概率论笔记(四)概率分布的下期望和方差的公式总结
- 格式:docx
- 大小:9.40 KB
- 文档页数:3
概率论是数学中的一门重要学科,用于研究随机现象的规律及其概率性质。
其中,随机变量是概率论的一个核心概念,描述了在某个随机实验中可能的取值及其相应的概率分布。
而随机变量的期望与方差则是对随机变量的两个基本性质进行度量的重要指标。
首先,我们来谈谈随机变量的期望。
随机变量的期望是指随机变量所有可能取值的平均值,也可以理解为随机变量的中心位置。
对于离散型随机变量,其期望的计算方法为每个取值与其概率乘积的和。
例如,设X为一个服从二项分布的随机变量,取值为0和1,概率分别为p和1-p,则X的期望为E(X)=0p+1(1-p)=1-p。
而对于连续型随机变量,其期望的计算方法为对变量的概率密度函数进行积分求和。
例如,设X为一个服从均匀分布的随机变量,取值范围为[a,b],则X的概率密度函数为f(x)=1/(b-a),X的期望为E(X)=∫[a,b]xf(x)dx=(b^2-a^2)/(2(b-a))=(a+b)/2。
期望具有良好的加性和线性性质。
加性指的是对于两个随机变量X和Y,E(X+Y)=E(X)+E(Y)。
线性性是指对于一个随机变量X和常数a,E(aX)=aE(X)。
这些性质使得期望成为了许多概率论推导及应用的基本工具。
接下来,我们讨论随机变量的方差。
方差是对随机变量的离散程度进行度量的指标。
方差越大,表示随机变量取值的波动程度越大,反之亦然。
方差的计算方法为每个取值与其概率乘积与随机变量期望差的平方的和。
对于离散型随机变量,其方差的计算公式为Var(X)=Σ(x-E(X))^2P(x),其中Σ表示对所有可能取值求和。
对于连续型随机变量,方差的计算方法为Var(X)=∫(x-E(X))^2f(x)dx。
方差也具有一些重要的性质。
首先,方差非负,即Var(X)≥0。
其次,根据加和线性性质,方差的计算可以简化为Var(aX+b)=a^2Var(X),其中a和b为常数。
这个性质为方差的应用提供了便利。
最后,方差的平方根被定义为随机变量的标准差,它也是一个重要的度量指标。
期望-方差公式期望与方差的相关公式 -、数学期望的来由早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。
当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。
因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。
这个故事里出现了“期望”这个词,数学期望由此而来。
定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为ip (i =1,2,3, …),则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞=1i i i p a ,如果i i i p a ∑∞=1=∞,则数学期望不存在。
[]1定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.二、数学期望的性质(1)设C 是常数,则E(C )=C 。
(2)若k 是常数,则E (kX )=kE (X )。
(3))E(X )E(X )X E(X 2121+=+。
三、 方差的定义前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。
但是在一些场合下,仅仅知道随机变量取值的平均值是不够的,还需要知道随机变量取值在其平均值附近的离散程度,这就是方差的概念。
定义3方差:称D ξ=∑(x i -E ξ)2p i 为随机变量ξ的均方差,简称方差.ξD 叫标准差,反映了ξ的离散程度.定义4设随机变量X 的数学期望)(X E 存在,若]))([(2X E X E -存在,则称]))([(2X E X E -为随机变量X 的方差,记作)(X D ,即]))([()(2X E X E X D -=。
概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。
在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。
下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。
