六年级数学线和角总复习题
- 格式:doc
- 大小:18.67 KB
- 文档页数:3
专项训练8·平面图形一、填空题。
(每小題2分,共24分)1.下图中一共有( )条直线,( )条射线,( )条线段。
2.如图,∠1=75°,那么∠3=( ),如果∠2:∠4=3:2,那么∠2=( );∠4=( )。
第1题图第2题图3.一个平行四边形的面积是12 2cm,与它等底等高的三角形的面积是( )4.一个三角形的三个内角的度数比是1:6:5,则最大的一个内角是( )度,按角分,它是一个( )角三角形。
5.一个直角三角形的三条边分别为6厘米、8厘米、10厘米,它的周长是( )厘米,面积是( )平方厘米。
6.在一个周长为25.12厘米的圆内,画一个最大的正方形,正方形的面积是( )平方厘米。
7.将一个长方形的长和宽都增加6cm,这个长方形的面积就增加1142cm,原来长方形的周长是( )cm。
8.如图,7个完全相同的小长方形刚好拼成1个大长方形,小长方形的长与宽的比是( ),大长方形的长与宽的比是( )。
第8题图第9题图9.右图中长方形的周长是24cm,一个圆的周长是( )cm。
10.一个梯形上底与下底的比是4:9,把下底减少15 cm,就变成一个正方形,这个正方形的面积与原来梯形的面积比是( )。
11.如图,阴影部分的面积是( )平方厘米。
12.如图,平行四边形ABCD的底边BC长5 cm,直角三角形BCE的直角边EC长4cm,已知两块阴影部分的面积和比△EFG的面积大52cm,则CF=( )cm。
第11题图第12题图二、判断题。
(对的画”√”,错的画“×”)(6分)1.角的大小与它的边的长短没有关系。
( )2.在同一平面内,不相交的两条直线一定平行。
( )3.用12.56厘米的铁丝分别鵬成长方形、正方形、圆,面积最大的是正方形。
( )4.一个等腰三角形的一个底角是45°,这个三角形一定是等腰直角三角形。
( )5.一个长方形的长和宽都增加5厘米,它的面积增加25平方厘米。
沪教版(上海)六年级数学第二学期第七章线段与角的画法定向训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若点B 在线段AC 上,2cm AB =,10cm BC =,P 、Q 分别是AB 、BC 的中点,则线段PQ 的长为( )A .3cmB .5cmC .6cmD .8cm2、下列图中的1∠也可以用O ∠表示的是( )A .B .C .D .3、下列说法正确的是( )A .直线2cm AB =B .射线3cm AB =C .直线AB 与直线BA 是同一条直线D .射线AB 与射线BA 是同一条射线4、钟表9时30分时,时针与分针所成的角的度数为( )A .110°B .75°C .105°D .90°5、如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=30°,∠2的大小是( )A .30°B .40°C .50°D .60°6、如图,货轮O 航行过程中,同时发现灯塔A 和轮船B ,灯塔A 在货轮O 北偏东40°的方向,∠AOE =∠BOW ,则轮船B 在货轮( )A .西北方向B .北偏西60°C .北偏西50°D .北偏西40°7、如图,点G 是AB 的中点,点M 是AC 的中点,点N 是BC 的中点,则下列式子不成立的是( )A .MN =GB B .CN =12(AG ﹣GC )C .GN =12(BG +GC ) D .MN =12(AC +GC ) 8、如果一个角的补角是这个角的4倍,那么这个角为( )A .36°B .30°C .144°D .150°9、如果9AB =,4AC =,5BC =,则( )A .点C 在线段AB 上B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .点C 可能在直线AB 上,也可能在直线AB 外10、如图,点O 在直线AB 上,OC OD ⊥,若150AOC ∠=︒,则BOD ∠的大小为( )A .30°B .40°C .50°D .60°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一副三角板按如图所示的方式摆放,且1∠的度数是∠2的3倍,则∠2的度数为________.2、从2020年3月开始,一群野生亚洲象从云南西双版纳傣族自治州走出丛林,一路北上,历经17个月迁徙逾500公里安全返回栖息地,引发国内外一波“观象热潮”.象群北移途经峨山县时,一头亚洲象曾脱离象群.如图,A ,B ,C 分别表示峨山县、象群位置、独象位置.经测量,象群在峨山县的西北方向,独象在峨山县的北偏西1648'︒方向,则∠BAC =_______度_______分.3、把5136'︒化成用度表示的形式,则5136'︒=______度.4、怀柔北部山区的分水岭隧道全长3333米,是我区最长的隧道.建成后有效缩短了我区北部乡镇居民往返怀柔城区的路程.如图,你能用学过的数学知识来解释走分水岭隧道与原盘山路相比缩短路程的原因吗?_________________________________.5、某校八年级在下午4:30开展“阳光体育”活动,下午4:30这一时刻,时钟上分针与时针所夹的角为_____度.三、解答题(5小题,每小题10分,共计50分)CD ,求线段1、如图,B,C两点把线段AD分成2:3:4的三部分,点M为AD的中点,若8cmMC的长.2、已知∠AOD=40°,射线OC从OD出发,绕点O以20°/秒的速度逆时针旋转,旋转时间为t 秒.射线OE、OF分别平分∠AOC、∠AOD.(1)如图①:如果t=4秒,求∠EOA的度数;(2)如图①:若射线OC旋转时间为t(t≤7)秒,求∠EOF的度数(用含t的代数式表示);(3)若射线OC从OD出发时,射线OB也同时从OA出发,绕点O以60°/秒的速度逆时针旋转,射线OC 、OB 在旋转过程中(t ≤3),12COE BOE ∠=∠请你借助图②与备用图进行分析后,(i )求此时t 的值;(ii )EOF BOC ∠∠求的值. 3、已知:点A ,B ,C 在同一条直线上,线段12,3AB BC ==,M 是线段AC 的中点.求,线段AM 的长度.4、如图,点C 是线段AB 上的一点,延长线段AB ,使BD CB =.(1)请依题意补全图形(用尺规作图,保留作图痕迹);(2)若7AD =,3AC =,求线段DB 的长.5、如图,点C 线段AB 上,线段8cm AC ,10cm BC =,点M 、N 分别是线段AC 、BC 的中点.(1)求线段MN 的长度;(2)根据(1)中计算的结果,设AC m =,BC n =,其他条件不变,你能猜想线段MN 的长度吗?-参考答案-一、单选题1、C【分析】根据中点的定义求得BP 和BQ 的长度,从而可得PQ 的长度.【详解】解:如下图,∵2cm AB =,10cm BC =,P 、Q 分别是AB 、BC 的中点, ∴111,522BP AB cm BQ BC cm ====, ∴6PQ BP BQ cm =+=.故选:C .【点睛】本题考查线段的中点的有关计算.能根据题意画出大致图形分析是解题关键.2、A【分析】如果顶点上只有一个角,可以用一个大写字母表示;如果不止一个角,就用三个大写字母表示,若∠1=∠O ,则选项正确.【详解】解:A 中∠1=∠O ,正确,故符合要求;B 中∠1=∠AOB ≠∠O ,错误,故不符合要求;C 中∠1=∠AOC ≠∠O ,错误,故不符合要求;D 中∠1=∠BOC ≠∠O ,错误,故不符合要求;故选A .【点睛】本题考查了角的表示.解题的关键在于正确的表示角.3、C【分析】根据直线、射线、线段的性质对各选项分析判断后利用排除法.【详解】A.直线是向两方无限延伸的,没有大小,所以直线AB=2cm,错误;B.射线是向一方无限延伸的,没有大小,所以射线AB=3cm,错误;C.直线AB与直线BA是同一条直线正确,故本选项正确;D.射线AB的端点是A,射线BA的端点是B,不是同一条射线,故本选项错误.故选:C.【点睛】本题考查了直线、射线与线段的概念的区别,熟练掌握概念是解题的关键.4、C【分析】本题考查了钟表里的旋转角的问题,钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6︒.分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30.也就是说,分针转动360︒时,时针才转动30,即分针每转动1︒,时针才转动1 () 12度,则问题可求解.【详解】解:9时30分时,时针指向9与10之间,分针指向6.钟表12个数字,每相邻两个数字之间的夹角为30,9∴时30分时分针与时针的夹角是3300.530105⨯︒+︒⨯=︒度.故选:C.【点睛】本题考查的是钟表表盘与角度相关的特征.能更好地认识角,感受角的大小.5、D【分析】先由60,130,BAC 求解,EAC 再结合902,EAD EAC 从而可得答案. 