当前位置:文档之家› 外文翻译-- 带式输送机及其牵引系统

外文翻译-- 带式输送机及其牵引系统

外文翻译-- 带式输送机及其牵引系统
外文翻译-- 带式输送机及其牵引系统

中文原文:

带式输送机及其牵引系统

在运送大量的物料时,带式输送机在长距离的运输中起到了非常重要的竞争作用。输送系统将会变得更大、更复杂,而驱动系统也己经历了一个演变过程,并将继续这样下去。如今,较大的输送带和多驱动系统需耍更大的功率,比如3驱动系统需耍给输送带750KW(成庄煤矿输送机驱动系统的要求)。控制驱动力和加速度扭矩是输送机的关键。一个高效的驱动系统应该能顺利的运行,同时保持输送带张紧力在指定的安全极限负荷内。为了负载分配在多个驱动上,扭矩和速度控制在驱动系统的设计中也是很重要的因素。由于输送机驱动系统控制技术的进步,目前更多可靠的低成本和高效驱动的驱动系统可供顾客选择[1]

1带式输送机驱动

1. 1带式输送机驱动方式

全电压启动在全电压启动设计中,带式输送机驱动轴通过齿轮传动直接连接到电机。直接全压驱动没有为变化的传送负载提供任何控制,根据满载和空载功率需求的比率,空载启动时比满载可能快3-4倍。此种方式的优点是:免维护,启动系统简单,低成本,可靠性高。但是,不能控制启动扭矩和最大停止扭矩。因此,这种方式只用于低功率,结构简单的传送驱动中。

降压启动随着传送驱动功率的增加,在加速期间控制使用的电机扭矩变得越来越重要。由于电机扭矩是电压的函数,电机电压必须得到控制,一般用可控硅整流器(SCR}构成的降压启动装置,先施加低电压拉紧输送带,然后线性的增加供电电压直到全电压和最大带速。但是,这种启动方式不会产生稳定的加速度,当加速完成时,控制电机电压的SCR

锁定在全导通,为电机提供全压。此种控制方式功率可达到750kW。

绕线转子感应电机绕线转子感应电机直接连接到驱动系统减速机上,通过在电机转子绕组中串联电阻控制电机转矩。在传送装置启动时,把电阻串联进转子产生较低的转矩,当传送带加速时,电阻逐渐减少保持稳定增加转矩。在多驱动系统中,一个外加的滑差电阻可能将总是串联在转子绕组回路中以帮助均分负载。该方式的电机系统设计相对简单,但控制系统可能很复杂,因为它们是基于计算机控制的电阻切换。当今,控制系统的大多数是定制设计来满足传送系统的特殊规格绕线转子电机适合于需要400kVV以上的系统。

直流(DC)电机大多数传送驱动使用DC并励电机,电机的电枢在外部连接。控制DC驱动技术一般应用SCR装置,它允许连续的变速操作。DC驱动系统在机械上是简单的,但设计的电子电路,监测和控制整个系统,相比于其他软启动系统的选择是昂贵的,但在转矩、负载均分和变速为主要考虑的场合,它又是一个可靠的,节约成本的方式。DC电机一般使用在功率较大的输送装置上,包括需耍输送带张力控制的多驱动系统和需要宽变速范围的输送装置上。

1.2液力偶合器

流体动力偶合器通常被称为液力偶合器,由三个基本单元组成:充当离心泵的叶轮,推进水压的涡轮和装进两个动力部件的外壳。流体从叶轮到涡轮,在从动轴产生扭矩。由于循环流体产生扭矩和速度,在驱动轴和从动轴之间不需要任何机械连接。这种连接产生的动力决定于液力偶合器的充液量,扭矩正比于输入速度。因在流体偶合中输出速度小于输入速度,其间的差值称为滑差,一般为1%-3%。传递功率可达几千千瓦。

固定充液液力偶合器固定充液液力偶合器是在结构较简单和仅

具有有限的弯曲部分的输送装置中最常用的软启动装置,其结构相对比较简单,成本又低,对现在使用的大多数输送机能提供优良的软启动效果。

可变充液液力偶合器也称为限矩型液力偶合器。偶合器的叶轮装在AC电机上,涡轮装在从动减速器高速轴上,包含操作部件的轴箱安装在驱动基座。偶合器的旋转外壳有溢出口,允许液体不断地从工作腔中流出进入一个分离的辅助腔,油从辅助腔通过一个热交换器泵到控制偶合器充液量的电磁阀。为了控制单机传动系统的启动转矩,必须监测AC 电机电流给电磁阀的控制提供反馈。可变充液液力偶合器可使用在中大功率输送系统中,功率可达到数千千瓦口这种驱动无论在机械,或在电气上都是很复杂的,其驱动系统成本中等。

勺管控制液力偶合器也称为调速型液力偶合器。此种液力偶合器同样由三个标准的液力偶合单元构成,即叶轮、涡轮和一个包含工作环路的外壳。此种液力偶合器需要在工作腔以外设置导管(也称勺管)和导管腔,依靠调节装置改变勺管开度(勺管顶端与旋转外壳间距)人为的改变工作腔的充液量,从而实现对输出转速的调节。这种控制提供了合理的平滑加速度,但其计算机控制系统很复杂。勺管控制液力偶合器可以应用在单机或多机驱动系统,功率范围为150kW-750kW。

1. 3变频控制(VFC)

变频控制也是一种直接驱动方式,它具有非常独特的高性能。VFC 装置为感应电机提供变化的频率和电压,产生优良的启动转矩和加速度。VFC设备是一个电力电子控制器,首先把AC整流成DC,然后利用逆变器,再将DC转换成频率、电压可控的AC. VFC驱动采用矢量控制或直接转矩控制(DTC)技术,能根据不同的负载采用不同的运行速度。VFC驱动能根据给定的S曲线启动或停车,实现自动跟踪启动或停车曲线。VFC驱动

