设计齿轮强度校核
- 格式:xls
- 大小:82.50 KB
- 文档页数:4
齿轮设计的方案概述:齿轮是一种常用的机械传动元件,广泛应用于各个领域的机械设备中。
齿轮的设计方案直接影响着机械传动系统的性能和效率。
本文将介绍齿轮设计的方案,并对其中的关键要素进行分析和讨论。
一、齿轮设计的基本原则在进行齿轮设计时,需要遵循以下几个基本原则:1. 传动比的选择:传动比是指输入轴和输出轴转速之间的比值。
在选择传动比时,需要考虑输入和输出轴的转矩、转速、位置、运动类型等因素,以确定合适的传动比。
传动比的选择应使得输入轴和输出轴之间的转速和力矩匹配。
2. 齿轮模数的确定:齿轮模数是齿轮设计的重要参数,它决定了齿轮的尺寸和传动能力。
在确定齿轮模数时,需要考虑到齿轮的强度、磨损和噪声等因素。
一般来说,要尽量选择合适的齿轮模数,以提高齿轮的传动效率和使用寿命。
3. 齿数的选择:齿数是齿轮设计中的关键参数之一。
在选择齿数时,需要考虑到输入和输出轴之间的转速比关系,以及齿轮的传动效率和运动平稳性。
一般来说,较大的齿数可以提高齿轮传动的平稳性和传动能力,但也会增加齿轮的尺寸和重量。
4. 齿轮材料的选择:齿轮材料的选择主要受到工作条件和要求的影响。
常用的齿轮材料有钢、铸铁、铜合金等。
在选择齿轮材料时,需要考虑到齿轮的强度、耐磨性、耐腐蚀性和成本等因素。
对于高负荷和高速的齿轮传动,一般采用高强度的合金钢材料。
二、齿轮设计的步骤齿轮设计的过程可以分为以下几个步骤:1. 确定设计要求和工作条件:首先需要明确设计要求和齿轮的工作条件,包括传动比、转速、转矩、工作环境等。
2. 计算齿轮尺寸和参数:在确定了设计要求和工作条件后,可以通过齿轮传动的基本公式和计算方法来计算齿轮的尺寸和参数,包括模数、齿数、齿宽、齿轮轴等。
3. 选取齿轮材料:根据齿轮的工作条件和要求,选择合适的齿轮材料,考虑到材料的强度、磨损和耐腐蚀性能。
4. 进行齿轮结构设计:根据齿轮的尺寸和参数,进行齿轮结构的设计,包括齿轮的齿形、齿距和齿顶间隙等。
塑料齿轮强度校核方法马瑞伍,余毅,张光彦(深圳市创晶辉精密塑胶模具有限公司,广东省深圳市518000)【摘要】随着动力传递型塑料齿轮应用领域的不断拓展,如何评估或校核塑料齿轮的强度成为设计者不得不考虑的难题。
由于塑料材料种类繁多,且不同种类的塑料性能指标差异很大,所以迄今为止有关塑料齿轮的强度算法还未形成统一的标准。
目前,具有代表性的塑料齿轮强度算法主要四种:①尼曼&温特尔法;②VDI 2545标准法;③KISSsoft软件基于VDI 2545标准修正法;④宝理“Duracon”法。
由于第②种算法已经废止,第③种算法主要以软件形式发布,因此本文将主要介绍第①和第④种算法,以期能为塑料齿轮的设计起到一定的借鉴意义。
【关键词】塑料齿轮强度设计1引言在国内,塑料齿轮起步于20世纪70年代。
在发展初期,塑料齿轮主要应用集中在水电气三表的计数器、定时器、石英闹钟、电动玩具等小型产品中。
这时期的塑料齿轮的多为直径一般不大于25mm,传递功率一般不超过0.2KW的直齿轮。
换言之,早期的塑料齿轮主要用于小空间内的运动传递,属于运动传递型齿轮。
随着注塑模具技术与注塑装备及注塑工艺水平的不断提高,模塑成型尺寸更大、强度更高的塑料齿轮成为可能。
现在,塑料齿轮传递动力可达 1.5KW,直径已超过150mm。
动力型塑料齿轮已经成为众多产品动力传递系统的重要组成部分。
虽然动力型塑料齿轮的应用越来越广泛,但相应的塑料齿轮强度计算理论或标准却比较匮乏。
目前,塑料齿轮的强度计算多以金属齿轮的强度计算方法为参考,通过修正或修改某些系数来计算或评估塑料齿轮的强度是否满足使用要求,然后再通过实验方法验证强度是否满足使用要求。
下面,本文将介绍具有代表性的塑料齿轮强度的计算方法或观点,以期能够为塑料齿轮的强度设计提供借鉴。
2塑料齿轮强度计算方法从查阅到的相关文献资料看,塑料齿轮的强度计算方法基本上沿用了金属齿轮的强度校核理论及计算公式。
