人教版七年级上册巧用角平分线的有关计算.docx
- 格式:docx
- 大小:55.24 KB
- 文档页数:5
《角的比较与运算2--角平分线》教学设计【教材】人教版数学七年级上册4.3.2 角的比较与运算【课时安排】第2课时【教学对象】初一学生【授课教师】东莞长安实验中学郑健微【教材分析】本节课是人教版数学七年级上册 4.3.2 角的比较与运算的第二课时,在本节课学习之前,学生已经认识了角,并学会角的表示方法以及角的和差,这为本节课的教学做了知识和思维上的准备,本节课不仅是对角基本概念的进一步研究,更是解决以后有关的几何问题的基础,鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
【学情分析】七年级学生逻辑思维正迅速发展,但同时,又好动,注意力易分散,爱发表见解,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生上台发表见解,发挥学生学习的主动性。
从认知状况来说,学生在小学的时候已经认识了角,对角的计算已经有了初步的认识,但是,由于初中要求学生能够运用文字语言、图形语言和几何语言对问题进行综合描述,而几何语言表达具有一定的抽象性,学生写起来较为吃力,为了化解本难点,让学生有充足的时间掌握几何语言的表达,本节课大胆将教材中角的和差放在第一课时上,对教材进行加工。
【教学目标】✧知识与技能(1)认识角平分线,理解角平分线的几何意义及其数量关系,(2)学会用文字语言、图形语言和符号语言进行综合描述。
✧过程与方法(1)经历类比线段中点来学习角平分线的过程,体会类比思想;(2)经历探究角平分线运用的过程,学会结合图形分析数量关系,体会数形结合思想。
✧情感态度价值观(1)通过对角平分线性质的探究应用,引导学生在独立思考的基础上积极参与课堂,培养学生的口头表达能力与小组合作意识。
(2)通过学习几何语言的表达,体会数学的合理性和严谨性【教学重点】角平分线性质的探究应用【教学难点】学会用几何语言书写几何证明过程【教学方法】引导探究、小组合作讨论交流。
【设计意图】以角的和差问题为问题引入,衔接自然流畅。
从角的和差问题中,将射线OC的位置特殊化,并类比线段的中点,引出角平分线的概念,2、尝试指导:EDB CAB类似角的平分线,还有角的三等分线,一个角的三等分线有几条?四等分线呢? 教师关注:在用符号表示图3角之间的关系,理解图4的内容.【设计意图】不仅知识的产生、发展自然连续,也体现了数学由一般到特殊,由特殊到一般的思想,同时,能建立知识间的联系,完善认知结构.你能作一个角的平分线吗?师生活动:交流,归纳方法(用量角器、折纸);教师结合学生的展示交流或利用课件动画演示折叠过程中的翻折过程.【设计意图】 进一步明晰角平分线的概念,为后续学习轴对称和研究有关图形的翻折问题打下基础. 3、精析问题:OD 为∠AOC 的角平分线。
(1)、已知∠AOC=40°,求∠AOD 的度数。
(2)、已知∠AOD=20°,求∠AOC 的度数。
(3)、已知∠AOD=20°,求∠DOC 的度数。
4、变式训练(1)、如图:已知∠AOC=40°, ∠BOC=20°求∠DOB 的度数。
(2)、OE 平分∠COB , ∠AOC=40°, ∠BOC=20°求∠DOE 的度数。
5、反思小结:通过本节课的学习,你都有哪些收获,请你说一说。
6、课后作业: 必做题:140页9题选做题: 点O 在直线AB 上,OD 平分∠AOC ,OE 平分∠COB ,∠COB=60°。
求∠DOE 的度数。
图3图4。
《角平分线》经典例题在直角三角形ABC中,∠A=90°,∠ABC的平分线BE交AC于E点,过E点作ED⊥BC于D点,已知AC=10cm,ΔCDE的周长为16cm,求CD的长.〔解析〕根据角平分线上的点到角的两边的距离相等可得AE=DE,从而求出DE+CE=AC,所以ΔCDE的周长=AC+CD,根据ΔCDE的周长及AC的长即可求得CD的长.解:∵BE为∠ABC的平分线,∠A=90°,DE⊥BC,∴AE=DE,∴DE+CE=AE+CE=AC=10cm,∵ΔCDE的周长为16cm,∴DE+CE+CD=16cm,∴CD=16-10=6(cm).如图(1)所示,已知∠ADC+∠ABC=180°,DC=BC.求证点C在∠DAB的平分线上.〔解析〕作CE⊥AB,CF⊥AD,垂足分别为E,F,利用∠ADC+∠ABC=180°,∠ADC+∠CDF=180°,得出∠ABC=∠CDF,进而证得ΔCBE≌ΔCDF,得出FC=EC,即可求得结论.证明:如图(2)所示,作CE⊥AB,CF⊥AD,垂足分别为E,F,∴∠BEC=∠DFC=90°,∵∠ADC+∠ABC=180°,∠ADC+∠CDF=180°,∴∠ABC=∠CDF,在ΔCBE和ΔCDF中,∴ΔCBE≌ΔCDF(AAS),∴FC=EC,∴点C在∠DAB的平分线上.