为传送带启动提供了优良的速度和转矩控制,也能为多机驱动系统提供负载均分。VFC控制器可以容易地装在小功率输送机驱动上。过去在中高电压使用时,VFC设备的结构由于受电力半导体器件的电压额定值限制而变得很复杂,中高电压的变速传动常常使用低压逆变器,然后在输出端使用升压变压器,或使用多个低压逆变器串联来解决。与简单的器件串联连接的两电平逆变器系统比较,由于串联器件之间容易均压以及输出端可以有更好的谐波特性,三电平电压型PWI\逆变器系统在数兆瓦工业传动中近年来获得了越来越多的应用。由三台750kW/ 2.3kv的这种逆变器构成的VFC系统已经成功安装在成庄煤矿长2. 71m二的带式输送机驱动系统中。

2使用IGBT的中性点箱位三电平逆变器

由于串联器件电压均分容易,器件每次开关的dv/dt低以及输出端出色的谐波品质,三电平电压型逆变器在大功率传动应用中变得越来越流行。高压IGBT(HV-IGBT)的出现使得应用三电平中性点箱位原理的中高压逆变器设计有了更大的应用范围。这种逆变器目前可以实现从2. RV 到4. 16kV全范围的应用。HV-IGBT模块串联可使用在3. RV和4. 16kV 的设备。2. AV逆变器每个开关只需要一个HV-IGBT[2,3]。

2.1主功率逆变电路

主功率逆变电路用三电平中点箱位电压型逆变器实现,可以满足中高压交流传动应用的需要。与两电平电压型逆变器相比,三电平中点箱位电压型逆变器提供三个电压级别给输出端,对于同样的输出电流品质,开关频率可降低到原来的1/4,开关器件的电压额定值可减小到原来的1/2,附加到电机上的额外的瞬态电压应力也可能减少到原来的1/2。

三电平中点箱位电压型逆变器的开关状态可归纳于表1,U,V和W

分别表示三相,P, N和G是直流母线上的三个点。例如,当开关S1u和S2u闭合时,U相处于状态P(正母线电压),反之,当开关S3u和S4U闭合时,U相处于状态n(负母线电压)。在中性点箱位时,该相在o状态,这时根据相电流极性的正负,或者是S2U导通或者是S3U导通。为了保证中性点电压平衡,在o点被注入的平均电流应该是零。

2.2输入端变流器

为通常使用12脉冲二极管整流器给直流环节电容器充电,在输入端引入的谐波是很小的。若对输入谐波有更高的要求,可以使用24脉冲二极管整流器作为输入变流器。对于需要有再生能力的更高级应用,可以用一个有源输入变流器取代二极管整流器,这时输入整流器与输出逆变器为同一结构。

2.3逆变器控制

电机控制感应电机的控制可以使用转子磁场定向矢量控制器实现,通过使用PWM调制器完成了恒转矩区和高速弱磁区的控制。图2为间接矢量控制框图图中指令磁通甲ψr是速度的函数,反馈速度和前馈滑差控制信号川赫目加。对相加结果的频率信号积分,然后产生单位矢量(cos θ e和sinOθe ),最后通过矢量旋转器产生电压V’角θ控制PWM调制器。

PWM调制器该调制器实际上是把空间矢量调制概念扩展到三电平逆变器。其基本原理是三电平PWM调制器使用两个参考波认Ur1和Ur2,但只使用一个三角波。它以一种优化方式确定每一次开关时刻。

产生的谐波尽可能的小,使用尽可能低的开关频率以最小化开关损耗;可将零序成分加到每一个参考波里以便最大化基波电压。作为一个附加的自由度,参考波与三角波的相对位置可改变,这可以用于直流环节

中点的电流平衡。

3 测试结果

三个750kW/ 2. 3V三电平逆变器在成庄煤矿2. 7km.长带式输送机驱动系统成功安装之后,对整个变频传动系统(VFC)的性能进行了测试,测试结果显示出使用VFC控制系统的带式输送机的优良特性。图3为测试结果波形。由图看出,曲线1显示受控带速,带速呈S形曲线形状,曲线2、3分别表示电流和扭矩,曲线4显示带张力。从图中可以发现,带张力的波动范围很小,所有检测结果显示出带式输送机驱动系统令人满意的特性。

4结论

近年来输送机驱动控制技术的进步已更为可靠,符合低成本效益和高效驱动的驱动系统为用户提供了选择。在这些选择中,可变频率控制(VFC)的方法显现出在将来长距离输送中带式输送机扮演了重要的角色。使用高压工GBT的中点嵌位三电平逆变器本身可以提供电机终端所需的供电中高压,使变频控制的应用更为简单。通过成庄煤矿2. 7km长带式输送机中采用的中点嵌位三电平逆变器变频调速(VFC)控制系统的测试结果表明,采用BV-IGBT的中点嵌位三电平逆变器以及使用转子磁场矢量控制策略的感应电机变频传动,使带式输送机驱动系统具有非常优秀的性能,显示出良好的应用前景。

英文译文

Belt Conveying Systems Development of driving

system

Among the methods of material conveying emploved, belt conveyors play a very imporient part in the reliable carrying of material over long distances at competitive cost. Conveyor systems have become larger and more complex and drive systems have a l so been going through a process of evolution and will continue to do so. Nowadays, bigger belts require more power and have brought the need for larger individual drives as well as multiple drives such as 3 drives of 750 kW for one belt(this is the case for the conveyor drives in Chengzhuang Mine). The ability to control drive acceleration torque is critical to belt conveyors' performance. A efficient drive system should be able to provide smooth, soft starts while maintaining belt tensions within the specified safe limits. For load sharing on multiple drives. torque and speed control are also considerations in the drive system's design. Due to the advances in conveyor drive control technology, at present many more reliable. Cost-effective and performance- driven conveyor drive systems covering a wide range of power are available for customers' choices[1].

