移动机器人运动学
- 格式:pdf
- 大小:1.50 MB
- 文档页数:50
机器人正运动学名词解释
机器人正运动学是机器人学的一门重要分支,关注机器人对空间环境中关节位置和机构参数的控制,以及在这种控制下机器人可以完成哪些任务。
正运动学中最常见的术语如下:
1. 闭环系统:闭环系统是一种控制机构的技术,其中控制的目的是机构的某些参数达到预期的目标值。
例如某机构的一些关节被配置到特定的角度,一个闭环系统可以被用于控制参数将机构的实际角度与目标角度保持一致。
2. 逆运动学:逆运动学涉及从特定的末端位置反推究机构所需要的关节角度和机构参数。
例如,可以从末端位置和实际姿态计算出可以使一个机器人移动到一个特定位置的关节角度和机构参数。
3. 运动学参数:运动学参数是定义机器人运动状态所需要的参数。
它包括机器人的关节角、机构参数、机构刚度等。
例如,一个具有特定关节角和机构参数的机器人,可以用这些参数描述其运动状态。
4. 关节空间和工作空间:关节空间描述机器人可以实现的各关节角度,而工作空间则描述机器人可以实现的末端空间位置。
5. 运动学链:运动学链可以用来分析机构结构、机构参数、以及机器人运动学特性之间的相互关系。
最常见的运动学链就是传统的齿轮链,由一系列的机构关节组成。
正运动学是控制机器人末端位置和实现任务的非常重要的分支。
正运动学的研究将得到机器人技术的发展,从而使机器人运动更加准确和稳定。
机器人的运动学和动力学模型机器人的运动学和动力学是研究机器人运动和力学性质的重要内容。
运动学是研究机器人姿态、位移和速度之间关系的学科,动力学则是研究机器人运动过程中力的产生和作用的学科。
机器人的运动学和动力学模型可以帮助我们理解机器人的运动方式和受力情况,进而指导机器人的控制算法设计和路径规划。
一、机器人运动学模型机器人运动学模型是描述机器人运动方式和位置关系的数学表达。
机器人的运动状态可以用关节角度或末端执行器的位姿来表示。
机器人的运动学模型分为正运动学和逆运动学两种。
1. 正运动学模型正运动学模型是通过机器人关节角度或末端执行器的位姿来确定机器人的位置。
对于串联机器人,可以使用连续旋转和平移变换矩阵来描述机械臂的位置关系。
对于并联机器人,由于存在并联关节,正运动学模型比较复杂,通常需要使用迭代方法求解。
正运动学模型的求解可以通过以下几个步骤:(1) 坐标系建立:确定机器人的基坐标系和各个关节的局部坐标系。
(2) 运动方程描述:根据机器人的结构和连杆长度等参数,建立各个关节的运动方程。
(3) 正运动学求解:根据关节的角度输入,通过迭代计算,求解机器人的末端执行器的位姿。
正运动学模型的求解可以用于机器人路径规划和目标定位。
2. 逆运动学模型逆运动学模型是通过机器人末端执行器的位姿来确定机器人的关节角度。
逆运动学问题在机器人的路径规划和目标定位等任务中起着重要作用。
逆运动学求解的难点在于解的存在性和唯一性。
由于机器人的复杂结构,可能存在多个关节角度组合可以满足末端执行器的位姿要求。
解决逆运动学问题的方法有解析法和数值法两种。
解析法通常是通过代数或几何方法,直接求解关节角度,但是解析法只适用于简单的机器人结构和运动方式。
数值法是通过迭代计算的方式,根据当前位置不断改变关节角度,直到满足末端执行器的位姿要求。
数值法可以用于复杂的机器人结构和运动方式,但是求解时间较长。
二、机器人动力学模型机器人动力学模型是描述机器人运动时受到的力和力矩的模型。
两轮差速运动学模型
两轮差速运动学模型是机器人研究中的一种运动学模型,特别适用于描述基于两轮式
平台的直线和角度运动,他主要用以描述小型移动机器人的运动。
两轮差速模型的基本框架如下所示:它将机器人平台划分为参考坐标系,在这个坐标
系中以X方向代表机器人前进方向,以Y方向代表机器人相对参考位置旁边的方向。
对准
X轴的两个轮子,将其用θ表示,代表两个轮子沿X轴旋转多少,使得机器人前进方向发生变化。
对准Y轴的两个轮子,将其用Δθ表示,代表两个轮子的相对旋转量,从而使
得机器人在Y轴上发生旋转和偏转。
由此,可以建立两轮差速运动学模型,把机器人运动描述为:
〖V_x=(V_r+V⊥_r)cosθ cos(Δθ/2)〗
其中,V_x、V_y、ω分别代表机器人沿X轴、Y轴和Z轴方向上的线速度和角速度;