【详解】解: 902,601,130,EAD EAC BAC EAC 603030,EAC290903060,EAC 故选D【点睛】本题考查的是角的和差运算,掌握几何图形中角的和差关系是解本题的关键.6、D【分析】根据题意得:∠AON =40°,再由等角的余角相等,可得∠BON =∠AON =40°,即可求解.【详解】解:根据题意得:∠AON =40°,∵∠AOE =∠BOW ,∠AON +∠AOE =90°,∠BON +∠BOW =90°,∴∠BON =∠AON =40°,∴轮船B 在货轮的北偏西40°方向.故选:D【点睛】本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.7、D【分析】由中点的定义综合讨论,一一验证得出结论.【详解】解:A、∵点G是AB的中点,点M是AC的中点,点N是BC的中点,∴GB=12AB,MC=12AC,NC=12BC,∴MN=MC+NC=12AC+12BC=12AB,∴MN=GB,故A选项不符合题意;B、∵点G是AB的中点,∴AG=BG,∴AG-GC=BG-GC=BC,∵NC=12 BC,∴NC=12(AG-GC),故B选项不符合题意;C、∵BG+GC=BN+NC+CG+GC=2CN+2CG=2GN,∴GN=12(BG+GC),故C选项不符合题意;D、∵MN=12AB,AB=AC+CB,∴MN=12(AC+CB),∵题中没有信息说明GC=BC,∴MN=12(AC+GC)不一定成立,故D选项符合题意.故选:D.【点睛】本题主要考查了线段的数量关系和线段中点的定义,要求学生灵活掌握线段之间的计算和应用整体思想解题.8、A【分析】设这个角为x ,则它的补角为180x ︒- ,根据“一个角的补角是这个角的4倍”,列出方程,即可求解.【详解】解:设这个角为x ,则它的补角为180x ︒- ,根据题意得:1804x x ︒-= ,解得:36x =︒ .故选:A【点睛】本题主要考查了补角的性质,一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.9、A【分析】根据线段的数量得到AC+BC=AB ,由此确定点C 与AB 的关系.【详解】解:∵9AB =,4AC =,5BC =,∴AC+BC=AB ,∴点C 在线段AB 上,故选:A .【点睛】此题考查了点与直线的位置关系,正确理解各线段的数量关系是解题的关键.10、D【分析】根据补角的定义求得∠BO C 的度数,再根据余角的定义求得∠BOD 的度数.【详解】解:∵150AOC ∠=︒,∴∠BO C =180°-150°=30°,∵OC OD ⊥,即∠COD =90°,∴∠BOD =90°-30°=60°,故选:D【点睛】本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.二、填空题1、22.5°#22.5度【分析】由题意可知,∠1 与∠2互余,可得1290∠+∠=︒,且132∠=∠ ,即可求出∠2的度数.【详解】解:由题意知1290132∠+∠=︒⎧⎨∠=∠⎩ 解得167.5222.5∠=︒⎧⎨∠=︒⎩ 故答案为:22.5°.【点睛】本题考查了与三角板有关的角度计算.解题的关键是找出角度之间的数量关系.2、28 12【分析】先根据方向角的定义以及利用数形结合即可解答.【详解】解:∠BAC =45°-16°48′=28°12′.3、51.6【分析】根据小单位化成大单位除以进率,可得答案.【详解】解:5136510.651.6'︒=︒+︒=︒,故答案为:51.6.【点睛】本题考查了度分秒的换算,利用小单位化成大单位除以进率是解题关键.4、两点之间,线段最短【分析】依据线段的性质,即可得出结论.【详解】解:走分水岭隧道与原盘山路相比缩短路程,其道理用数学知识解释的是:两点之间,线段最短. 故答案为:两点之间,线段最短.【点睛】本题考查了线段的性质.熟记两点之间线段最短是解决本题的关键.5、45【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:∵四点半的时候,时针指向4和5的中点,分针指向6,∴此时时针与分针相隔1.5个大格数,∴时针与分针的夹角=30°×1.5=45°,故答案为:45.【点睛】本题主要考查了钟面角,解题的关键在于能够熟练掌握4点半时,时针和分针的位置.三、解答题1、线段MC 的长为1cm .【分析】根据已知条件“B 、C 两点把线段AD 分成2:3:4三部分”和“CD =8”易求线段AD =18.然后根据中点的性质知MD =12AD ,则由图中可以得到MC =MD −CD =1.【详解】解:设2AB xcm =,则3BC xcm =,4CD xcm =,AD AB BC CD =++,2349AD x x x x ∴=++= 48CD x ==,2x ∴=,918AD x ∴==.M 是AD 中点,192MD AD ∴==. 981MC MD CD cm ∴=-=-=.答:线段MC 的长为1cm .【点睛】本题考查了两点间的距离.利用中点及其它等分点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2、(1)∠EOA 的度数为60°;(2)∠EOF 的度数为()10t ;(3)(i )t =2;(ii )12EOF BOC ∠=∠ 【分析】(1)根据角分线的定义、旋转的过程即可求解;(2)根据旋转的过程和角分线的定义进行角的计算即可;(3)(i )分两种情况讨论:OB 落在不同位置时进行角的计算即可;(ii )求的t 的值求出度数即可得出比值.【详解】解:(1)如图①,根据题意,得∠DOC =4×20°=80°∴∠AOC =∠AOD +∠DOC =40°+80°=120°,∵射线OE 平分∠AOC , ∴,1602EOA AOC ∠=∠=答:∠EOA 的度数为60°(2)根据题意,得∠COD =(20t )°∴∠AOC =(40+20t )°∵射线OE 、OF 分别平分∠AOC 、∠AOD , ∴()()114020201022EOA AOC t t ∠=∠=+=+ ∠AOF =20°,∴∠EOF =∠AOE ﹣∠AOF =(10t )°,答:∠EOF 的度数为()10t .(1)(i )如图当射线OB 在OE 右边时,()()114020201022COE AOE AOC t t ∠=∠=∠=+=+, ∠BOE =∠AOE ﹣∠AOB =(20+10t -60t )°=(﹣50t +20)°,∵根据题意:10t +20=12⨯(﹣50t +20), 解得t =27-(舍去),当射线OB 在OE 的左边时,()()114020201022COE AOE AOC t t ∠=∠=∠=+=+, ∠BOE =∠AOB-∠AOE =(50t -20)°,∵由题意得:10t +20=12⨯(50t -20), 解得:t =2(ii )当t =2S ,∠EOF =20°,∠BOC =∠BOE -∠COE =40°, ∴12EOF BOC ∠=∠ 【点睛】本题考查了角的计算、角的平分线,解决本题的关键是准确进行角的计算.3、4.5或7.5【分析】根据题意分①当C 在线段AB 上时,②当C 点在线段AB 的延长线上时,先求得AC ,进而根据线段中点的性质求得AM【详解】解:12,3AB BC ==,①当C 在线段AB 上时,∴1239AC AB BC =-=-=M 是线段AC 的中点1 4.52AM AC ∴==②当C 点在线段AB 的延长线上时,12315AC AB BC ∴=+=+=M 是线段AC 的中点17.52AM AC ∴==综上所述,AM 的长度为4.5或7.5【点睛】本题考查了线段的和差计算,中点相关的计算,数形结合、分类讨论是解题的关键.4、(1)作图见解析;(2)2【分析】(1)根据题干的语句作图即可;(2)先求解线段4,CD = 再结合,BC BD = 从而可得答案.【详解】解:(1)如图,线段BD 即为所求作的线段,(2) 7AD =,3AC =,734,CD AD AC,BC BD = 1 2.2BD CD 【点睛】本题考查的是作一条线段等于已知线段,线段的和差倍分关系,掌握“画一条线段等于已知线段”是解本题的关键.5、(1)MN =9cm ;(2)MN =2m n + 【分析】(1)根据点M 、N 分别是AC 、BC 的中点,先求出MC 、CN 的长度,再利用MN =CM +CN 即可求出MN 的长度;(2)根据点M 、N 分别是AC 、BC 的中点,可知CM =12AC ,CN =12BC ,再利用MN =CM +CN 即可求出MN 的长度.【详解】解:(1)∵点M 、N 分别是线段AC 、BC 的中点∴MC =12AC =12×8=4(cm),CN =12BC =12×10=5(cm)∴MN =MC +CN =4cm +5cm =9cm ;(2)∵AC =m ,BC =n∴MC =12m ,CN =12n∴MN =MC +CN =12m +12n即MN =2m n +. 【点睛】本题主要考查线段中点的有关计算,理解线段的中点这一概念,灵活运用线段的和、差、倍、分转化线段之间的数量关系是关键.。