1 Analysis on conveyor drive technologies

1. 1 Direct drives

Full-voltage starters.With a full-voltage starter design, the conveyor

head shaft is direct-coupled to the motor through the gear drive. Direct

full-voltage starters are adequate for relatively low-power, simple- Profile conveyors. With direct full-voltage starters. no control is provided for various conveyor loads and. depending on the ratio between full- and no-load power requirements, empty starting

times can be three or four times faster than full load. The maintenance-free starting system is simple, low-cost and very reliable. However, they cannot control starting torque and maximum stall torque; therefore. they are limited to the low-power, simple-profile conveyor belt drives.

Reduced-voltage starters.As conveyor power requirements increase,controlling the applied motor torque during the acceleration period becomes increasingly important. Because motor torque is a function of voltage, motor voltage must be controlled. This can be achieved through reduced-voltage starters by employing a silicon controlled rectifier (SCR). A common starting method with SCR reduced-voltage starters is to apply low voltage initially to take up conveyor belt slack. and then to apply a timed linear ramp up to full voltage and belt speed. However, this starting method will not produce constant conveyor belt acceleration. When acceleration is complete. the SCRs, which control the applied voltage to the electric motor. are locked in full conduction, providing full-line voltage to the motor. Motors with higher torque and pull -vp torque, can provide better starting torque when combined with the SCR starters, which are available in sizes up to 750 KW.

Wound rotor induction motors.Wound rotor induction motors are connected directly to the drive system reducer and are a modified configuration of a standard AC induction motor. By inserting resistance in series with the motor's rotor windings. the modified motor control System controls motor torque. For conveyor starting, resistance is placed in series with the rotor for low initial torque. As the conveyor accelerates,the resistance is reduced slowly to maintain a constant acceleration torque. On multiple-drive systems.an external slip resistor may be left in series with the rotor windings to aid in load sharing .the motor systems have a relatively simple a design.However,the control systems for these can be highly complex, because they are

based on computer control of the resistance switching. Today, the majority of control systems are custom designed to meet a conveyor system's particular specifications. Wound rotor motors are appropriate for systems requiring more than 400KW.

DC motor. DC motors. available from a fraction of thousands of KW,are designed to deliver constant torque below base speed and constant KW above base speed to the maximum allowable revolutions per minute (r/min). with the majority of conveyor drives, a .DC shunt wound motor is used. Wherein the motor's rotating armature is connected externally. The most common technology for controlling DC drives is a SCR device. which allows for continual variable-speed operation. The DC drive system is mechanically simple, but can include complex custom-designed electronics to monitor and control the complete system. this system option is expensive in comparison to other soft-start systems. but it is a reliable, cost-effective drive in applications in which torque,load sharing and variable speed are primary considerations. DC motors generally are used with higher-power conveyors, including complex profile conveyors with multiple-drive systems, booster tripper systems needing belt tension control and conveyors requiring a wide variable-speed range.

1. 2 Hydrokinetic coupling

Hydrokinetic couplings, commonly referred to as fluid couplings. are composed of three basic elements; the driven impeller, which acts as a

centrifugal pump; the driving hydraulic turbine known as the runner and

a casing that encloses the two power components. Hydraulic fluid is pumped from the driven impeller to the driving runner, producing torque at the driven shaft. Because circulating hydraulic fluid produces the torque and speed, no mechanical connection is required between the driving and driver shafts.The power produced by this coupling is based on the circulated fluid's amount and density and the torque in proportion to input

speed. Because the pumping action within the fluid coupling depends on centrifugal forces. the output speed is less than the input speed. Referred to as slip. this normally is between 1% and 3%. Basic hydrokinetic couplings are available in configurations from fractional to several thousand KW.

Fixed-fill fluid couplings.Fixed-fill fluid couplings are the most commonly used soft-start devices for conveyors with simpler belt profiles and limited convex/concave sections. They are relatively simple,low-cost,reliable,maintenance free devices that provide excellent soft starting results to the majority of belt conveyors in use today.

Variable-fill drain couplings.Drainable-fluid couplings work on the same principle as fixed-fill couplings. The coupling's impellers are mounted on the AC motor and the runners on the driven reducer high-speed shaft. Housing mounted to the drive base encloses the working circuit. The coupling's rotating casing contains bleed-off orifices that continually allow fluid to exit the working circuit into a separate hydraulic reservoir. Oil from the reservoir is pumped through a heat exchanger to a solenoid-operated hydraulic valve that controls the filling of the fluid coupling. To control the starting torque of a single-drive conveyor system, the AC motor current must be monitored to provide feedback to the solenoid control valve. Variable fill drain couplings are used in medium to high-kw conveyor systems and are available in sizes up to thousands of kw.The drives can be mechanically complex and depending on the control parameters. the system can be electronically intricate. The drive system cost is medium to high,depending upon size specified.

Hydrokinetic scoop control drive.The scoop control fluid coupling consists of the three standard fluid coupling cmponents: a driven impeller, a

driving runner and a casing that encloses the working circuit. The casing is fitted with fixed orifices that bleed a predetermined amount of fluid into a reservoir. When the scoop tube is fully extended into the reservoir, the coupling is 100 percent filled. The scoop tube, extending outside the fluid coupling, is positioned using an electric actuator to engage the tube from the fully retracted to the fully engaged position. This control provides reasonably smooth acceleration rates. to but the computer-based control system is very complex. Scoop control couplings are applied on conveyors requiring single or multiple drives from 150KWto 750KW.