如图(1)所示,已知点P 是ΔABC 三条角平分线的交点,PD ⊥AB ,若PD =5,ΔABC 的周长为20,求ΔABC 的面积.〔解析〕作PE ⊥BC 于E ,PF ⊥AC 于F ,根据角平分线的性质定理得PE =PF =PD =5,然后根据三角形面积公式和S ΔABC =S ΔPAB +S ΔPBC +S ΔPAC 得到S ΔABC =(AB +BC +AC ),再把ΔABC 的周长为20代入计算即可.解:作PE ⊥BC 于E ,PF ⊥AC 于F ,如图(2)所示,∵点P 是ΔABC 三条角平分线的交点,∴PE =PF =PD =5,∴S ΔABC =S ΔPAB +S ΔPBC +S ΔPAC=PD ·AB +PE ·BC +PF ·AC=(AB +BC +AC )=20=50.如图(1)所示,在RtΔABC 中,∠ACB =90°,且AC =b ,BC =a ,AB =c ,∠A 与∠B 的平分线交于点O ,O 到AB 的距离为OD.试探究OD 与a ,b ,c 的数量关系.〔解析〕过点O作OE⊥AC于E,OF⊥BC于F,然后根据角平分线上的点到角的两边的距离相等可得OD=OE=OF,然后证得四边形EOFC是正方形,从而证得OE=OF=FC=EC=OD,AE=AD,BD=BF,通过AB=AC-OD+BC-OD即可求解.解:如图(2)所示,过点O作OE⊥AC于E,OF⊥BC于F,∵∠BAC,∠ABC的平分线交于点O,OD⊥AB,∴OD=OE,OD=OF,∴OD=OE=OF,∵∠ACB=90°,∴四边形EOFC是正方形,∴OE=OF=FC=EC=OD,在RtΔOAE和RtΔOAD中,∴RtΔOAE≌RtΔOAD,∴AE=AD,同理BD=BF,∴AE+EC=AD+OD=AC=b,BF+CF=BD+OD=BC=a,∴AD=b-OD,BD=a-OD,∴AD+BD=a+b-2OD,即c=a+b-2OD,∴OD=(a+b-c).。
Go thedistance 浅谈角平分线定理的巧妙应用吉林省磐石市第一中学:周喜瑞 定理:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例, 即在△ABC 中,BD 平分∠ABC,则AD :DC=AB :BC (注:定理的逆命题也成立) 这是初中和高中都没有直接给出的重要定理,而它的应用却是那么的广泛,令很多老师学生望而生畏,下面就其三个方面的应用作以详细的介绍,仅供参考:应用1:半角与倍角这是在人教A 版必修Ⅱ练习册中出现的习题,而此时还没有学习三角函数的半角与倍角公式,因此很多教师把这样的习题都删了。
笔者认为放在这里自有它的作用,通过平面几何知识可以巧妙地解决此类问题。
例题1、已知两点()10,2--A ,()4,6-B ,直线l 的倾斜角是直线AB 的倾斜角的一半,求直线l 的斜率。
解析:43=AB k ,如图:作直角三角形ACB ,AD 是角A 的平分线 由角平分线定理得DBCD AB AC =,又由勾股定理得5=AB x x -=∴354,解得34=x ,因此31=AC DC ,31=l k 例题2、一条直线l 经过点()1,2P ,并且满足倾斜角是直线1l :034=+-y x 的倾斜角的两倍;求直线l 方程。
解析:411=l k ,如图:作直角三角形ACB ,AD 是角A 的平分线 由角平分线定理得DBCD AB AC =,又由勾股定理得 ()()222144++=x x ,解得1517=x 或1-=x (舍), 因此158415171=+=AC BC ,158=l k ,所以直线l 的方程为01158=--y x 应用2:求轨迹方程我们知道动点P 与两个定点A ,B 的距离的比为定值λ,若1=λ,则动点P 的轨迹是线段AB 的垂直平分线。
若1≠λ,则动点P 的轨迹是圆。
我们可以通过建立适当的坐标系,用坐标法求出动点P 的轨迹方程,进而说明轨迹形状。
下面用另一种方法,从几何角度求出动点P 的轨迹。