概率与统计知识点一:常见的概率类型与概率计算公式; 类型一:古典概型;1、 古典概型的基本特点:(1) 基本事件数有限多个;(2) 每个基本事件之间互斥且等可能; 2、 概率计算公式:A 事件发生的概率()A P A =事件所包含的基本事件数总的基本事件数;类型二:几何概型;1、 几何概型的基本特点:(1) 基本事件数有无限多个;(2) 每个基本事件之间互斥且等可能; 2、 概率计算公式:A 事件发生的概率()A P A =构成事件的区域长度(或面积或体积或角度)总的区域长度(或面积或体积或角度);注意:(1) 究竟是长度比还是面积比还是体积比,关键是看表达该概率问题需要几个变量,如果需要一个变量,则应该是长度比或者角度比;若需要两个变量则应该是面积比;当然如果是必须要三个变量则必为体积比;(2) 如果是用一个变量,到底是角度问题还是长度问题,关键是看谁是变化的主体,哪一个是等可能的; 例如:等腰ABC ∆中,角C=23π,则: (1) 若点M 是线段AB 上一点,求使得AM AC ≤的概率; (2) 若射线CA 绕着点C 向射线CB 旋转,且射线CA 与线段AB 始终相交且交点是M ,求使得AM AC ≤的概率;解析:第一问中明确M 为AB 上动点,即点M 是在AB 上均匀分布,所以这一问应该是长度之比,所求概率:13P =; 而第二问中真正变化的主体是射线的转动,所以角度的变化是均匀的,所以这一问应该是角度之比的问题,所以所求的概率:2755==1208P ︒; 知识点二:常见的概率计算性质; 类型一:事件间的关系与运算; A+B (和事件):表示A 、B 两个事件至少有一个发生; A B ∙(积事件):表示A 、B 两个事件同时发生;A (对立事件):表示事件A 的对立事件;类型二:复杂事件的概率计算公式; 1、 和事件的概率:()=()()()P A B P A P B P A B ++-∙(1)特别的,若A 与B 为互斥事件,则:()=()()P A B P A P B ++(2)对立事件的概率公式:()1()P A P A =-2、 积事件的概率:(1)若事件12n A A A 、、、相互独立,则:1212()()()()n n P A A A P A P A P A ∙∙∙=∙∙∙(2)n 次独立重复的贝努利实验中,某事件A 在每一次实验中发生的概率都为p ,则在n 次试验中事件A 发生k 次的概率:()(1)k k k n kn n P A C p p -=- 类型三:条件概率;1、 条件概率的定义:我们把在事件A 发生的条件下事件B 发生的概率记为:(|)P B A ;且()(|)()P A B P B A P A ∙=2、 三个常见公式:(1) 乘法公式:()()(|)P A B P A P B A ∙=∙(2) 全概率公式:设123,,,,n A A A A 是一组互斥的事件且1nk k A ==Ω∑,则对于任何一个事件B 都有:11()()()(|)nnki i k k P B P AB P A P B A ===∙=∙∑∑(3) 贝叶斯公式:设123,,,,n A A A A 是一组互斥的事件且1nk k A ==Ω∑则对于任何一个事件B 都有:1()(|)(|)()(|)j j j niik P A P B A P A B P A P B A =∙=∙∑知识点三:求解一般概率问题的步骤;第一步:确定事件的性质:等可能事件、互斥事件、相互独立事件、n 次独立重复实验等; 第二步:确定事件的运算:和事件、积事件、条件概率等;第三步:运用相应公式,算出结果;知识点三:常见的统计学数字特征量及其计算; 特征量一:平均数(数学期望) 计算公式一:1231()n x x x x x n=++++;计算公式二:1()nx iik E x P x x ==∙=∑;计算公式三:(若随机变量x 是连续型随机变量,且函数()f x 是它的密度函数)()Ex xf x dx +∞-∞=⎰特征量二:中位数将所有的数从大到小排或者从小到大排,若共有奇数个数,则正中间的那个数叫做这一列数的中位数;若共有偶数个数,那么正中间那两个数的平均数叫做这一列数的中位数。
概率论期望值公式概率论期望值公式是量化描述随机变量取值的平均数,是概率论中非常重要的概念,也是统计分析中最常用的一个概念。
期望值在概率分析、投资理财、决策和经济学中具有重要的意义,其有效的运用可以为我们提供许多有价值的信息。