1. 3 Variable-frequency control(VFC)

Variable frequency control is also one of the direct drive methods. the emphasizing discussion about it here is because that it has so unique characteristic and so good performance compared with other driving methods for belt conveyor. VFC devices Provide variable frequency and voltage to the induction motor, resulting in an excellent starting torque and acceleration rate for belt conveyor drives. VFC drives. available from fractional to several thousand (kW),are electronic controllers that rectify AC line power to DC and, through an inverter, convert DC back to AC with frequency and voltage control. VFC drives adopt vector control or direct torque control(DTC)technology, and can adopt different operating speeds according to different loads. VFC drives can make starting or stalling according to any given S-curves realizing the automatic track for starting or stalling curves. VFC drives provide excellent speed and torque control for starting conveyor belts. and can also be designed to provide load sharing for multiple drives. easily VFC controllers are frequently installed on lower-powered convey- or drives, but when used at the range of medium-high voltage in the past. the structure of VFC controllers becomes very complicated due to the limitation of voltage rating of power semiconductor devices, the combination of medium-high

voltage drives and variable speed is often solved with low-voltage inverters using step-up transformer at the output, or with multiple low-voltage inverters connected in series. Three-level voltage-fed PWM converter systems are recently showing increasing popularity for multi-megawatt industrial drive applications because of easy voltage sharing between the series devices and i叩roved harmonic quality at the output compared to two-level converter systems With simple series connection of devices. This kind of VFC system with three 750 kW /2. A V inverters has been successfully installed in ChengZhuang Mine for one 2. 7-km long belt conveyor driving system in following the principle of three-level inverter will be discussed in detail.

2 Neutral point clamped(NPC)three-level inverter using IGBTs

Three-level voltage-fed inverters have recently become more and more popular for higher power drive applications because of their easy voltage sharing features. lower dv/dt per switching for each of the devices, and superiorharmonic quality at the output. The availability of NV-IGBTs

has led to the design of a new range of medium-high voltage inverter using three-level NPC topology. This kind of inverter can realize a whole range with a voltage rating from 2. 3 kV to 4. 1 6kV Series connection of IIV-IGBT modules is used in the 3. 3 kV and 4.

1 6kV devices. The 2. 3 kV inverters need only one HV-IGBT per switch[2,3].

2. 1 Power section

To meet the demands for medium voltage applications. a three-level

neutral point clamped inverter realizes the power section. In comparison

to a two-level inverter. the NPC inverter offers the benefit that three voltage levels can be supplied to the output terminals, so for the same output current quality, only 1/4 of

the switching frequency is necessary. Moreover the voltage ratings of the switches in NPC inverter topology will be reduced to 1/2. and the additional transient voltage stress on the motor can also be reduced to 1/2 compared to that of a two-level inverter.

The switching states of a three-level inverter are summarized in Table 1. U. V and W denote each of the three phases respectively; P N and 0 are the do bus points. The phase U, for example, is in state P (positive bus voltage)when the switches S1uand S2u are closed, whereas it is in state N (negative bus voltage) when the switches S3u and S4u, are closed. At neutral point clamping, the phase is in 0 state when either S2u.or S3u, conducts depending on positive or negative phase current polarity, respectively. For neutral point voltage balancing, the average current injected at 0 should be zero.

2. 2 Line side converter

For standard applications. a 12-pulse diode rectifier feeds the divided DC-link capacitor. This topology introduces low harmonics on. the line side. For even higher requirements a 24-pulse diode rectifier can be used as an input converter. For more advanced applications where regeneration. capability is necessary, an active front. end converter can replace the diode rectifier, using the same structure as the inverter.

2. 3 Inverter control

Motor Control. Motor control of induction machines is realized by

using a rotor flux. oriented vector controller.

Fig. 2 shows the block diagram of indirect vector controlled drive that incorporates both constant torque and high speed field-weakening regions where the PW M modulator was used. In this figure, the command fluxψ.is generated as function of speed. The feedback speed is added with the feed forward slip command signalψ,the resulting frequency signal is integrated and then the unit vector signals(cosθe and sinθ e)are generated. The vector rotator generates the v oltage Vs and Angle θe commands for the

PW M as shown.

PWM Modulator.The demanded voltage vector is generated using an elaborate PWM modulator. The modulator extends the concepts of space-vector modulation to the three-level inverter. The operation can be

explained by starting from a regularly sampled sine-triangle comparison

from two-level inverter. Instead of using one set of reference waveforms

and one triangle defining the switching frequency, three-level Modulator uses two sets of reference waveforms Uand U and just one triangle. Thus, each switching transition is used in an optimal way so that several objectives are reached at the same time.

Very low harmonics are generated. The switching frequency is low and thus switching losses are minimized. As in a two-level inverter, a zero-sequence component can be added to each set of reference waveform s in order to maximize the fundamental voltage component. As an additional degree of freedom, the position of the reference waveform s within the triangle can be changed. This can be used for current balance in the two halves of the DC-link.

3 Testing results

After Successful installation of three 750 kW /2. 3 kV three-level

inverters for one 2. 7 km long belt conveyor driving system in Cheng

zhuang Mine. The performance of the whole VFC system was tested. Fig. 3 is taken from the test, which shows the excellent characteristic of the belt conveyor driving system with VFC controller.

Fig. 3 includes four curves. The curve 1 shows the belt tension . From the curve it can be find that the fluctuation range of the belt tension is very small. Curve 2 and curve 3 indicate current and torque separately. Curve 4 shows the velocity of the controlled belt. The belt velocity have the "s" shape characteristic. All the results of the test show a

very satisfied characteristic for belt driving system.

4 Conclusions

Advances in conveyor drive control technology in recent years have

resulted in many more reliable. Cost-effective and performance-driven conveyor drive system choices for users.Among these choices,theVariable frequency control (VFC) method shows promising use in the future for long distance belt conveyor drives due to its excellent performances. The NPC three-level inverter using high voltage TGBTs make the Variable frequency control in medium voltage applications become much more simple because the inverter itself can provide the medium voltage needed at the motor terminals, thus eliminating the step-up transformer in most applications in the past. The testing results taken from the VFC control system with NTC three. level inverters used in a 2. 7 km long belt conveyor drives in Chengzhuang Mine indicates that the performance of NPC three-level inverter using HV-TGBTs together with the control strategy of rotor field-oriented vector control for induction motor drive is excellent for belt conveyor driving system.