六年级下册数学期末专项复习二——图形与几何总分:100分+20分一、填一填。
(每空1分,共19分)1.过两点可以画( )条直线,过一点可以画( )条射线,过两点可以画( )条线段。
2.等腰梯形有( )条对称轴,等边三角形有( )条对称轴,圆有( )条对称轴,扇形有( )条对称轴。
3.一个三角形的面积是18cm 2,与它等底等高的平行四边形的面积是( )cm 2。
4.将一个圆柱沿着高剪开,展开侧面得到一个长方形。
这个长方形的长等于圆柱的( ),宽等于圆柱的( )。
5.一个圆环,外圆半径是6cm ,内圆半径是4cm ,圆环面积是( )cm 2。
6.两个圆的半径分别是3cm 和5cm ,它们周长的比是( ),面积的比是( )。
7.三角形的内角和是180°,四边形的内角和是( ),八边形的内角和是( )。
8.右图圆柱的表面积是( )cm 2,体积是( )cm 3。
9.一个圆维的体积是123cm 3,和它等底等高的圆柱的体积是( )cm 3。
10.一个立体图形从正面看是,从左面看是,从上面看到的图形是( )(画出图形)二、判一判。
(每题1分,共6分)1.一个三角形中,只要两个内角的度数和小于另一个内角,这个三角形一定是钝角三角形。
( )2.一条直线上的两,点把这条直线分成两条射线和一条线段,所以射线比直线短。
( )3.用棱长为1厘米的小正方体拼成一个大正方体,至少要4个小正方体。
( )4.圆锥的体积是与它等底等高的圆柱体积的13。
( )5.两个面积相等的三角形一定能拼成一个平行四边形。
( )6.把一个直角三角形绕其中一条直角边旋转一周形成的图形是圆锥。
( ) 三、选一选。
(每题1分,共5分)1.拉动一个活动的长方形框架,将它拉成一个平行四边形。
此时,平行四边形的面积与原来的长方形面积相比,( )。
A.平行四边形面积大 B.相等 C.平行四边形面积小 D.无法比较大小2.一个正方形的边长和圆的半径相等,已知正方形的面积是20m 2,则圆的面积是( )m 2。
小学毕业考备考卷(三)班级: 姓名: 1. 45:75=( ):5=()k9(k>0)2. 数对(3,6)表示教室的第3列第6行,小明在第5列第4行,用数对( )表示。
他在我的东偏南30°方向,那么我在他的( )60°方向。
3. 下面是甲、乙两位同学画的同一幢房子,已知甲用的比例尺是1:a ,那么乙用的比例尺用的是( )(图1) (图2)4. 一个空罐(如上图1)可盛9碗水或8杯水。
如果将3碗水和4 )5. 如上图2,大圆锥的底面半径是小圆锥的2倍,高是小圆锥的2倍。
大圆锥的体积是小圆锥的( )倍。
6. 圆锥的体积一定,他的底面积和高成( )比例关系。
7. 已知7x =y ,则x 与y 的最简整数比是( )8. 小瑞所在小组5人的身高和全班同学平均身高的差如下表所示。
已知全班同学平均身高是152cm ,小瑞所在小组的平均身高是( )cm 。
9. 对16和24这两个数的说明,正确的是( )A 、两个数的最大公因数是6B 、两个数的最小公倍数是36C 、16的因数一共有5个D 、24的所有因数是1、2、3、4、6、8、2410. 赵叔叔以v 千米/小时的速度骑车从家去单位,0.5小时后离单位还有2千米。
他家到单位的路程是( )千米。
11. 李老师要将一份1.5G 的文件下载到自己的电脑中(G 表示文件的大小单位)。
他查了一下电脑C 盘和D 盘的属性,发现以下信息:C 盘总容量为9.5G ,已用空间的80%;D 盘已用空间11.7G ,未用空间占10%。
(1)李老师将文件保存在哪个盘比较合适?请列式说明。
(2)这份1.5G 的文件,前4分钟下载了20%,照这样的速度,还要几分钟下载完毕?(用比例解)12. 陈老师家里装修新房子,买了一批瓷砖,第一次运来了全部的,第二次运来了50块,已知这时运来的与没运来的块数之比是5:7,还有多少块砖没有运来?13. 妈妈带100元去超市购物。
六年级下册数学总复习比例表示两个相等的式子叫做比例。
在比例里,两个外项的积等于两个内项。
这叫做《比例的基本性质》根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。
求比例中的未知项,叫做解比例如:某:320=1:1010某=320某1某=320÷10某=32一、负数:1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
二、圆柱和圆锥1、认识圆柱和圆锥,掌握它们的基本特征。
认识圆柱的底面、侧面和高。
认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
三、比例1、理解比例的意义和基本性质,会解比例。
2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育四、统计1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。
2、能根据统计图提供的信息,做出正确的判断或简单预测。
五、数学广角1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过“抽屉原理”的灵活应用感受数学的魅力。
六、整理和复习1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。
能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。
六年级数学总复习NO.1 数的结识练习一、填空。
1、一个数由二十九个亿,四百个万,五个千组成,这个数是(),读作()。
2、中从左到右。
三个6依次表达()、()、()。
3、用三个8,两个0组成一个五位数,一个0也不读出来的是(),只读一个0的是(),两个0都读出来的是()。
4、最大的五位数与最小的三位数的和是(),最小的两位数与最大的三位数的积是(),最大两位数与最大一位数的差是()。
5、三个连续自然数的和是138,这三个连续自然数依次为()、()、()。
6、705300是()位数,最高位是()位,从个位向左第四位上的数字是(),它表达()。
7、上个月,爸爸领取工资1500元,记作+1500元,购买自行车用去588元,记作()元。
8、102分=()小时()分 1.5平方千米=()公顷 30公顷60平方米=()平方米9、一个数由9个百万。
5个十万,9个千,40个十,6个十分之一和5个0.01组成,这个数是(),四舍五入到万位是()。
10、八亿零四百七十万写作(),把它改写成用“万”作单位的数是()。
11、把3.400、0.1、7和15.1800改写成两位小数分别是()、()、( )、( )。
12、把5.12缩小10倍得( ),把0.015扩大100倍得( )。
( )缩小100倍得0.035,( )扩大1000倍得45.13、一个数小数点左边第九位是5,第六位上是4,第五位上是9,其余各位上都是0,这个数写作( ),读作( ),省略“万后面的尾数是( )万,改成“亿”作单位的数是( )亿。
一个小数由6个百,8个一,9个十分之一和8个百分之一组成,这个小数是( ),保存到十分位记作( )。
14、把一个小数的小数点先向右移动两位,在缩小1000倍后是4.02,本来的数是( )。
15、16、把5米长的绳子平均提成8份,每份是5米的( ),每份是1米的( )( ),每份是( )( )米。
17、78公斤既可以当作是把1公斤平均提成( )份,表达其中的( )份,也可以当作是把7公斤平均提成( )份,表达其中的( )份。
1 小学六年级数学复习资料 六年级数学---数与代数 一、填空我能行,全部填对才真行; 1. 60606000是一个 位数,这个数读作 ;从左往右数第二个6在 位上,第三个6表示6个 ;
2. 错误!:错误!可化简为 ,比值是 ; 3. 一个两位数既是5的倍数,也是3的倍数,而且是偶数,这个数最小是 ,最大是 ; 4. 0.25= ÷ =2∶ =错误!= % 5.我国香港特别行政区的总面积是十一亿零四百万平方米,写作 平方米,改写成用“万平方米”作单位 ; 6.三个连续偶数的和是36,这三个偶数是 、 和 ; 7.观察并完成序列:0、1、3、6、10、 、21、 ; 8.20以内不是偶数的合数是 ,不是奇数的质数是 ;
9. 在一条长50米的大路两旁,每隔5米栽一棵树两端都要栽,一共可栽 棵树; 10.如果a和b是不为0的两个连续自然数,那么a、b的最小公倍数是 ,最大公因数是 ; 11.将一条错误!米长的绳子平均截成5段,每段占这条绳子的错误!,每段长 米; 12.一个比例的两个内项互为倒数,一个外项是81,另一个外项是 ; 13.把0.4·5·、46%、0.45·、错误!按从大到小的顺序排列为 ; 14.被减数减去减数,差是0.4,被减数、减数与差的和是2,减数是 ; 二、判断我也行,包公断案最分明; 1.分母是8的最简真分数有4个; 2.一个自然数不是质数,就是合数; 3. 4100÷800=41÷8=5……1; 4.比例尺是1:500,表示图上1厘米代表实际距离的500米; 2