期望值公式定义:期望值(E)在概率论中被定义为随机变量X 取值的平均数,可以用公式来表示:E(X)=∑(xi * P(xi)),其中xi表示X可能取的值,P(xi)表示X取值xi的概率。
求期望值的思想:首先我们需要知道X可能取的所有值,也就是xi,然后我们要知道X取值xi的概率P(xi),最后我们可以根据公式求得期望值E(X)。
期望值的应用:期望值公式的最主要的应用就是对随机变量取值的平均数进行量化描述,因此应用期望值公式可以获取统计数据中更有效的信息,例如,我们可以应用期望值公式来估算在一段时间内投资行业的风险和收益,或者开发新产品或服务时预测收入期望值等。
期望值和方差:期望值和方差也是概率论中重要的概念,它们都是量化描述随机变量取值的统计指标。
计算期望值公式的期望值是随机变量的平均值,而计算方差的方差是随机变量的离散程度。
期望值和方差的存在可以使我们对随机变量取值的情况有更清晰的认识,从而为统计分析提供重要的参考。
期望值和期权:期权是一种有趣的投资策略,它可以帮助投资者利用市场波动来获取收益。
在期权投资中,期望值是投资者判断投资期权合同是否具有可行性的重要参考。
通过期望值公式,投资者可以估算出期权合同的期权费和期望的收益,这有助于投资者进行更加合理的投资决策。
总结:期望值公式是概率论和统计分析中一个非常重要的概念,它可以有效地衡量随机变量取值的平均数,可以为我们提供许多有用信息。
期望值公式的应用也比较广泛,在投资策略、决策和经济学等领域都可以获得有效的应用。
期望值和方差也是概率论中重要的概念,它们可以帮助我们更好地理解随机变量取值的概率分布情况,从而为统计分析提供基础性的依据。
概率论重要公式大全必看概率论是数学的一个分支,研究随机事件的概率性质和随机现象的数学模型。
在概率论中有许多重要的公式,下面是一些概率论中常用的重要公式的介绍。
1.加法法则加法法则是计算两个事件一起发生的概率的公式。
P(A∪B)=P(A)+P(B)-P(A∩B)2.乘法法则乘法法则是计算两个事件同时发生的概率的公式。
P(A∩B)=P(A)×P(B,A)=P(B)×P(A,B)其中P(B,A)表示已知事件A发生下事件B发生的概率。
3.全概率公式全概率公式是计算一个事件的概率的公式,通过将事件分解为若干个互斥事件并计算其概率,然后加权求和得到事件的概率。
P(A)=ΣP(A∩Bi)=ΣP(Bi)×P(A,Bi)其中Bi为一组互斥事件,且它们的并集为样本空间。
4.贝叶斯定理贝叶斯定理是根据条件概率的定义,计算事件的后验概率的公式。
P(A,B)=P(B,A)×P(A)/P(B)其中P(A,B)为已知事件B发生下事件A发生的概率。
5.随机变量与概率分布随机变量是用来描述随机现象结果的变量。
概率分布则是随机变量取不同值的概率的分布情况。
6.期望和方差期望是描述随机变量平均值的概念,可以通过加权平均的方式计算。
E(X)=Σx×P(X=x)方差是描述随机变量离散程度的概念,用来衡量随机变量取值与其期望值之间的偏差。
Var(X) = E((X - E(X))^2) = Σ (x - E(X))^2 × P(X=x)7.二项分布二项分布是描述重复进行n次独立实验中成功次数的概率分布。
P(X=k)=C(n,k)×p^k×(1-p)^(n-k)其中C(n,k)表示组合数,p为单次实验的成功概率,n为实验次数,k为成功次数。
8.泊松分布泊松分布是描述事件在一定时间或空间范围内发生的次数的概率分布。
P(X=k)=(λ^k/k!)×e^(-λ)其中λ为单位时间或单位空间范围内事件发生的平均次数,k为事件发生的次数。
数学期望与方差的计算引言数学期望与方差是统计学中两个重要的概念。
它们是描述一个随机变量分布特征的常用指标,对于理解和分析数据具有重要意义。
本文将介绍数学期望与方差的概念、计算方法以及它们的应用。
数学期望数学期望又称平均值,是描述一个随机变量的平均水平的指标。
对于离散型随机变量,数学期望的计算公式为:$$ E(X)=\\sum_{i=1}^n x_i p_i $$其中,X为随机变量,x i为随机变量可能取的值,p i为随机变量取每个值的概率。
对于连续型随机变量,数学期望的计算公式为:$$ E(X)=\\int_{-\\infty}^{+\\infty} x f(x) dx $$其中,f(x)为随机变量的概率密度函数。
数学期望可以理解为在大量重复实验中,随机变量平均取值的水平。
方差方差是描述一个随机变量分散程度的统计指标。
方差越大,随机变量的取值越分散;方差越小,随机变量的取值越集中。