《角平分线》计算题及答案(提高)1.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC度数是α,∠MON的大小是否发生改变?为什么?2.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图③,当∠AOB=α,∠BOC=β(0°<α+β<180°)时,猜想∠MON与α,β的数量关系,并说明理由.3.如图,BD平分∠ABC,BE把∠ABC分成2:5的两部分,∠DBE=21°,求∠ABC的度数.4.(1)如图①,∠AOB和∠COD都是直角,请你写出∠AOD和∠BOC之间的数量关系,并说明理由;(2)当∠COD绕点O旋转到如图②所示的位置时,上述结论还成立吗?并说明理由.(3)如图③,当∠AOB=∠COD=β(0°<β<90°)时,请你直接写出∠AOD和∠BOC之间的数量关系.(不用说明理由)5.小丽将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,求∠CBD的度数.6.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.7.小倩把一副三角板的直角顶点O重叠在一起.(1)如图1,当OB平分∠COD时,∠AOD与∠BOC的和是多少度?(2)如图2,当OB不平分∠COD时,∠AOD和∠BOC的和是多少度?8.如图,点C 为线段AB 上一点, AC ︰CB =3︰2,D 、E 两点分别为AC 、AB 的中点,若线段DE =2cm ,求AB 的长.9.如图,点C 是线段AB 上一点,线段AC =8,BC =20,点N 为AC 的中点,点M 是线段CB 上一点,且CM :BM =1:4,求线段MN 的长.10.如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB.若AB =24 cm ,求线段CE 的长.《角平分线》计算题参考答案1.解:(1)∵∠AOB 是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM 是∠BOC 的平分线,ON 是∠AOC 的平分线,∴,.∴∠MON=∠MOC ﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC 的大小发生改变时,∠MON 的大小不发生改变.∵=,又∠AOB 是直角,不改变,∴. 2.解:(1)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC)=12∠AOB =45°. (2)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC)=12∠AOB =12α. (3)∠MON =12α.理由:∠MON =∠MOC -∠NOC =12(α+β)-12β=12α.3.解:设∠ABE =2x°,则∠CBE =5x°,∠ABC =7x°.因为BD 为∠ABC 的平分线,所以∠ABD =12∠ABC =72x°, 所以∠DBE =∠ABD -∠ABE =72x°-2x°=32x°=21°. 所以x =14,所以∠ABC =7x°=98°.4.解:(1)∠AOD 与∠BOC 互补.理由:因为∠AOB ,∠COD 都是直角,所以∠AOB =∠COD =90°,所以∠BOD =∠AOD -∠AOB =∠AOD -90°,∠BOD =∠COD -∠BOC =90°-∠BOC ,所以∠AOD -90°=90°-∠BOC ,所以∠AOD +∠BOC =180°,所以∠AOD 与∠BOC 互补.(2)成立.理由:因为∠AOB ,∠COD 都是直角,所以∠AOB =∠COD =90°.因为∠AOB +∠BOC +∠COD +∠AOD =360°,所以∠AOD +∠BOC=180°,所以∠AOD与∠BOC互补.(3)∠AOD+∠BOC=2β.5. 90°6.解:设∠COD=x,∵∠AOC=60°,∠BOD=90°,∴∠AOD=60°﹣x,∴∠AOB=90°+60°﹣x=150°﹣x,∵∠AOB是∠DOC的3倍,∴150°﹣x=3x,解得x=37.5°,∴∠AOB=3×37.5°=112.5°.7.解:(1)∵OB平分∠COD,∴∠COB=∠BOD=45°,∴∠COA=90°﹣45°=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°,∴∠AOD和∠BOC的和是180°.(2)∵∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC∴∠AOD+∠BOC=(∠AOC+∠BOC)+(∠BOD+∠BOC)=90°+90°=180°.∴∠AOD和∠BOC的和是180°.8. 8cm9.解:因为点N 是AC 的中点,所以NC =12AC =12×8=4. 因为点M 是线段CB 上一点,且CM :BM =1:4,所以CM =15BC =15×20=4. 所以MN =MC +CN =4+4=8.即线段MN 的长为8.10.解:因为点C 是AB 的中点,所以AC =BC =12AB =12×24=12(cm). 所以AD =23AC =23×12=8(cm).所以CD =AC -AD =12-8=4(cm).因为DE =35AB =35×24=14.4(cm), 所以CE =DE -CD =14.4-4=10.4(cm).。