5.错误!里面有3个0.1 6.含有未知数的式子就是方程; 7. 错误!不能化成有限小数; 8. 12÷3=4,所以12是倍数,3是因数; 三、选择我更行,去伪存真心里明; 1.下列说法正确的是 ; A.0是最小的数 B.0既是正数又是负数 C.负数比正数小 D.数轴上-4在-7的左边 2.出油率一定,香油的质量和芝麻的质量 ; A.成正比例 B.成反比例 C.不成比例 D.无法确定 3.商店里九五折出售的商品,比原价 ; A.提高5% B.降低5% C.提高95% D.降低95% 4.一个两位数,个位上的数字是5,十位上的数字是a,表示这个两位数的式子是 ; A.50+a B.5+a C.5+10a D.15a
小学毕业考备考卷(三)班级: 姓名: 1. 45:75=( ):5=()k9(k>0)2. 数对(3,6)表示教室的第3列第6行,小明在第5列第4行,用数对( )表示。
他在我的东偏南30°方向,那么我在他的( )60°方向。
3. 下面是甲、乙两位同学画的同一幢房子,已知甲用的比例尺是1:a ,那么乙用的比例尺用的是( )(图1) (图2)4. 一个空罐(如上图1)可盛9碗水或8杯水。
如果将3碗水和4 )5. 如上图2,大圆锥的底面半径是小圆锥的2倍,高是小圆锥的2倍。
大圆锥的体积是小圆锥的( )倍。
6. 圆锥的体积一定,他的底面积和高成( )比例关系。
7. 已知7x =y ,则x 与y 的最简整数比是( )8. 小瑞所在小组5人的身高和全班同学平均身高的差如下表所示。
已知全班同学平均身高是152cm ,小瑞所在小组的平均身高是( )cm 。
9. 对16和24这两个数的说明,正确的是( )A 、两个数的最大公因数是6B 、两个数的最小公倍数是36C 、16的因数一共有5个D 、24的所有因数是1、2、3、4、6、8、2410. 赵叔叔以v 千米/小时的速度骑车从家去单位,0.5小时后离单位还有2千米。
他家到单位的路程是( )千米。
11. 李老师要将一份1.5G 的文件下载到自己的电脑中(G 表示文件的大小单位)。
他查了一下电脑C 盘和D 盘的属性,发现以下信息:C 盘总容量为9.5G ,已用空间的80%;D 盘已用空间11.7G ,未用空间占10%。
(1)李老师将文件保存在哪个盘比较合适?请列式说明。
(2)这份1.5G 的文件,前4分钟下载了20%,照这样的速度,还要几分钟下载完毕?(用比例解)12. 陈老师家里装修新房子,买了一批瓷砖,第一次运来了全部的,第二次运来了50块,已知这时运来的与没运来的块数之比是5:7,还有多少块砖没有运来?13. 妈妈带100元去超市购物。
沪教版(上海)六年级数学第二学期第七章线段与角的画法难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一副直角三角板如图所示摆放,则图中ADC ∠的大小为( )A .75°B .120°C .135°D .150°2、将一副三角板的直角顶点重合放置于A 处(两块三角板可以在同一平面内自由动),下列结论一定成立的是( )A .BAE DAC ∠>∠B .45BAE DAC ∠-∠=︒C .180BAE DAC ∠+∠=︒D .BAD EAC ∠≠∠3、若∠α=73°30',则∠α的补角的度数是( )A .16°30'B .17°30'C .106°30'D .107°30'4、如图,货轮O 航行过程中,同时发现灯塔A 和轮船B ,灯塔A 在货轮O 北偏东40°的方向,∠AOE =∠BOW ,则轮船B 在货轮( )A .西北方向B .北偏西60°C .北偏西50°D .北偏西40°5、如图,从A 到B 有4条路径,最短的路径是③,理由是( )A .因为③是直的B .两点确定一条直线C .两点间距离的定义D .两点之间线段最短6、如图,一副三角板(直角顶点重合)摆放在桌面上,若150BOC ︒∠=,则AOD ∠等于()A .30︒B .45︒C .50︒D .60︒7、如图,∠AOC 和∠BOD 都是直角,如果∠DOC =38°,那么∠AOB 的度数是( )A .128°B .142°C .38°D .152°8、建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是( )A .两点之间,线段最短B .过一点有且只有一条直线和已知直线平行C .垂线段最短D .两点确定一条直线9、已知线段AB =8cm ,BC =6cm ,点M 是AB 中点,点N 是BC 中点,将线段BC 绕点B 旋转一周,则点M 与N 的距离不可能是( )A .1B .6C .7D .810、如图,一副三角尺按不同的位置摆放,下列摆放方式中α∠与β∠相等的是( ).A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知M 是线段AB 的中点,N 是线段MB 的中点,若NB =2cm ,则AB =______.2、点CD 都在线段AB 上,且AB =30,CD =12,E ,F 分别为AC 和BD 的中点,则线段EF 的长为 _____ .3、如图,点A 在点O 的北偏西60°的方向上,点B 在点O 的南偏东25°的方向上,那么AOB ∠的大小为________°.4、如图,C 为线段AB 上一点,18AB =,10AC =,D ,E 分别是AB ,AC 的中点,则DE 的长为______.5、如图,AO BO ⊥,CO DO ⊥.则图中与BOC ∠互补的角是______.三、解答题(5小题,每小题10分,共计50分)1、已知,(0180)AOB αα︒︒∠=<<,(0180)COD ββ︒︒∠=<<.(1)如图1,当αβ=时,作OE 平分BOC ∠,与AOE ∠相等的角是________;(2)如图2,当180αβ︒+=时,作OE 平分AOC ∠,OF 平分BOD ∠.求EOF ∠的度数;(3)如图3,作OE 平分AOC ∠,OF 平分BOD ∠.若45EOF ︒∠=,直接写出α与β满足的数量关系.2、如图,已知不在同一条直线上的三点A ,B ,C .(1)延长线段BA 到点D ,使得AD AC AB =+(用尺规作图,保留作图痕迹);(2)若∠CAD 比∠CAB 大100︒,求∠CAB 的度数.3、(1)如图1,将一副直角三角尺的直角顶点C 叠放在一起,经探究发现∠ACB 与∠DCE 的和不变.证明过程如下:由题可知∠BCE =∠ACD =90°∴∠ACB = +∠BCD .∴∠ACB =90°+∠BCD .∴∠ACB +∠DCE=90°+∠BCD +∠DCE=90°+∠BCE∵∠BCE =90°,∴∠ACB +∠DCE = .(2)如图2,若将两个含有60°的三角尺叠放在一起,使60°锐角的顶点A 重合,则∠DAB 与∠CAE 有怎样的数量关系,并说明理由;(3)如图3,已知∠AOB =α,∠COD =β(α,β都是锐角),若把它们的顶点O 重合在一起,请直接写出∠AOD 与∠BOC 的数量关系.4、已知:OC ,OD 是∠AOB 内部的射线,OE 平分∠AOC ,OF 平分∠BOD .(1)若∠AOB =120°,∠COD =30°,如图①,求∠EOF 的度数;(2)若∠AOB =α,∠COD =β,如图②、图③,请直接用含α、β的式子表示∠EOF 的大小.5、已知A ,M ,N ,B 为同一条直线上顺次4个点,若:5:2AM MN =,12NB AM -=,24AB =,求BM 的长.-参考答案-一、单选题1、C【分析】根据题意得:∠ADB =45°,∠BDC =90°,从而得到∠ADC =∠ADB +∠BDC =135°,即可求解.【详解】解:根据题意得:∠ADB =45°,∠BDC =90°,∴∠ADC =∠ADB +∠BDC =45°+90°=135°.故选:C【点睛】本题主要考查了直角三角板中角的计算,熟练掌握一副直角三角板中每个角的度数是解题的关键.2、C【分析】根据直角的性质及各角之间的数量关系结合图形求解即可.【详解】解:∵直角三角板,∴90BAC DAE ∠=∠=︒,∴180BAE BAD BAE EAC ∠+∠+∠+∠=︒,即180BAE DAC ∠+∠=︒.故选:C .【点睛】题目主要考查角度的计算,结合图形,找准各角之间的数量关系是解题关键.3、C【分析】根据补角的定义可知,用180°﹣73°30'即可,【详解】解:∠α的补角的度数是180°﹣73°30'=106°30′.故选:C.【点睛】本题考查角的度量及补角的定义,解题关键是掌握补角的定义.4、D【分析】根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.【详解】解:根据题意得:∠AON=40°,∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,∴∠BON=∠AON=40°,∴轮船B在货轮的北偏西40°方向.故选:D【点睛】本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.5、D【分析】根据两点之间,线段最短即可得到答案.