方差的计算公式为:Var(X)=E[(X−E(X))2]方差可以理解为每个随机变量与其期望的偏差的平方的加权平均。
数学期望与方差的计算方法离散型随机变量对于离散型随机变量,计算数学期望的方法如下:1.计算每个随机变量取值对应的概率。
2.将随机变量取值与对应的概率相乘。
3.将所有结果相加,得到数学期望。
计算方差可以使用以下方法:1.计算数学期望。
2.将每个随机变量取值与数学期望的差值的平方相乘。
3.将所有结果相加,得到方差。
连续型随机变量对于连续型随机变量,计算数学期望的方法如下:1.计算随机变量的概率密度函数。
2.将随机变量的取值与概率密度函数相乘。
3.对结果进行积分,得到数学期望。
计算方差可以使用以下方法:1.计算数学期望。
2.将随机变量的取值与数学期望的差值的平方与概率密度函数相乘。
3.对结果进行积分,得到方差。
数学期望与方差的应用数学期望与方差作为描述随机变量特征的指标,在统计学和概率论中有重要的应用。
数学期望在实际问题中可以用于计算平均值,如统计学中的样本均值就是数学期望的一种估计。
概率与统计知识点一:常见的概率类型与概率计算公式;类型一:古典概型;1、古典概型的基本特点:(1)基本事件数有限多个;(2)每个基本事件之间互斥且等可能;2、概率计算公式:A事件发生的概率()AP A=事件所包含的基本事件数总的基本事件数。
类型二:几何概型;1、几何概型的基本特点:(1)基本事件数有无限多个;(2)每个基本事件之间互斥且等可能;2、概率计算公式:A事件发生的概率()AP A=构成事件的区域长度(或面积或体积或角度)总的区域长度(或面积或体积或角度);注意:究竟是长度比还是面积比还是体积比,关键是看表达该概率问题需要几个变量,如果需要一个变量,则应该是长度比或者角度比;若需要两个变量则应该是面积比;当然如果是必须要三个变量则必为体积比;b5E2RGbCAP(2)如果是用一个变量,到底是角度问题还是长度问题,关键是看谁是变化的主体,哪一个是等可能的;例如:等腰ABC ∆中,角C=23π,则:(1) 若点M 是线段AB 上一点,求使得AM AC ≤的概率;(2)若射线CA 绕着点C 向射线CB 旋转,且射线CA 与线段AB 始终相交且交点是M ,求使得AM AC ≤的概率;解读:第一问中明确M 为AB 上动点,即点M 是在AB 上均匀分布,所以这一问应该是长度之比,所求概率:13P =。
而第二问中真正变化的主体是射线的转动,所以角度的变化是均匀的,所以这一问应该是角度之比的问题,所以所求的概率:2755==1208P ︒;p1EanqFDPw 知识点二:常见的概率计算性质; 类型一:事件间的关系与运算;A+B<和事件):表示A 、B 两个事件至少有一个发生;A B •<积事件):表示A 、B 两个事件同时发生;A <对立事件):表示事件A 的对立事件;类型二:复杂事件的概率计算公式;1、 和事件的概率:()=()()()P A B P A P B P A B ++-•<1)特别的,若A 与B 为互斥事件,则:()=()()P A B P A P B ++<2)对立事件的概率公式:()1()P A P A =-2、 积事件的概率:<1)若事件12n A A A 、、、相互独立,则:1212()()()()n n P A A A P A P A P A •••=•••<2)n 次独立重复的贝努利实验中,某事件A 在每一次实验中发生的概率都为p ,则在n 次实验中事件A 发生k 次的概率:DXDiTa9E3d ()(1)k k k n kn n P A C p p -=-类型三:条件概率;1、 条件概率的定义:我们把在事件A 发生的条件下事件B 发生的概率记为:(|)P B A ; 且()(|)()P A B P B A P A •=2、 三个常见公式:(1)乘法公式:()()(|)P A B P A P B A •=• (2)全概率公式:设123,,,,nA A A A 是一组互斥的事件且1nkk A==Ω∑,则对于任何一个事件B 都有:11()()()(|)nnk i i k k P B P A B P A P B A ===•=•∑∑(3)贝叶斯公式:设123,,,,nA A A A 是一组互斥的事件且1nkk A==Ω∑则对于任何一个事件B 都有:1()(|)(|)()(|)j j j niik P A P B A P A B P A P B A =•=•∑知识点三:求解一般概率问题的步骤;第一步:确定事件的性质:等可能事件、互斥事件、相互独立事件、n 