V_r代表两个轮子沿X轴方向上前进的等速度;V⊥_r代表轴心之间的相对速度;L代表机器人的轴距,θ表示Y轴的旋转角度,Δθ表示Y轴上两轮子的相对旋转角度。
由上面的模型可以看出,两轮平台的运动可以完全在基于X和Y的坐标系中描述,这
使得机器人的运动更加规整、方便、简易,从而增加了机器人智能研究的可用性和准确度。
移动机器人运动控制系统设计的开题报告一、选题背景及意义近年来,移动机器人得到了越来越广泛的应用,从智能巡检、物流配送到医疗护理等领域,移动机器人可以自主地完成一定的任务。
其中,移动机器人运动控制系统是保证其正常运行和高效完成任务的核心部分之一。
因此,移动机器人运动控制系统的设计及研究具有重要的现实意义和应用价值。
本文将针对移动机器人运动控制系统的设计,围绕以下几个方面进行研究:1.针对现有的移动机器人运动控制系统存在的问题,总结其优缺点,提出新的解决方案;2.设计一种基于视觉传感的移动机器人运动控制系统,利用视觉传感器实现机器人的定位和路径规划,提高机器人的运动精度和路径规划效率;3.探究移动机器人的运动学和动力学模型,分析机器人运动的各种因素,建立机器人运动控制系统的数学模型,并进行仿真验证,验证系统的可行性和效果。
二、研究内容1.现有移动机器人运动控制系统问题的总结和分析。
2.基于视觉传感的移动机器人运动控制系统设计,实现机器人定位和路径规划,提高机器人运动精度和路径规划效率。
3.探究移动机器人的运动学和动力学模型,建立机器人运动控制系统的数学模型,进行仿真验证。
4.对系统进行实验验证,分析系统的性能指标和应用效果,完善和改进系统设计。
三、预期成果1.对现有移动机器人运动控制系统的问题进行总结和分析,提出新的解决方案。
2.基于视觉传感的移动机器人运动控制系统的设计与实现,提高机器人运动精度和路径规划效率。
3.建立移动机器人的运动学和动力学模型,掌握机器人运动控制的基本理论。
4.对系统进行仿真验证,验证系统的可行性和效果。
5.对系统进行实验验证,分析系统的性能指标和应用效果,完善和改进系统设计。
四、研究方法和技术路线1.文献研究法:查找和阅读与移动机器人运动控制系统相关的文献资料,对现有系统的缺陷和不足进行总结和分析。
2.方案设计法:设计基于视觉传感的移动机器人运动控制系统,实现机器人定位和路径规划,提高机器人运动精度和路径规划效率。
教案首页课程名称农业机器人任课教师李玉柱第3章机器人运动学和动力学计划学时 3教学目的和要求:1.概述,齐次坐标与动系位姿矩阵,了解平移和旋转的齐次变换;2.机器人的运动学方程的建立与求解*;3.机器人的动力学*重点:1.机器人操作机运动学方程的建立及求解;2.工业机器人运动学方程3.机器人动力学难点:1. 机器人动力学方程及雅可比矩阵基本原理思考题:1.简述齐次坐标与动系位姿矩阵基本原理。
2.连杆参数及连杆坐标系如何建立?3.机器人动力学方程及雅可比矩阵基本原理是什么?第3章机器人运动学和动力学教学主要内容:3.2 齐次坐标与动系位姿矩阵3.3 齐次变换3.4 机器操作机运动学方程的建立与求解3.5 机器人运动学方程3.6 机器人动力学本章将主要讨论机器人运动学和动力学基本问题。
先后引入了齐次坐标与动系位姿矩阵、齐次变换,通过对机器人的位姿分析,介绍了机器人运动学方程;在此基础上有对机器人运动学方程进行了较为深入的探讨。
3.1 概述机器人,尤其是关节型机器人最有代表性。
关节型机器人实质上是由一系列关节连接而成的空间连杆开式链机构,要研究关节型机器人,必须对运动学和动力学知识有一个基本的了解。
分析机器人连杆的位置和姿态与关节角之间的关系,理论称为运动学,而研究机器人运动和受力之间的关系的理论则是动力学。
3.2 齐次坐标与动系位姿矩阵3.2.1 点的位置描述在关节型机器人的位姿控制中,首先要精确描述各连杆的位置。
为此,先定义一个固定的坐标系,其原点为机器人处于初始状态的正下方地面上的那个点,如图3-1(a)所示。
记该坐标系为世界坐标系。
在选定的直角坐标系{A}中,空间任一点P的位置可以用3×1的位置向量A P表示,其左上标表示选定的坐标系{A},此时有A P=XYZ P P P ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦式中:P X、P Y、P Z—点P在坐标系{A}中的三个位置坐标分量,如图3-1(b)。