带式输送机毕业设计论文

带式输送机毕业设 计论文 目录 1 绪论 (1) 1.1常用带式输送机类型与特点 (2) 1.2 国外带式输送机的发展与现状 (3) 1.3 PLC简介 (8) 1.4 本课题的研究目的及选题背景 (12) 2 带式输送机初步设计 (13) 2.1 选择机型 (13) 2.2 输送带选择计算 (13) 2.3 输送线路的初步设计 (17) 2.4 托辊的选择计算 (18)

2.5 带式输送机线路阻力计算 (20) 2.6 输送带的力计算 (22) 2.7 输送带强度验算 (26) 2.8 牵引力及电动机功率的计算 (26) 2.9 驱动装置及其布置 (27) 2.10 拉紧力、拉紧行程的计算及拉紧装置的选择 (29) 2.11 制动力矩的计算及制动器的选择 (33) 2.12 减速器与联轴器的选型 (34) 2.13 软启动装置的选择 (35) 2.14 辅助装置 (36) 2.15设计结论表 (36) 3 带式输送机电控系统设计 (39) 3.1 电控系统的概述 (39) 3.2 电控系统设计基本要求 (40) 3.3 电控系统常用保护 (40) 3.4 电气系统设计 (41) 4 毕业设计总结 (49) 参考文献 (50)

致谢 (51) 附录一外文文献及翻译 (52) 附录二钢丝绳芯输送带规格及技术参数 (64)

1 绪论 带式输送机是一种摩擦驱动以连续方式运输物料的机械。应用它可以将物料在一定的输送线上,从最初的供料点到最终的卸料点间形成一种物料的输送流程。它既可以进行碎散物料的输送,也可以进行成件物品的输送。除进行纯粹的物料输送外,还可以与各工业企业生产流程中的工艺过程的要求相配合,形成有节奏的流水作业运输线。所以带式输送机广泛应用于现代化的各种工业企业中。在矿山的井下巷道、矿井地面运输系统、露天采矿场及选矿厂中,广泛应用带式输送机。它用于水平运输或倾斜运输,使用非常方便。带式输送机因其具有结构紧凑、传动效率高、噪声低、使用寿命长、运转稳定、工作可靠性和密封性好、占据空间小等特点,并能适应在各种恶劣工作环境下工作包括潮湿、泥泞、粉尘多等,所以它已经是国民经济中不可或缺的关键设备。加之国际互联网络化的实现,又大大缩短了带式输送机的设计、开发、制造的周期,使它更加具有竞争力。 研究本课题具有重要的意义。目前,带式输送机已经成为露天矿和地下矿的联合运输系统中重要的组成部分。为了更好的研究带式输送机的工作组成原理,发现及改进其不足之处,本课题所研究的是大倾角、上运带式输送机。此次研究的主要问题在于系统的驱动件布置、软起动和制动问题。带式输送机向下运送物料时,其驱动电机的运行工矿有别于一般的带式输送机。由于运转上的需要,在结构上有特点,控制上有特殊要求。若

毕业论文外文文献翻译-数据库管理系统的介绍

数据库管理系统的介绍 Raghu Ramakrishnan1 数据库(database,有时拼作data base)又称为电子数据库,是专门组织起来的一组数据或信息,其目的是为了便于计算机快速查询及检索。数据库的结构是专门设计的,在各种数据处理操作命令的支持下,可以简化数据的存储,检索,修改和删除。数据库可以存储在磁盘,磁带,光盘或其他辅助存储设备上。 数据库由一个或一套文件组成,其中的信息可以分解为记录,每一记录又包含一个或多个字段(或称为域)。字段是数据存取的基本单位。数据库用于描述实体,其中的一个字段通常表示与实体的某一属性相关的信息。通过关键字以及各种分类(排序)命令,用户可以对多条记录的字段进行查询,重新整理,分组或选择,以实体对某一类数据的检索,也可以生成报表。 所有数据库(最简单的除外)中都有复杂的数据关系及其链接。处理与创建,访问以及维护数据库记录有关的复杂任务的系统软件包叫做数据库管理系统(DBMS)。DBMS软件包中的程序在数据库与其用户间建立接口。(这些用户可以是应用程序员,管理员及其他需要信息的人员和各种操作系统程序)。 DBMS可组织,处理和表示从数据库中选出的数据元。该功能使决策者能搜索,探查和查询数据库的内容,从而对在正规报告中没有的,不再出现的且无法预料的问题做出回答。这些问题最初可能是模糊的并且(或者)是定义不恰当的,但是人们可以浏览数据库直到获得所需的信息。简言之,DBMS将“管理”存储的数据项,并从公共数据库中汇集所需的数据项以回答非程序员的询问。 DBMS由3个主要部分组成:(1)存储子系统,用来存储和检索文件中的数据;(2)建模和操作子系统,提供组织数据以及添加,删除,维护,更新数据的方法;(3)用户和DBMS之间的接口。在提高数据库管理系统的价值和有效性方面正在展现以下一些重要发展趋势; 1.管理人员需要最新的信息以做出有效的决策。 2.客户需要越来越复杂的信息服务以及更多的有关其订单,发票和账号的当前信息。 3.用户发现他们可以使用传统的程序设计语言,在很短的一段时间内用数据1Database Management Systems( 3th Edition ),Wiley ,2004, 5-12