2齿轮的设计及校核2 齿轮的设计及校核2.1 设计参数及基本参数表2.1 设计对象主要参数项目参数前进档档数 5最高时速140km/h最大扭矩200Nm/1400r/min最高转速4800r/min传动比范围0.5-5.572.1.1 基本参数表表2.2 各档传动比传动比/档位一档二档三档四档五档计算值 5.57 3.14 1.77 1 0.56 实际值 5.46 3.20 1.76 1 0.58表2.3各档齿轮齿数档位/齿数常啮合一档二档三档五档倒档输出轴齿轮21 40 36 28 18 362.2 齿轮参数确定2.2.1 齿形、压力角α、螺旋角β汽车变速器齿轮的齿形、压力角、及螺旋角按表2.4选取。
压力角一般大的压力角,可提高齿轮的抗弯强度与表面强度,使承载能力加大;而小的压力角,会使重合度加大,降低轮齿刚度,但其减少了动载荷,使传动平稳,降低噪声。
本设计的商用汽车要求承载能力大,齿轮的强度高,采用大压力角,全部齿轮选用相同的压力角,按国家标准为20°。
2.2.2 齿宽 (1)设计齿宽的要求设计变速器各齿轮齿宽,应考虑变速器的质量与轴向尺寸,同时也要保证齿轮工作平稳以及轮齿的强度要求。
齿宽可以设计得中间轴齿轮 38 13 23 31 41 19表2.4汽车变速器齿轮的齿形、压力角与螺旋角项目/车型 齿形 压力角α螺旋角β 轿车 高齿并修形的齿形 14.5°,15°,16°16.5°25°~45°一般货车 GB1356-78规定的标准齿形 20°20°~30°重型车同上低档、倒档齿轮22.5°,25° 小螺旋角小,这样就可以减少变速器的轴向尺寸和减小质量,工作应力也会加大。
而大的齿宽,工作时会因轴的变形导致齿轮倾斜,齿轮会受力不均匀产生偏载,所以应合理设计齿宽的大小。
(2)齿宽的设计方案第一轴常啮合齿轮的齿宽可以设计得大一些,使接触应力降低,提高齿轮的传动平稳性,此外,对于选取相同的模数的各档齿轮,档位低的齿轮的齿宽(如一档齿轮齿宽)可以取得稍大一些。
直齿圆柱齿轮的强度计算受力分析:圆周力F t =112d T 径向力αtan ∙=t r F F 法向载荷αcos t n F F = 1T :小齿轮传递的转矩,mm N ∙ 1d :小齿轮的节圆直径,mm α:啮合角,对标准齿轮, 20=α齿根弯曲疲劳强度的计算: 校核公式:[]F d Sa Fa Sa Fa F z m Y Y KT bmd Y Y KT σφσ≤==21311122 计算公式:[]32112F d Sa Fa z Y Y KT m σφ≥d φ:齿宽系数,1d b d =φ Fa Y :齿形系数 Sa Y :应力校正系数齿面接触疲劳强度的计算: 校核公式:[]H E H uu bd KT Z σσ≤±∙=125.2211 设计公式:[]3211132.2⎪⎪⎭⎫ ⎝⎛∙±∙=H E d Z u u KT d σφ标准斜齿圆柱齿轮的强度计算 受力分析: 圆周力:112d T F T = 径向力:βαcos tan n t r F F ∙= 轴向力:βtan ∙=t a F F齿根弯曲疲劳强度计算: 校核公式:[]F n Sa Fa t F bm Y Y Y KF σεσαβ≤=设计计算:[]32121cos 2F Sa Fa d n Y Y z Y KT m σεφβαβ∙=齿面接触疲劳强度计算: 校核计算:H E H Z Z uu bd KT ∙±∙=111αεσ 设计计算:[]321112⎪⎪⎭⎫ ⎝⎛∙±∙≥H Sa Fa d Y Y u u KT d σεφαu :齿数比标准锥齿轮的强度计算 受力分析:11212m t t d T F F == 121cos tan δαt a r F F F == 121cos tan δαt r a F F F == αcos 1t n F F =齿根弯曲疲劳强度计算: 校核公式:()[]F R Sa Fa t F bm Y Y KF σφσ≤-=5.01 设计公式:()[]32212115.014F Sa Fa R R Y Y u z KT m σφφ∙+-≥齿面接触疲劳强度计算: 校核公式:()[]H R R E H u d KT Z σφφσ≤-=31215.015设计公式:[]()321215.0192.2u KT Z d R R H E φφσ-∙⎪⎪⎭⎫ ⎝⎛≥。