数连续但是没有最大值。
(2)若A 不闭,存A 的序列{}n x 收敛于点0x A ∉。
定义函数()0f x x x =-,该函数没有最小值,因为它可以任意接近于0但是取不到0。
综上,n R 的非自列紧子集不具有最值性质。
所以n R 的非空子集有最值性质当且仅当它是紧集。
连通集与连续映射1.度量空间的连通子集在连续映射下的象是连通集。
设X 、Y 是度量空间,A 是X 的开子集。
设:f A Y →是连续映射,值域为()B f A Y =⊆。
反证法。
假设B 不是连通集,那么存在Y 的非空开子集F 、G 分离B (F 、G 与B 的交都不空)。
定义集合(){}|,R x f x F x A =∈∈,(){}|,S x f x G x A =∈∈。
显然,R S 、都不空。
下面要证明:存在不相交的两个X 的开子集M N 、分离A 。
设r R ∈,则()f r F ∈。
因为F 是开集,所以存在正数r ε,使得()(),r U f r F ε⊆。
因为:f A Y →连续,存在邻域()r U r σ,,使得()()()()r r U A U f f r r σε⊆⋂,,,即()r U r A R σ⋂⊆,。
同理,对于任意点s S ∈,存在邻域()s U s σ,使得()s U s A S σ⋂⊆,。
对任意点r R ∈,s S ∈,设2s s δσ=;设(){}inf ,r d d r s s S =∈,显然0r d >(否则,便不存在不包含S 的点的邻域),()(),,0s s d r s d r s δσ->->。
若(),2s r d r s d σ-≥,则()(),,24s x s r r d r s d r s d d δσ->-≥>; 若()0,2s r d r s d σ<-<,则(),222s r r r r d r s d d d d σ>->-=,24s r d σ>,()(),,224s s s s r d r s d r s d δσσσ-=-+>>。
所以,对任意r R ∈,s S ∈都有(),4s r d r s d δ->。
对任意r R ∈,设4r r d δ=。
那么(),s r d r s δδ->,即(),r s d r s δδ>+。
设集合()(),,,r s r Rs SM U r N U s δδ∈∈==。
显然M 、N 都是开集。
且对于任意r R ∈,(),r r U r M δ∈⊆,故R M ⊆;同理可得S N ⊆。
所以A R S M N =⋃⊆⋃。
设x M ∈,那么存在r R ∈,使得(),r x U r δ∈,即(),r d x r δ<。
由三角不等式,()()(),,,d r x d s x d r s +≥。
又由(),rd x r δ<和(),r sd r s δδ>+得()()(),,,r s r s d s x d r s d r x δδδδ≥->+-=。
所以x N ∉。
同理可得,若x N ∈,则x M ∉。
所以M N ⋂=∅。
所以M N 、分离A 。
这与A 是连通集的条件矛盾。
所以B 是连通集。
(Fitzpatrick 的《高等微积分》的证法:利用“开集的逆象是开集”。
)2.度量空间的子集具有介值性当且仅当它是连通集。
证明: 充分性:设X 是度量空间,A 是X 的连通子集。
设:f A →R 是连续映射,象集为()B f X =⊆R 。
因为A 是连通的,:f A →R 是连续映射,所以B 是连通的,所以B 是区间。
所以有介值性质。
必要性:设X 是度量空间,A 是X 的非连通子集。
因为A 是非连通集,存在两个不相交的开集M N 、分离A 。
构造映射:f A →R ,定义为()0,1,x M f x x N∈⎧=⎨∈⎩因为定义域所有点含于两个开集M N 、之一,每个点都存在一个邻域含于M N 、之一,该邻域中的函数值也是单一的,所以该映射连续。
但是该函数显然没有介值性。
所以集A 不连通则没有介值性。
所以度量空间的子集具有介值性当且仅当它是连通集。
同胚映射1.同胚映射的概念:设X 、Y 是度量空间,A X ⊆。
若A 到Y 的连续映射:f A Y →是一对一的且()1:f f A A -→也连续,则称f 为同胚映射,称度量空间A 和()f A 是同胚的。
2.同胚映射的性质:根据以上各定理易知:同胚映射把开集映为开集,把闭集映为闭集,把自列紧集映为自列紧集,把紧集映为紧集,把连通集映为连通集。