单片机控制系统-外文文献

Microcomputer Systems Electronic systems are used for handing information in the most general sense; this information may be telephone conversation, instrument read or a company’s accounts, but in each case the same main type of operation are involved: the processing, storage and transmission of information. in conventional electronic design these operations are combined at the function level; for example a counter, whether electronic or mechanical, stores the current and increments it by one as required. A system such as an electronic clock which employs counters has its storage and processing capabilities spread throughout the system because each counter is able to store and process numbers. Present day microprocessor based systems depart from this conventional approach by separating the three functions of processing, storage, and transmission into different section of the system. This partitioning into three main functions was devised by Von Neumann during the 1940s, and was not conceived especially for microcomputers. Almost every computer ever made has been designed with this structure, and despite the enormous range in their physical forms, they have all been of essentially the same basic design. In a microprocessor based system the processing will be performed in the microprocessor itself. The storage will be by means of memory circuits and the communication of information into and out of the system will be by means of special input/output(I/O) circuits. It would be impossible to identify a particular piece of hardware which performed the counting in a microprocessor based clock because the time would be stored in the memory and incremented at regular intervals but the microprocessor. However, the software which defined the system’s behavior would contain sections that performed as counters. The apparently rather abstract approach to the architecture of the microprocessor and its associated circuits allows it to be very flexible in use, since the system is defined almost entirely software. The design process is largely one of software engineering, and the similar problems of construction and maintenance which occur in conventional engineering are encountered when producing software. The figure1.1 illustrates how these three sections within a microcomputer are connected in terms of the communication of information within the machine. The system is controlled by the microprocessor which supervises the transfer of information between itself and the memory and input/output sections. The external connections relate to the rest (that is, the non-computer part) of

变速器论文中英文对照资料外文翻译文献

中英文对照外文翻译 汽车变速器设计 我们知道,汽车发动机在一定的转速下能够达到最好的状态,此时发出的功率比较大,燃油经济性也比较好。因此,我们希望发动机总是在最好的状态下工作。但是,汽车在使用的时候需要有不同的速度,这样就产生了矛盾。这个矛盾要通过变速器来解决。 汽车变速器的作用用一句话概括,就叫做变速变扭,即增速减扭或减速增扭。为什么减速可以增扭,而增速又要减扭呢?设发动机输出的功率不变,功率可以表示为 N = w T,其中w是转动的角速度,T 是扭距。当N固定的时候,w与T是成反比的。所以增速必减扭,减速必增扭。汽车变速器齿轮传动就根据变速变扭的原理,分成各个档位对应不同的传动比,以适应不同的运行状况。 一般的手动变速器内设置输入轴、中间轴和输出轴,又称三轴式,另外还有倒档轴。三轴式是变速器的主体结构,输入轴的转速也就是发动机的转速,输出轴转速则是中间轴与输出轴之间不同齿轮啮合所产生的转速。不同的齿轮啮合就有不同的传动比,也就有了不同的转速。例如郑州日产ZN6481W2G型SUV车手动变速器,它的传动比分别是:1档3.704:1;2档2.202:1;3档1.414:1;4档1:1;5档(超速档)0.802:1。 当汽车启动司机选择1档时,拨叉将1/2档同步器向后接合1档

齿轮并将它锁定输出轴上,动力经输入轴、中间轴和输出轴上的1档齿轮,1档齿轮带动输出轴,输出轴将动力传递到传动轴上(红色箭头)。典型1档变速齿轮传动比是3:1,也就是说输入轴转3圈,输出轴转1圈。 当汽车增速司机选择2档时,拨叉将1/2档同步器与1档分离后接合2档齿轮并锁定输出轴上,动力传递路线相似,所不同的是输出轴上的1档齿轮换成2档齿轮带动输出轴。典型2档变速齿轮传动比是2.2:1,输入轴转2.2圈,输出轴转1圈,比1档转速增加,扭矩降低。 当汽车加油增速司机选择3档时,拨叉使1/2档同步器回到空档位置,又使3/4档同步器移动直至将3档齿轮锁定在输出轴上,使动力可以从轴入轴—中间轴—输出轴上的3档变速齿轮,通过3档变速齿轮带动输出轴。典型3档传动比是1.7:1,输入轴转1.7圈,输出轴转1圈,是进一步的增速。 当汽车加油增速司机选择4档时,拨叉将3/4档同步器脱离3档齿轮直接与输入轴主动齿轮接合,动力直接从输入轴传递到输出轴,此时传动比1:1,即输出轴与输入轴转速一样。由于动力不经中间轴,又称直接档,该档传动比的传动效率最高。汽车多数运行时间都用直接档以达到最好的燃油经济性。 换档时要先进入空档,变速器处于空档时变速齿轮没有锁定在输出轴上,它们不能带动输出轴转动,没有动力输出。 一般汽车手动变速器传动比主要分上述1-4档,通常设计者首先确定最低(1档)与最高(4档)传动比后,中间各档传动比一

带式输送机毕业论文开题报告

江西理工大学应用科学学院10级(2014届) 学生毕业设计(论文)开题报告设计(论文)题目 专业学生姓名指导教师 本课题研 究的现状 十多年来,国产矿用固定式带式输送机从SDJ、SSJ、STJ、DT系列定型发展到各种多功能特种带式输送机系列,如大倾角带式输送机成套设备,高效工作面顺槽可伸缩带式输送机,大倾角长运距带式输送机系列产品等,并用动态分析、智能化控制技术等对关键设备进行了理论研究和产品开发,研制成功了多种软起动和制动装置以及可编程电控装置,但和国外先进机型相比,国内输送机机型一般较小,带速通常不超过4m/s,普遍沿用静设计法,设备成本偏高,运行可靠性低。此外我国尚未形成元部件的大规模专业生产厂,设计制造水平有待提高。 学术价值和现实意义 带式输送机因其具有结构紧凑、传动效率高、噪声低、使用寿命长、运转稳定、工作可靠性和密封性好、占据空间小等特点,并能适应各种恶劣工作环境下工作包括潮湿、泥泞、粉尘多等,所以它已经是国民经济中不可或缺的关键设备。加之国际互联网化的实现,有大大缩短了带式输送机的设计、开发、制造、销售的周期,使它更加具有竞争力。目前,带式输送机已经成为露天矿和地下矿联合运输系统中的重要组成部分。此次研究的主要问题在于系统的驱动件布置、软起动和制动问题。带式输送机向上运送物料时,其驱动电机的运动工况有别于一般带式输送机。由于运转上的需要,在结构特点上,控制上有特殊要求。上运带式输送机的制动装置及其控制技术尤为关键,若制动装置设计不合理,很容易发生飞车事故,从而造成断带、撕带等事故给生产带来极大危害,如何实现软制动和自动张紧,逐渐向智能化、自动化和人性化发展,是目前带式输送机的发展方向,也是本课题研究的目的和意义所在。