【详解】解:∵两点之间,线段最短,∴从A 到B 有4条路径,最短的路径是③,故选D .【点睛】本题主要考查了两点之间,线段最短,熟知两点之间,线段最短是解题的关键.6、A【分析】由三角板中直角三角尺的特征计算即可.【详解】∵COD △和AOB 为直角三角尺∴90COD ︒∠=,90AOB ︒∠=∴BOC COD BOC AOB ∠-∠=∠-∠∴1509060AOC BOD ∠=∠=︒-︒=︒∴906030AOD BOA BOD ∠=∠-∠=︒-︒=︒故选:A .【点睛】本题考查了三角板中的角度运算,直角三角板的角度分别为90°,45°,45°和90°,60°,30°.7、B【分析】首先根据题意求出52AOD ∠=︒,然后根据AOB AOD BOD ∠=∠+∠求解即可.【详解】解:∵∠AOC 和∠BOD 都是直角,∠DOC =38°,∴903852AOD AOC DOC ∠=∠-∠=︒-︒=︒,∴5290142AOB AOD BOD ∠=∠+∠=︒+︒=︒.故选:B .【点睛】此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出AOD ∠的度数.8、D【分析】根据两点确定一条直线解答即可;【详解】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是两点确定一条直线;故选:D【点睛】本题考查了两点确定一条直线的应用,正确理解题意、掌握解释的方法是关键.9、D【分析】正确画出的图形,在画图时,应考虑到A 、B 、C 三点之间的位置关系的多种可能,求出线段MN 的长度的最大和最小值即可.【详解】解:∵AB =8cm ,BC =6cm ,点M 是AB 中点,点N 是BC 中点,第一种情况:B 在AC 上,线段MN 的长度最大,最大值为:MN =12AB +12BC =7;第二种情况:B 在AC 延长线上,线段MN 的长度最小,最小值为:则MN =12AB ﹣12BC =1.故选:D【点睛】本题考查了两点间的距离,解题关键是求出线段MN 的长度的最大和最小值.10、C【分析】根据同角的余角相等,补角定义,和平角的定义、三角形内角和对各小题分析判断即可得解.【详解】解:A 、α∠+β∠=180°−90°=90°,互余; B 、α∠+β∠=60°+30°+45°=135°;C 、根据同角的余角相等,可得α∠=β∠;D 、α∠+β∠=180°,互补;故选:C .【点睛】本题考查了余角和补角、三角形内角和,是基础题,熟记概念与性质是解题的关键.二、填空题1、8cm【分析】根据线段中点的性质求解即可.【详解】解:∵N是线段MB的中点,∴24cm==MB NB∵M是线段AB的中点,∴28cm==AB MB故答案为:8cm.【点睛】本题主要考查了线段中点的有关计算,准确分析利用数形结合的思想计算是解题的关键.2、21【分析】根据线段的和差,可得(AC+DB),根据线段中点的性质,可得(AE+BF),再根据线段的和差,可得答案.【详解】解:如图,AC+DB=AB﹣CD=30﹣12=18.由点E是AC的中点,点F是BD的中点,得(AC+DB)=9.∴AE+BF=12EF=AB﹣(AE+BF)=30﹣9=21.如图,AC+DB=AB+CD=30+12=42.由点E 是AC 的中点,点F 是BD 的中点,得∴AE +BF =12 (AC +DB )=21. EF =AB ﹣(AE +BF )=30﹣21=9.故答案为:21或9.【点睛】本题考查了求线段长,利用线段的和差得出(AE +BF )是解题关键.3、145【分析】如图(见解析),先根据方位角的定义可得160∠=︒,325∠=︒,再根据角的和差即可得.【详解】如图,由题意得:160∠=︒,325∠=︒,a b ⊥,290130∴∠=︒-∠=︒,490∠=︒243309025145AOB ∴∠=∠+∠+∠=︒+︒+︒=︒,故答案为:145..【点睛】本题考查了方位角的定义、角的和差,熟练掌握方位角的定义是解题关键.4、故答案为:28,【点睛】本题考查的是方向角的概念,根据方向角的表示方法画出图形,利用数形结合进行求解是解答此题的关键.12.4【分析】由D ,E 分别是AB ,AC 的中点,先求解,,AD AE 再利用,DEAD AE 从而可得答案.【详解】 解: 18AB =,10AC =,D ,E 分别是AB ,AC 的中点,119,5,22AD BD AB AE CE AC 95 4.DE AD AE故答案为:4【点睛】本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的中点与和差关系求解未知线段的长度”是解本题的关键.5、AOD ∠【分析】利用互补的定义得出与BOC ∠互补的角.【详解】解:∵AO BO ⊥,CO DO ⊥,∴90AOC BOC ∠+∠=,90BOD BOC ∠+∠=,∴()180AOC BOC BOD BOC ∠+∠+∠+∠=,即180AOD BOC ∠+∠=∴与BOC ∠互补的角是: AOD ∠故答案为: AOD ∠【点睛】本题考查了补角的概念和垂直的定义,如果两个角的和等于180°(平角),就说这两个角互为补角,简称“互补”,即其中一个角是另一个角的补角.三、解答题1、(1)DOE ∠;(2)90°;(3)90αβ︒+=.【分析】(1)当αβ=时,可得=AOC BOD ∠∠,再由OE 平分BOC ∠得到角度相等,最后表示出AOE ∠,即可找到相等角;(2)根据=EOF AOD EOA DOF ∠∠-∠-∠计算即可;(3)根据=45EO O OF C F E C ︒∠+∠=∠计算即可;【详解】解:(1)∵当αβ=时,∴AOB COD ∠=∠∴AOB BOC COD BOC ∠-∠=∠-∠即=AOC BOD ∠∠∵OE 平分BOC ∠∴EOB COE ∠=∠∵AOE AOC COE ∠=∠+∠∴AOE AOC COE BOD BOE DOE ∠=∠+∠=∠+∠=∠故答案为:DOE ∠.(2)OE 平分AOC ∠,OF 平分BOD ∠,2AOC EOC ∴∠=∠,2BOD BOF ∠=∠.180αβ︒+=,180AOB COD ︒∴∠+∠=.AOB AOC BOC ∠=∠+∠,COD BOC BOD ∠=∠+∠,180AOC BOC BOC BOD ︒∴∠+∠+∠+∠=.2180AOC BOC BOD ︒∴∠+∠+∠=.222180EOC BOC BOF ︒∴∠+∠+∠=.90EOC BOC BOF ︒∴∠+∠+∠=.90EOF ︒∴∠=.(3)OE 平分AOC ∠,OF 平分BOD ∠,12EOC AOC ∴∠=∠,12DOF BOD ∠=∠.. ∵45EOF ︒∠=∴45EOC COF ︒∠+∠= ∵12COF BOF BOC DOB BOC ∠=∠-∠=∠-∠ ∴114522AOC DOB BOC ︒∠+∠-∠= AOC AOB BOC ∠=∠-∠,BOD COD BOC ∠=∠-∠, ∴()()114522AOB BOC COD BOC BOC ︒∠+∠+∠+∠-∠= ∴11()45()22AOB COD αβ︒∠+∠==+ ∴90αβ︒+=.【点睛】本题考查角度计算,解题的关键是根据图形表示出要求得角度再根据已知条件进行推导.2、(1)见解析,(2)40°【分析】(1)先画射线BA ,在BA 延长线上截取AE =AC ,然后在线段AE 的延长线上截取ED =AB ;(2)利用邻补角的定义得到∠CAD +∠CAB =180°,再加上已知条件∠CAD ﹣∠CAB =100°,然后通过解方程组得到∠CAB 的度数.【详解】解:(1)如图,线段AD为所作;(2)∵∠CAD﹣∠CAB=100°,∠CAD+∠CAB=180°,∴100°+∠CAB+∠CAB=180°,2∠CAB=80°,∴∠CAB=40°.【点睛】本题题考查了画线段和求角度,解题关键是熟练掌握几何作图,明确角之间的数量关系.3、(1)∠ACD,180°;(2)∠DAB+∠CAE=120°,见解析;(3)∠AOD+∠BOC=β+α【分析】(1)结合图形把∠ACB与∠DCE的和转化为∠ACD与∠BCE的和;(2)结合图形把∠DAB与∠CAE的和转化为∠DAC与∠EAB的和;(3)结合图形把∠AOD与∠BOC的和转化为∠AOB与∠COD的和.【详解】解:(1)由题可知∠BCE=∠ACD=90°,∴∠ACB=∠ACD+∠BCD,∴∠ACB=90°+∠BCD,∴∠ACB+∠DCE=90°+∠BCD+∠DCE=90°+∠BCE,∵∠BCE =90°,∴∠ACB +∠DCE =180°,故答案为:∠ACD ,180°;(2)∠DAB +∠CAE =120°,理由:由题可知∠DAC =∠EAB =60°,∴∠DAB =∠DAC +∠CAB ,∴∠DAB =60°+∠CAB ,∴∠DAB +∠CAE=60°+∠CAB +∠CAE=60°+∠EAB ,∵∠EAB =60°,∴∠DAB +∠CAE =120°;(3)∵∠AOB =α,∠COD =β,∴∠AOD =∠COD +∠AOC =β+∠AOC ,∴∠AOD +∠BOC=β+∠AOC +∠BOC=β+∠AOB=β+α.