次独立重复实验等;第二步:确定事件的运算:和事件、积事件、条件概率等; 第三步:运用相应公式,算出结果;知识点三:常见的统计学数字特征量及其计算; 特征量一:平均数<数学期望) 计算公式一:1231()n x x x x x n=++++;计算公式二:1()nx i i k E x P x x ==•=∑;计算公式三:<若随机变量x 是连续型随机变量,且函数()f x 是它的密度函数)()Ex xf x dx+∞-∞=⎰特征量二:中位数将所有的数从大到小排或者从小到大排,若共有奇数个数,则正中间的那个数叫做这一列数的中位数;若共有偶数个数,那么正中间那两个数的平均数叫做这一列数的中位数。
随机变量的数学期望与方差随机变量在概率论中具有重要地位,它描述了随机事件的变化规律,数学期望和方差是衡量随机变量分布的重要指标。
一、数学期望数学期望是对随机变量取值的平均值的度量,记作E(X),其中X为随机变量。
数学期望可以理解为长期重复试验中,随机变量取值的平均结果。
对于离散型随机变量,数学期望的计算公式为:E(X) = ∑(x * P(X=x))其中x为随机变量的取值,P(X=x)为该取值发生的概率。
对于连续型随机变量,数学期望的计算公式为:E(X) = ∫(x * f(x))dx其中f(x)为随机变量的概率密度函数。
二、方差方差是随机变量取值分散程度的度量,记作Var(X)或σ^2,其中X为随机变量。
方差描述的是随机变量取值与其数学期望之间的偏离情况。
对于离散型随机变量,方差的计算公式为:Var(X) = ∑((x - E(X))^2 * P(X=x))其中x为随机变量的取值,E(X)为该随机变量的数学期望。
对于连续型随机变量,方差的计算公式为:Var(X) = ∫((x - E(X))^2 * f(x))dx其中f(x)为随机变量的概率密度函数。
三、应用举例为了更好理解数学期望与方差的作用和计算方法,下面以骰子为例进行说明。
假设我们有一个六面骰子,其取值范围为1到6,每个面出现的概率相等。
我们可以定义骰子的随机变量X表示投掷后骰子的结果。
1. 计算数学期望:E(X) = (1 * 1/6) + (2 * 1/6) + (3 * 1/6) + (4 * 1/6) + (5 * 1/6) + (6 * 1/6) = 3.5所以,这个六面骰子的数学期望为3.5,即在长期重复的投掷中,平均每次的点数是3.5。
2. 计算方差:Var(X) = ((1-3.5)^2 * 1/6) + ((2-3.5)^2 * 1/6) + ((3-3.5)^2 * 1/6) + ((4-3.5)^2 * 1/6) + ((5-3.5)^2 * 1/6) + ((6-3.5)^2 * 1/6) ≈ 2.92所以,这个六面骰子的方差为2.92,即在长期重复的投掷中,每次投掷结果与平均值3.5偏离的程度。
概率论笔记(四)概率分布的下期望和方差的公式总结
一:期望
引入:
1.1离散型随机变量的期望
注:其实是在等概率的基础上引申来的,等概率下的权重都是1/N。
1.2连续型随机变量的期望
注意:因为连续随机变量的一个点的概率是没有意义的,所以我们需要借用密度函数,如所示,这实际上是一个期望积累的过程。
1.3期望的性质
注:其中第三个性质,可以把所有的X+Y的各种情况展开,最后得出的结果就是这样的。
二:随机变量函数(复合随机)的数学期望
1.理解
注:其实就是复合随机变量的期望,对于离散型,其主要是每个值增加了多少倍/减少了多少倍,但是概率不变,所以公式见上面;对于连续性随机变量,其实是一样的,每个点的概率没有变,所以就是变量本身的值发货所能了改变。
三:方差
引入的意义:求每次相对于均值的波动:求波动的平方和:
定义:注:其实就是对X-E(X)方,求均值其实就是方差,注意这里的均值也是加权平均,所以方差其实就是一种特殊的期望。
3.1离散型随机变量的方差
3.2连续性随机变量的方差
3.3方差的性质
注:3)4)5)等性质可以套入定义中就可以得到,这里不多说;对于独立以及协方差见后;8)的证明如下
四:协方差
4.1定义
注:与上一个变量相比,之前是一个变量移位平方,但这里是两个变量移位相乘。
4.2离散型二维随机变量的协方差
4.3连续型二维随机变量的协方差
4.4二维随机变量的协方差性质
注:了解即可…
4.5协方差矩阵
五:相关系数
所以:独立必不相关,但不相关不一定独立,因为这里的不相关指的是线性不相关,可能会有其他非线性关系,具体例子找到再补充-------。
参考链接:。