基于单片机温度监测系统设计的外文翻译

外文文献资料 Distributed Temperature Sensor 1.Sensor introduction 1.1 Temperature sensor background In the human living environment, temperature playing an extremely important role。No matter where you live, engaged in any work, ever-present dealt with temperature under. Since the 18th century, industry since the industrial revolution to whether can master send exhibition has the absolute temperature touch. In metallurgy, steel, petrochemical, cement, glass, medicine industry and so on, can say almost eighty percent of industrial departments have to consider the factors with temperature. Temperature for industrial so important, thus promoting the development of the temperature sensor. 1.2 Temperature sensor development Major general through three sensor development phase: analog integrated temperature sensor. The sensor is taken with silicon semiconductor integrated workmanship, therefore also called silicon sensor or monolithic integrated temperature sensor. Such sensing instruments have single function (only measuring temperature), temperature measurement error is smaller, price low, fast response, the transmission distance, small volume, micro-consumption electronic etc, suitable for long distance measurement temperature, temperature control, do not need to undertake nonlinear calibration, peripheral circuit is simple. It is currently the most common application at home and abroad, an integrated sensor。Typical products have AD590 AD592, TMP17, LM135, etc.jAnalog integrated temperature controller. Analog integrated temperature controller mainly include temperature control switch, programmable temperature controller, a typical product have LM56, AD22105 and MAX6509. Some increase strength type integrated temperature controller (for example TC652/653) also contains the A/D converter and cure good sequence, this process with the intelligent temperature sensor some similarities. But it is not its system, work by micro processing device control, this is the main difference between. Intelligent temperature sensor. intelligent temperature sensor (also called digital temperature degrees sensor) is in the mid 1990s launch. It is microelectronics technology, computer technology and the dynamic testing technology (ATE) crystallization. Intelligent temperature sensor internal contain temperature sensor, A/D converter, signal processor,

外文文献翻译:汽车的发展

The development of automobile As the world energy crisis and the war and the energy consumption of oil -- and are full of energy in one day someday it will disappear without a trace. Oil is not inresources. So in oil consumption must be clean before finding a replacement. With the development of science and technology the progress of the society people invented the electric car. Electric cars will become the most ideal of transportation. In the development of world each aspect is fruitful especially with the automobile electronic technology and computer and rapid development of the information age. The electronic control technology in the car on a wide range of applications the application of the electronic device cars and electronic technology not only to improve and enhance the quality and the traditional automobile electrical performance but also improve the automobile fuel economy performance reliability and emission spurification. Widely used in automobile electronic products not only reduces the cost and reduce the complexity of the maintenance. From the fuel injection engine ignition devices air control and emission control and fault diagnosis to the body auxiliary devices are generally used in electronic control technology auto development mainly electromechanical integration. Widely used in automotive electronic control ignition system mainly electronic control fuel injection system electronic control ignition system electronic control automatic transmission electronic control ABS/ASR control system electronic control suspension system electronic control power steering system vehicle dynamic control system the airbag systems active belt system electronic control system and the automatic air-conditioning and GPS navigation system etc. With the system response the use function of quick car high reliability guarantees of engine power and reduce fuel consumption and emission regulations meet standards. The car is essential to modern traffic tools. And electric cars bring us infinite joy will give us the physical and mental relaxation. Take for example automatic transmission in road can not on the clutch can achieve automatic shift and engine flameout not so effective improve the driving convenience lighten the fatigue strength. Automatic transmission consists mainly of hydraulic torque converter gear transmission pump hydraulic control system electronic control system and oil cooling system etc. The electronic control of suspension is mainly used to cushion the impact of the body and the road to reduce vibration that car getting smooth-going and stability. When the vehicle in the car when the road uneven road can according to automatically adjust the height. When the car ratio of height low set to gas or oil cylinder filling or oil. If is opposite gas or diarrhea. To ensure and improve the level of driving cars driving stability. Variable force power steering system can significantly change the driver for the work efficiency and the state so widely used in electric cars. VDC to vehicle performance has important function it can according to the need of active braking to change the wheels of the car car motions of state and optimum control performance and increased automobile adhesion controlling and stability. Besides these appear beyond 4WS 4WD electric cars can greatly improve the performance of the value and ascending simultaneously. ABS braking distance is reduced and can keep turning skills effectively improve the stability of the directions simultaneously reduce tyre wear. The airbag appear in large programs protected the driver and passengers safety and greatly reduce automobile in collision of drivers and passengers in the buffer to protect the safety of life. Intelligent electronic technology in the bus to promote safe driving and that the other functions. The realization of automatic driving through various sensors. Except some smart cars equipped with multiple outside sensors can fully perception of information and traffic facilities