3.2.2 齐次坐标将一个n维空间的点用n+1维坐标表示,则该n+1维坐标即为n维坐标的齐次坐标....。
机器人运动学机器人运动学是研究机器人运动和姿态变化的一门学科。
它通过分析机器人的构造和动力学参数,研究机器人在特定环境下的运动规律和遵循的动力学约束,以实现机器人的准确控制和运动规划。
本文将从机器人运动学的基本概念、运动学模型、运动学正解和逆解等方面进行介绍。
1. 机器人运动学的基本概念机器人运动学是机器人学中的一个重要分支,主要研究机器人在空间中的运动状态、末端执行器的位置和姿态等基本概念。
其中,运动状态包括位置、方向和速度等;末端执行器的位置和姿态是描述机器人末端执行器在空间中的位置和朝向。
通过研究和分析这些基本概念,可以实现对机器人运动的控制和规划。
2. 运动学模型运动学模型是机器人运动学研究的重要工具,通过建立机器人的运动学模型,可以描述机器人在运动过程中的运动状态和姿态变化。
常见的运动学模型包括平面机器人模型、空间机器人模型、连续关节机器人模型等。
每种模型都有其独特的参数和运动学关系,可以根据实际情况选择合适的模型进行分析和研究。
3. 运动学正解运动学正解是指根据机器人的构造和动力学参数,求解机器人末端执行器的位置和姿态。
具体而言,根据机器人的关节角度、关节长度和连杆长度等参数,可以通过连乘法求解机器人末端执行器的位姿。
运动学正解是机器人运动学中的常见问题,解决这个问题可以帮助我们了解机器人在空间中的运动规律和运动范围。
4. 运动学逆解运动学逆解是指根据机器人末端执行器的位置和姿态,求解机器人的关节角度。
反过来,控制机器人的运动状态就需要求解逆运动学问题。
运动学逆解是机器人运动学研究的重要内容之一,它的解决可以帮助我们实现对机器人的准确定位和控制。
总结:机器人运动学是研究机器人运动和姿态变化的学科,通过运动学模型、运动学正解和运动学逆解等方法,可以描述机器人的运动状态、末端执行器的位置和姿态。
深入研究机器人运动学,可以实现对机器人的准确控制和运动规划。
随着机器人技术的不断发展,机器人运动学的研究也得到了越来越广泛的应用和重视。
全方位移动机器人运动控制及规划的开题报告一、选题背景和意义随着移动机器人技术的不断发展,应用范围日益扩大。
移动机器人的自主导航和运动控制是移动机器人研究领域的核心问题。
移动机器人的自主导航控制与规划离不开机器人的运动学分析及控制方法。
因此,本文将重点研究全方位移动机器人的运动学分析及控制方法,并通过建立完整的全方位移动机器人模型,探讨其运动控制和规划问题,为移动机器人的实际应用提供技术支持。
二、研究目标1. 建立全方位移动机器人的运动学模型,包括机器人的运动学参数和运动学方程。
2. 研究全方位移动机器人的运动控制方法,包括速度控制和姿态控制。
3. 研究全方位移动机器人的路径规划方法,包括局部路径规划和全局路径规划。
4. 设计并实现全方位移动机器人运动控制及规划系统,进行实验验证。
三、研究内容和方法1. 全方位移动机器人的运动学分析:通过分析全方位移动机器人的机械结构,建立全方位移动机器人的运动学模型,计算机器人的运动学参数和运动学方程。
2. 全方位移动机器人的运动控制:采用PID控制等方法,实现机器人的速度控制和姿态控制,使得机器人能够按照预定轨迹运动并保持稳定。
3. 全方位移动机器人的路径规划:对全空间区域进行离散化,构建离散化的环境地图。
采用广度优先搜索算法进行全局路径规划,采用A*算法进行局部路径规划。
4. 全方位移动机器人运动控制及规划系统设计:将机器人的硬件平台和软件系统连接起来,设计全方位移动机器人运动控制及规划系统,并进行系统测试和实验验证。
四、研究预期成果1. 建立全方位移动机器人的运动学模型,计算出运动学方程和机器人的运动学参数。
2. 提出全方位移动机器人的速度控制和姿态控制方法,实现机器人的稳定运动。
3. 提出全方位移动机器人的实时路径规划算法,在全空间区域中实现机器人的全局路径规划以及局部路径规划。
4. 设计实现全方位移动机器人的运动控制及规划系统,并进行系统验证。
五、研究的难点与挑战1. 全方位移动机器人的运动学模型的建立和计算较为复杂,需要针对性的分析和计算。