【点睛】本题考查了余角和补角,根据题目的已知条件并结合图形找角与角之间的关系是解题的关键.4、(1)75︒(2)22αβαβ+-,【分析】(1)根据角平分线的定义可得,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,根据120AOB DOF FOB COD AOE COE ∠=∠+∠+∠+∠+∠=︒建立方程求得45x y +=︒,进而根据EOF EOC COD DOF ∠=∠+∠+∠即可求得EOF ∠(2)方法同(1)根据题意可得图②:22x y βα++=,进而根据EOF EOC COD DOF ∠=∠+∠+∠即可求得EOF ∠,图③:22x y βα++=进而根据EOF EOC COD DOF ∠=∠-∠+∠即可求得EOF ∠,【详解】解:(1) OE 平分∠AOC ,OF 平分∠BOD .∴,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,120AOB DOF FOB COD AOE COE ∠=∠+∠+∠+∠+∠=︒,∠COD =30°,即2230120x y ++︒=︒45x y ∴+=︒∴EOF EOC COD DOF ∠=∠+∠+∠30453075x y =++︒=︒+︒=︒(2) OE 平分∠AOC ,OF 平分∠BOD .∴,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,AOB COD αβ∠∠=,=,如图②即AOB DOF FOB COD AOE COE α∠=∠+∠+∠+∠+∠=22x y βα∴++=2x y αβ-∴+=∴EOF EOC COD DOF ∠=∠+∠+∠22x y αβαβββ-+=++=+=∴EOF ∠=2αβ+如图③AOB DOF FOB COD AOE COE α∠=∠+∠-∠+∠+∠=22x y βα∴+-=2x y αβ+∴+=∴EOF EOC COD DOF ∠=∠-∠+∠22x y αβαβββ+-=+-=-=∴EOF ∠=2αβ-【点睛】本题考查了几何图形中角度计算,角平分线的意义,掌握角度的计算是解题的关键.5、19【分析】设AM =5x ,MN =2x ,则NB =12+5x ,根据AB =24,可得关于x 的方程,解方程求出x 的值,再根据BM =AB −AM 即可求解.【详解】解:设5AM x =,则2MN x =.∵12NB AM -=,∴125NB x =+.∵24AB =,∴24AM MN NB ++=,即5212524x x x +++=,解得1x =.∴212519BM MN BN x x =+=++=.【点睛】本题考查了两点间的距离,一元一次方程的应用,解答本题关键是熟练掌握方程思想,属于基础题.。
沪教版(上海)六年级数学第二学期第七章线段与角的画法章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB =24,C 为AB 的中点,点D 在线段AC 上,且AD :CB =1:3,则DB 的长度是( )A .12B .15C .18D .202、已知100AOB ∠=︒,过点O 作射线OC 、OM ,使20AOC ∠=︒、OM 是BOC ∠的平分线,则BOM ∠的度数为( )A .60︒B .60︒或40︒C .120︒或80︒D .40︒3、如图,将三个相同的正方形的一个顶点重合放置,30BAC ︒∠=,35DAE ︒∠=,那么1∠的度数为( )A .20︒B .25︒C .30︒D .35︒4、下列说法不正确的是( )A .两点确定一条直线B .经过一点只能画一条直线C .射线AB 和射线BA 不是同一条射线D .若∠1+∠2=90°,则∠1与∠2互余5、如图,点O 在直线AB 上,OC OD ⊥,若150AOC ∠=︒,则BOD ∠的大小为( )A .30°B .40°C .50°D .60°6、建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是( )A .两点之间,线段最短B .过一点有且只有一条直线和已知直线平行C .垂线段最短D .两点确定一条直线7、下列说法正确的是( )A .画一条长2cm 的直线B .若OA =OB ,则O 是线段AB 的中点C .角的大小与边的长短无关D .延长射线OA 8、如图,O 为直线AB 上的一点,OC 平分AOD ∠,50AOC ∠=︒,3BOE DOE ∠=∠,则DOE ∠的度数为( )A .20°B .18°C .60°D .80°9、下列说法正确的是( )A .若10x +=,则1x =B .若1a >,则1a >C .若点A ,B ,C 不在同一条直线上,则AC BC AB +>D .若AM BM =,则点M 为线段AB 的中点10、已知60AOB ∠=︒,自AOB ∠的顶点O 引射线OC ,若:1:4AOC AOB ∠∠=,那么BOC ∠的度数是( )A .48°B .45°C .48°或75°D .45°或75°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点C ,D 在线段BE 上(C 在D 的左侧),点A 在线段BE 外,连接AB ,AC ,AD ,AE ,已知∠BAE = 120°,∠CAD = 60°,有下列说法:①直线CD 上以B ,C ,D ,E 为端点的线段共有6条;②作∠BAM =12∠BAD ,∠EAN =12∠EAC .则∠MAN =30°;③以A 为顶点的所有小于平角的角的度数和为420°;④若BC =2,CD =DE =3,点F 是线段BE 上任意一点,则点F 到点B ,C ,D ,E 的距离之和最大值为17,最小值为11.其中说法正确的有 _____ .(填上所有正确说法的序号)2、如图,将三个边长相同的正方形的一个顶点重合放置,已知135∠=︒,232∠=︒,则3∠=______.3、如图,线段AC : CB = 2 : 3, AD : DB = 5 : 6, CD =3, 则线段AB 的长度为 ________ .4、计算:15374211=''︒+︒___. 5、如图,已知M 是线段AB 的中点,N 是线段MB 的中点,若NB =2cm ,则AB =______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知不在同一条直线上的三点A ,B ,C .(1)延长线段BA 到点D ,使得AD AC AB =+(用尺规作图,保留作图痕迹);(2)若∠CAD 比∠CAB 大100︒,求∠CAB 的度数.2、点A,B,C在直线l上,若AB=4cm,BC=3cm,点O是线段AC的中点,那么线段OB的长是多少?小明同学根据下述图形对这个题目进行了求解:∵A,B,C三点顺次在直线l上,∴AC=AB+BC,∵AB=4cm,BC=3cm,∴AC=7cm,又∵点O为线段AC的中点,∴AO=12AC=12×7=3.5cm,∴OB=AB﹣AO=4﹣3.5=0.5cm.小明考虑得全面吗?如果不全面,请补全解题过程,如果全面,请说明理由.3、在数轴上有A,B,C,M四点,点A表示的数是-1,点B表示的数是6,点M位于点B的左侧并与点B的距离是5,M为线段AC的中点.(1)画出点M,点C,并直接写出点M,点C表示的数;(2)画出在数轴上与点B的距离小于或等于5的点组成的图形,并描述该图形的特征;(3)若数轴上的点Q 满足14QA QC =,求点Q 表示的数. 4、将一副直角三角尺按如图所示的方式将直角顶点C 叠放在一起.(1)若35DCE ∠=︒,则ACB =∠______,若140ACB ∠=︒,则DCE ∠=______;(2)猜想ACB ∠与DCE ∠之间的数量关系,并说明理由;(3)探究:若保持三角尺BCE 不动,三角尺ACD 的边CD 与CB 边重合,然后将三角尺ACD 绕点C 按逆时针方向任意转动一个角度BCD ∠.设()0180BCD a a =︒<<∠︒,ACB ∠能否是DCE ∠的4倍?若能,求出a 的值;若不能.请说明理由.5、如图,已知三点A 、B 、C .(1)连接AC .(2)画直线BC .(3)画射线AB .-参考答案-一、单选题1、D【分析】根据线段中点的定义可得BC=12AB,再求出AD,然后根据DB=AB-AD代入数据计算即可得解.【详解】解:∵AB=24,点C为AB的中点,∴BC=12AB=12×24=12,∵AD:CB=1:3,∴AD=13×12=4,∴DB=AB-AD=24-4=20.故选:D.【点睛】本题考查了两点间的距离,掌握线段中点的性质、灵活运用数形结合思想是解题的关键.2、B【分析】考虑线段OC在角的内部和外部两种情况,每一种情况都用角的定义和角平分的定义求解,经计算结果为20°或40°.【详解】解:当OC在∠AOB的内部时,如图所示:∵∠AOC=20°,∠AOB=100°,∴∠BOC=100°﹣20°=80°,又∵OM是∠BOC的平分线,∴∠BOM=12BOC∠=40°;当OC在∠AOB的外部时,如图所示:∵∠AOC=20°,∠AOB=100°,∴∠BOC=100°+20°=120°,又∵OM是∠BOC的平分线,∴∠BOM=12BOC∠=60°;综合所述∠BOM的度数有两个,为60°或40°;故选:B.