房地产信息管理系统的设计与实现 外文翻译

本科毕业设计(论文)外文翻译 译文: ASP ASP介绍 你是否对静态HTML网页感到厌倦呢?你是否想要创建动态网页呢?你是否想 要你的网页能够数据库存储呢?如果你回答:“是”,ASP可能会帮你解决。在2002年5月,微软预计世界上的ASP开发者将超过80万。你可能会有一个疑问什么是ASP。不用着急,等你读完这些,你讲会知道ASP是什么,ASP如何工作以及它能为我们做 什么。你准备好了吗?让我们一起去了解ASP。 什么是ASP? ASP为动态服务器网页。微软在1996年12月推出动态服务器网页,版本是3.0。微软公司的正式定义为:“动态服务器网页是一个开放的、编辑自由的应用环境,你可以将HTML、脚本、可重用的元件来创建动态的以及强大的网络基础业务方案。动态服务器网页服务器端脚本,IIS能够以支持Jscript和VBScript。”(2)。换句话说,ASP是微软技术开发的,能使您可以通过脚本如VBScript Jscript的帮助创建动态网站。微软的网站服务器都支持ASP技术并且是免费的。如果你有Window NT4.0服务器安装,你可以下载IIS(互联网信息服务器)3.0或4.0。如果你正在使用的Windows2000,IIS 5.0是它的一个免费的组件。如果你是Windows95/98,你可以下载(个人网络服务器(PWS),这是比IIS小的一个版本,可以从Windows95/98CD中安装,你也可以从微软的网站上免费下载这些产品。 好了,您已经学会了什么是ASP技术,接下来,您将学习ASP文件。它和HTML文 件相同吗?让我们开始研究它吧。 什么是ASP文件? 一个ASP文件和一个HTML文件非常相似,它包含文本,HTML标签以及脚本,这些都在服务器中,广泛用在ASP网页上的脚本语言有2种,分别是VBScript和Jscript,VBScript与Visual Basic非常相似,而Jscript是微软JavaScript的版本。尽管如此,VBScript是ASP默认的脚本语言。另外,这两种脚本语言,只要你安装了ActiveX脚本引擎,你可以使用任意一个,例如PerlScript。 HTML文件和ASP文件的不同点是ASP文件有“.Asp”扩展名。此外,HTML标签和ASP代码的脚本分隔符也不同。一个脚本分隔符,标志着一个单位的开始和结束。HTML标签以小于号(<)开始(>)结束,而ASP以<%开始,%>结束,两者之间是服务端脚本。

基于单片机的温度控制系统外文翻译

外文原文: Design of the Temperature Control System Based on AT89C51 ABSTRACT The principle and functions of the temperature control system based on micro contro ller AT89C51 are studied, and the temperature measurement unit consists of the 1-Wir e bus digital temperature sensor DS18B20. The system can be expected to detect the p reset temperature, display time and save monitoring data. An alarm will be given by s ystem if the temperature exceeds the upper and lower limit value of the temperature w hich can be set discretionarily and then automatic control is achieved, thus the temper ature is achieved monitoring intelligently within a certain range. Basing on principle o f the system, it is easy to make a variety of other non-linear control systems so long as the software design is reasonably changed. The system has been proved to be accurat e, reliable and satisfied through field practice. KEYWORDS: AT89C51; micro controller; DS18B20; temperature 1 IN TRODUCTION Temperature is a very important parameter in human life. In the modern society, tem perature control (TC) is not only used in industrial production, but also widely used in other fields. With the improvement of the life quality, we can find the TC appliance i n hotels, factories and home as well. And the trend that TC will better serve the whole society, so it is of great significance to measure and control the temperature. Based o n the AT89C51 and temperature sensor DS18B20, this system controls the condition t emperature intelligently. The temperature can be set discretionarily within a certain ra nge. The system can show the time on LCD, and save monitoring data; and automatic ally control the temperature when the condition temperature exceeds the upper and lo wer limit value. By doing so it is to keep the temperature unchanged. The system is of high anti-jamming, high control precision and flexible design; it also fits the rugged e nvironment. It is mainly used in people's life to improve the quality of the work and li fe. It is also versatile, so that it can be convenient to extend the use of the system. So t he design is of profound importance. The general design, hardware design and softwar e design o f the system are covered. 1.1 Introduction The 8-bit AT89C51 CHMOS microcontrollers are designed to handle high-speed calc ulations and fast input/output operations. MCS 51 microcontrollers are typically used for high-speed event control systems. Commercial applications include modems, mot or-control systems, printers, photocopiers, air conditioner control systems, disk drives, and medical instruments. The automotive industry use MCS 51 microcontrollers in e ngine-control systems, airbags, suspension systems, and antilock braking systems (AB S). The AT89C51 is especially well suited to applications that benefit from its processi

变速器设计,中英文带翻译

原文: Transmission design As we all know automobile engine to a certain speed can be achieved under the best conditions, when compared issued by the power, fuel economy is relatively good. Therefore, we hope that the engine is always in the best of conditions to work under. However, the use of motor vehicles need to have different speeds, thus creating a conflict. Transmission through this conflict to resolve. Automotive Transmission role sum up in one sentence, called variable speed twisting, twisting or slow down the growth rate by increasing torsional. Why can slow down by twisting, and the growth rate but also by twisting? For the same engine power output, power can be expressed as N = WT, where w is the angular velocity of rotation. When N fixed, w and T is inversely proportional to the. Therefore, the growth rate will reduce twisting, twisting slowdown will increase. Automotive Transmission speed gear based on the principle of variable twisted into various stalls of different transmission ratio corresponding to adapt to different operational conditions. General to set up a manual gearbox input shaft, intermediate shaft and output shaft, also known as the three-axis, as well as Daodang axis. Three-axis is the main transmission structure, input shaft speed is the speed of the engine, the output shaft speed is the intermediate shaft and output shaft gear meshing between different from the speed. Different gears are different transmission ratio, and will have a different speed. For example Zhengzhou richan ZN6481W2G manual transmission car-SUV, its transmission ratio are: 1 File 3.704:1; stalls 2.202:1; stalls 1.414:1; stalls 1:1 5 stalls (speeding file) 0.802: 1. When drivers choose a launch vehicle stalls, Plectrum will be 1 / 2 file synchronization engagement with a back stall gear and output shaft lock it, the power input shaft, intermediate shaft and output shaft gear of a stall, a stall the output shaft gear driven, and the output shaft power will be transmitted to the drive shaft (red arrow). A typical stall Biansuchilun transmission ratio is 3:1, that is to say three laps

相关主题
文本预览
相关文档 最新文档