【点睛】本题综合了角平分线定义和角的和差知识,重点掌握角的计算,难点是分类计算角的大小.3、B【分析】由30∠=求出∠DAH=55°,根据DAE︒∠=,∠BAG=90°,求出∠CAG,由∠EAH=90°,35BAC︒∠1=∠DAH+∠CAG-∠CAD求出答案.【详解】解:∵30∠=,∠BAG=90°,BAC︒∴∠CAG=60°,∵∠EAH=90°,35∠=,DAE︒∴∠DAH=55°,∵∠CAD=90°,∴∠1=∠DAH+∠CAG-∠CAD=25°,故选:B.【点睛】此题考查了正方形的性质,几何图形中角度的计算,正确掌握各角度之间的关系是解题的关键.4、B【分析】根据两点确定一条直线,即可判断A;根据过一点可以画无数条直线可以判断B;根据射线的表示方法即可判断C;根据余角的定义,可以判断D.【详解】解:A 、两点确定一条直线,说法正确,不符合题意;B 、过一点可以画无数条直线,说法错误,符合题意;C 、射线AB 和射线BA 不是同一条射线,说法正确,不符合题意;D 、若∠1+∠2=90°,则∠1与∠2互余,说法正确,不符合题意;故选B .【点睛】本题主要考查了两点确定一条直线,;过一点可以画无数条直线,射线的表示方法余角的定义,熟知相关知识是解题的关键.5、D【分析】根据补角的定义求得∠BO C 的度数,再根据余角的定义求得∠BOD 的度数.【详解】解:∵150AOC ∠=︒,∴∠BO C =180°-150°=30°,∵OC OD ⊥,即∠COD =90°,∴∠BOD =90°-30°=60°,故选:D【点睛】本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.6、D【分析】根据两点确定一条直线解答即可;【详解】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是两点确定一条直线;故选:D【点睛】本题考查了两点确定一条直线的应用,正确理解题意、掌握解释的方法是关键.7、C【分析】根据线段的长度、两点间的距离、角的概念对各个选项进行判断即可.【详解】解:A 、直线是无限长的,直线是不可测量长度的,所以画一条2cm 长的直线是错误的,故本选项不符合题意;B 、若OA =OB ,则O 不一定是线段AB 的中点,故本选项不符合题意;C 、角的大小与边的长短无关,故本选项符合题意;D 、延长射线OA 说法错误,射线可以向一个方向无限延伸,故本选项不符合题意;故选:C .【点睛】此题主要考查线段的长度、两点间的距离、角的性质与特点,解题的关键是熟知各自的性质特点进行分析判断.8、A【分析】根据角平分线的定义得到COD ∠,从而得到BOD ∠,再根据3BOE DOE ∠=∠可得4BOD DOE ∠=∠,即可求出结果.【详解】解:∵OC 平分AOD ∠,∴50AOC COD ∠=∠=︒,∴18025080BOD ∠=︒-⨯︒=︒,∵3BOE DOE ∠=∠,∴4BOD DOE ∠=∠, ∴1204DOE BOD ∠=∠=︒,故选:A .【点睛】本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键.9、C【分析】根据解方程、绝对值、线段的中点等知识,逐项判断即可.【详解】解:A. 若10x +=,则1x =-,原选项错误,不符合题意;B. 若1a >,则1a >或1a <-,原选项错误,不符合题意;C. 若点A ,B ,C 不在同一条直线上,则AC BC AB +>,符合题意;D. 若AM BM =,则点M 为线段AB 的中点,当A 、B 、M 不在同一直线上时,点M 不是线段AB 的中点,原选项错误,不符合题意;故选:C .【点睛】本题考查了解方程、绝对值、线段的中点等知识,解题关键是熟记相关知识,准确进行判断.10、D【分析】:1:4AOC AOB ∠∠=可知AOC ∠的值;所引射线OC 有两种情况①在AOB ∠内,此时BOC AOB AOC ∠=∠-∠;②在AOB ∠外,此时BOC AOB AOC ∠=∠+∠.【详解】解::1:4AOC AOB ∠∠=,60AOB ∠=︒15AOC ∴∠=︒①在AOB ∠外BOC AOB AOC ∠=∠+∠601575BOC ∴∠=︒+︒=︒②在AOB ∠内BOC AOB AOC ∠=∠-∠601545BOC ∴∠=︒-︒=︒BOC ∴∠为45︒或75︒故选D .【点睛】本题考查了角的和与差.解题的关键在于确定射线的位置.二、填空题1、①③④【分析】①按照一定的顺序数出线段的条数即可;②图中互补的角就是分别以C 、D 为顶点的两对邻补角,由此即可确定选择项;③根据角的和与差计算即可;④分两种情况探讨:当F 在线段CD 上最小,点F 和E 重合最大计算得出答案即可.【详解】解:①以B 、C 、D 、E 为端点的线段BC 、BD 、BE 、CE 、CD 、DE 共6条,故①正确;②如图所示,当AM 、AN 在三角形外部时,∠BAD +∠EAC=120°+60°=180°,∠BAM +∠EAN =12∠BAD+1∠EAC=90°,∠MAN=360°-120°-90°=150°.2∠MAN≠30°;故②不正确;③由∠BAE=120°,∠DAC=60°,根据图形则有∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=120°+120°+120°+60°=420°,故③正确;④当F在线段CD上,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=11,当F和E重合,则点F到点B、C、D、E的距离之和最大为FB+FE+FD+FC=8+0+6+3=17,故④正确.故答案为:①③④.【点睛】此题分别考查了线段、角的和与差以及角度的计算,解题时注意:互为邻补角的两个角的和为180°.2、23°【分析】由题意得∠1+∠2+90°=90°+90°−∠3,从而求得∠3.【详解】解:由题意得:∠1+∠2+90°=90°+90°−∠3.∵∠1=35°,∠2=32°,∴35°+32°+90°=180°−∠3.∴∠3=23°.故答案为:23.【点睛】本题主要考查角的和差关系,熟练掌握角的和差关系是解决本题的关键.3、55【分析】设AB=x,根据比值分别表示出AC、AD的长,然后根据AD-AC=CD列出关于x的方程,解出方程即可.【详解】解:设AB=x,∵AC:CB = 2 : 3,AD:DB = 5 : 6,CD=3,∴2255AC AB x==,551111AD AB x==,∵AD-AC=CD,即523 115x x-=,3355x=,解得:55x=故答案为:55【点睛】本题考查了线段之间的和倍差计算,一元一次方程的应用,分别表示出AC、AD的长并列出关于x的方程是解题的关键.4、5748︒'【分析】将度与度,分与分分别计算即可.【详解】解:15374211=''︒+︒5748︒', 故答案为:5748︒'.【点睛】此题考查了角度的计算,正确掌握计算方法是解题的关键.5、8cm【分析】根据线段中点的性质求解即可.【详解】解:∵N 是线段MB 的中点,∴24cm MB NB ==∵M 是线段AB 的中点,∴28cm AB MB ==故答案为:8cm .【点睛】本题主要考查了线段中点的有关计算,准确分析利用数形结合的思想计算是解题的关键.三、解答题1、(1)见解析,(2)40°【分析】(1)先画射线BA ,在BA 延长线上截取AE =AC ,然后在线段AE 的延长线上截取ED =AB ;(2)利用邻补角的定义得到∠CAD +∠CAB =180°,再加上已知条件∠CAD ﹣∠CAB =100°,然后通过解方程组得到∠CAB 的度数.【详解】解:(1)如图,线段AD 为所作;(2)∵∠CAD﹣∠CAB=100°,∠CAD+∠CAB=180°,∴100°+∠CAB+∠CAB=180°,2∠CAB=80°,∴∠CAB=40°.【点睛】本题题考查了画线段和求角度,解题关键是熟练掌握几何作图,明确角之间的数量关系.2、不全面,理由见解析【分析】根据题意可知还应考虑点C在线段AB之间时,画出图形.根据图形,结合题意的步骤求出OB的长即可.【详解】解:小明同学只考虑了点C在线段AB之外,当点C在线段AB之间时,如图,由图可知AC=AB-BC,∵AB=4cm,BC=3cm,∴AC=1cm,又∵点O为线段AC的中点,∴AO =12AC =12×1=0.5cm ,∴OB =AB ﹣AO =4﹣0.5=3.5cm .【点睛】本题考查有关线段的中点的计算,线段的和与差.作出图形,利用数形结合的思想是解答本题的关键.3、(1)M 为1,C 为3;图见解析;(2)图见解析,是长为10的线段CD ;(3)Q 表示1753--或【分析】(1)点M 在点B 左侧距离为5,故用6-5=1;M 为AC 中点,因此C 为3;(2)与点B 的距离小于或等于5的点组成的图形是一条长度为10的线段;(3)设x ,通过QA=14QC 建立等式,再解x ,从而求出Q 点表示的数,注意分Q 点位于AC 之间和Q 点在A 点左边两种情况建立方程求解.【详解】(1)M 为1,C 为3,如图:(2)如图:图形特征是一条长度为10的线段CD .(3)当Q 在AC 之间时:设Q 点表示的数为x ,则有x -(-1)=()134x -,解得x =15-当Q 在A 点左边时:设Q 点表示的数为x ,则有-1-x =()134x ⨯-,解得x =73-【点睛】本题考查数轴上的点的标注,掌握各点 之间数量关系是本题解题关键.4、∴BD=【点睛】本题考查了求两点之间的距离和线段的中点定义,能够求出CD 的长是解此题的关键.5.(1)145︒,40︒;(2)180ACB DCE ∠+∠=︒,见解析;(3)能,54︒或126︒.【分析】(1)由于是两直角三角形板重叠,重叠的部分就是比90°+90°减少的部分,所以若∠DCE =35°,则∠ACB 的度数为180°-35°=145°,若∠ACB =140°,则∠DCE 的度数为180°-140°=40°;(2)由于∠ACD =∠ECB =90°,重叠的度数就是∠ECD 的度数,所以∠ACB +∠DCE =180°.(3)当∠ACB 是∠DCE 的4倍,设∠ACB =4x ,∠DCE =x ,利用∠ACB 与∠DCE 互补得出即可.【详解】解:(1)∵90ACD ECB ∠=∠=︒,35DCE ∠=︒,∴18035145ACB ︒-︒=∠=︒;∵90ACD ECB ∠=∠=︒,若140ACB ∠=︒,∴18014040DCE ∠=︒-︒=︒.故答案为:145︒;40︒.(2)180ACB DCE ∠+∠=︒,理由如下:∵180ACE ECD DCB ECD ∠+∠+∠+∠=︒,又∵ACE ECD DCB ACB ∠+∠+∠=∠,∴180ACB DCE ∠+∠=︒;(3)能.当ACB ∠是DCE ∠的4倍时,设4ACB x ∠=,DCE x ∠=,∵180ACB DCE ∠+∠=︒,∴4180x x +=︒解得:36x =︒,当090a <<︒时,903654a =︒-︒=︒;当90180a ︒<<︒时,9036126a =︒+︒=︒.【点睛】此题主要考查了互补、互余的定义等知识,解决本题的关键是理解重叠的部分实质是两个角的重叠.5、(1)见解析;(2)见解析;(3)见解析【分析】(1)直接连接AC 即可;(2)由直线的定义,画出直线BC 即可;(3)由射线的定义,画射线AB 即可;【详解】:(1)如图;(2)如图;(3)如图【点睛】本题考查了作图——复杂作图、直线、射线、线段,解决本题的关键是准确画图.。
实用精品文献资料分享
六年级数学线和角总复习题
六年级数学总复习(7) (空间与图形-线和角) 班级 姓名 得分 一、
对号入座。 1.经过两点能画( )条直线,经过一点能画( )条直
线。 2.两条直线相交,如果其中一个角是90度,其余3个角都是
( ),这两条直线一定( )。 3.经过1小时,钟面上分针转过的角
度与时针转过的角度相差( ) 4.把一张正方形纸对折两次,形成
的折痕可能互相( ),也可能互相( )。 A B C D 5. 有( )条线
段。 6.一个平面有4个不在同一直线上的点,连接其中任意两个点,
最多能画( )条直线。 7、下午2时,钟面上时针与分针所成的角是
( );下午3时,钟面上时针、分针成的角是( );6时整,时针与
分针夹角是( )度,7时整,时针与分针夹角是( ) 8、用一副三
角尺可以拼出( )度、( )度、( )度的钝角。 9、四边形的四个
内角的和是( )。(填度数) (11题图) (12题图) 10、在两条
平行线之间有4条垂线,这4条垂线之间的关系是( )。 二、明辨
是非。 1.同一平内两条直线要么平行,要么垂直。 ( ) 2.如果
两条直线都和第三条直线平行,那么这两条直线也互相平行。( )
3. 如果用一个5倍的放大镜看一个12度的角,那么看到的还是12
的角。( ) 4.一个平角减去一个锐角,得到一个钝角。 ( ) 5.一
条射线长5米。 ( ) 6、直线的长度大于射线的长度。 7、大于
90度的角叫做钝角。 ( ) 8、把一个角的两边分别延长到原来
的3倍,这个角的度数也同样扩大3倍.( ) 9、21时分针和时针
形成的角是直角。( ) 10、平角就是一条直线;周角就是一条射线。
( ) 11、分别垂直于直线A的两条直线一定互相平行。( ) 12、1
周角=2平角=4直角. ( ) 三、慎重选择。 1.从12时到12时15分,
分针旋转的角是( )。 A、周角 B、平角 C、直角 2.属于射线的是
( ) A、圆的半径 B、角的边 C、平行线 D、弧 3.用一副三角尺
能拼成( )的角。 A、120 度 B、100 度 C、75度 4、三角形中最
小的一个角是50°,按角分类这是一个( )三角形。 A、锐角 B、
直角 C、钝角 D、不能确定 5、等腰梯形的( )相等。 A、两腰 B、
对边 C、上底和下底 D、腰和高 6、在同一个平面内,可以画( )
条直线平行于已知直线。 A、1 B、2 C、3 D、无数 7、从直线外一
实用精品文献资料分享
点画已知直线的平行线,可以画( )条。 A、1 B、
2 C、无数 8、过直线外一点画已知直线的垂线,可以画( )
条。 A、一条 B、两条 C、无数条 9、直线a、b、c在同一平面里,
a与b互相垂直,b与c互相垂直,那a与c ( ) A、垂直 B、平
行 C、平行或垂直 10、过直线外一点,分别向这条直线画垂线和斜
线,其中 最短。 ( ) A、斜线 B、垂线 C、垂线段 四、动手操作
1、画一个比30°大20°的角,并以A点为它的端点。 A . 2、过A
点画已知直线的平行线和垂线。 A•
A• A• 3、画下
面平行四边形底边上的高 底 4、以下面的点A为端点画一条射线,
并从射线的端点开始,截取一条4厘米的线段AB。 A
5、利用下面的这个角画一个直角梯形。
6、把下面的梯形分割成一个平行四边形和一个三角形。
7、一只小羊在河边吃草,口渴了想喝水,请你设计一条从草地到小
河边最近的线路,并在图上画出来。www. 五、挑战自我 1、
上图中共有( )条线段,( )条射线。 2、找一找。下图中共有( )
个直角,( )个锐角,( )个钝角。
3、下左图中,∠1=( )°,∠2=( )°。 4、AB是一条街道,要
从点P修一条小路通向街道AB,怎么修最省工省料?(用线段在图
上画出这条线路)如果这幅图的比例尺是1:20000,这条小路实际
是多少米?(测量时取整厘米) ★【智慧开新花】 1、先观察图,
在填空。 (1) (2)
有( )个三角形 有( )个三角形 有( )个平行四边形 有( )
个平行四边形 有( )个梯形 有( )个梯形 2、下图是两个完全一
样的等边三角形,在三角形内有一点A。 (1)由点A向三角形的三
条边作出三条垂线,并且量出三条垂线段的总长是多少。 (2)在三
角形内再任选一点B,向三角形的三条边作出三条垂线,并且量出三
条垂线段的总长。看看你能发现什么,把你的发现写下来。 ■【解
读数学资料】 ★【数学小故事】蜜蜂蜂房 蜜蜂蜂房是严格的六角柱
实用精品文献资料分享
状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的
底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,
所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073
毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”
字形。“人”字形的角度是110度。更精确地计算还表明“人”字形
夹角的一半――即每边与鹤群前进方向的夹角为54度44分8秒!而
金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自
然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八
角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称
的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数
学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正
的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们
每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。
奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出
400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,
一年不是365天,而是400天。