七年级数学上册角平分线几何综合题汇总角平分线是几何学中的一个重要概念,涉及到角的计算。
在研究过线段射线的基础上,学生需要掌握方法和技巧,加强分析解题的能力并规范书写。
题1:直线AB、CD是经同一点O的不同直线,OE是∠BOD的角平分线,OF是∠COE的角平分线,求∠COF的度数。
已知∠1=100°,解题过程如下:∵∠1=100°,所以∠BOD=180°-100°=80°。
因为OE是∠BOD的角平分线,所以∠DOE=1/2×∠BOD=40°。
同理,∠COE=180°-40°=140°,OF 是∠COE的角平分线,所以∠COF=1/2×∠COE=70°。
题2:已知∠BOC=2∠AOC,OD平分∠AOB,且∠AOC=40°,求∠COD的度数。
解题过程如下:∵∠BOC=2∠AOC,∠AOC=40°,所以∠BOC=2×40°=80°。
因此,∠AOB=∠BOC+∠AOC=80°+40°=120°。
由于OD平分∠AOB,所以∠AOD=1/2×∠AOB=1/2×120°=60°。
最后,∠COD=∠AOD-∠AOC=60°-40°=20°。
题3:已知∠AOD=150°,∠AOB=40°,∠COD=70°,OM、ON分别是∠AOB、∠COD的平分线,求∠MON的度数。
解题过程如下:∵∠AOB=40°,∠COD=70°,所以∠AOM=1/2×∠AOB=1/2×40°=20°,∠DON=1/2×∠COD=1/2×70°=35°。
初中角平分线相关的经典题型什么是角平分线呢?角平分线指的是将一个角分成两个相等的角的线段。
在初中数学中,角平分线是一个非常常见的概念,并且在各类题型中经常被考察。
接下来,我们将介绍一些与初中角平分线相关的经典题型,帮助大家更好地理解和应用这一知识点。
题型一:已知角的两边长,求角平分线的长度和夹角大小。
在这种题型中,我们需要根据已知的角的两边长,求出角平分线的长度和夹角大小。
解题的关键是利用角平分线将一个角划分成两个相等的角,并应用三角函数的相关知识。
示例题:已知角ABC的两边AB和AC的长度分别为8cm和10cm,求角平分线BD的长度和角ABD的大小。
解析:首先,利用角平分线将角ABC分成了两个相等的角,即角ABD和角CBD。
然后,利用三角函数的正弦定理和余弦定理可以求解出角ABD和角CBD的大小。
最后,通过角ABD的大小,可以用正弦函数求出角平分线BD的长度。
题型二:已知角平分线的长度,求角的两边长和夹角大小。
在这种题型中,我们需要根据已知的角平分线的长度,求出角的两边长和夹角大小。
解题的关键是利用角平分线将一个角分成两个相等的角,并利用三角函数的相关知识解方程。
示例题:在三角形ABC中,角BAD是角BAC的平分线,已知角BAD 的长度为6cm,且角ABD的大小为60°,求角BAC的大小和边AC的长度。
解析:首先,利用已知条件可以得出角BAC可以由角ABD的大小得出,再由角BAC的大小,可以用三角函数求解出边AC的长度。
最后,应用角平分线的性质可以求出角CAD的大小。
题型三:利用角平分线性质求证题这类题型主要是利用角平分线的性质来进行证明。
我们需要根据已知条件,通过合理的推理和运用一些几何性质,来证明某些定理或者结论。
示例题:已知在三角形ABC中,角BAD是角BAC的平分线,证明:AB/BC=AD/DC。
解析:首先,利用角平分线的定义可以得出角BAD和角DAC的大小相等。
然后,通过角度相等和边的比值可以得出AB/BC=AD/DC的关系。
角平分线相关练习题答案:1、∠DOC=30°解析:由角平分线定义:到角两边距离相等的点在角平分线上,得知,点C在角平分线上,即OC为∠AOB 的角平分线,因为∠AOB=60°,所以∠DOC=∠EOC=30°2、∠BOC=50°解析:由题知,∠AOE=∠BOE=½∠AOB=45°,∠BOD=∠EOD-∠BOE=70°-45°=25°,∠BOC=2∠BOD=50°3、D解析:由角平分线定义和性质得知,角平分线上的点到角两边的距离相等,故A、B、C均正确。
4、S△BDC=½mn解析:通过D点向BC边作垂线段,交BC于点E,则DE为△BDC的高线,由于DA⊥AB且DE⊥BC,BD是角平分线,故得知线段AD=DE=m,S△BDC=½BC×DE=½mn5、A解析:由角平分线性质得知,角平分线上的点到角两边的距离相等,故P到AB的距离=PE=36、∠COE=75°解析:∠AOC=∠BOC=∠BOD=½×90°=45°,因为∠BOD=3∠DOE,所以∠BOE=⅔∠BOD=⅔×45°=30°,∠COE=∠BOC+∠BOE=45°+30°=75°7、∠BOD=75°解析:∠COD=∠AOD=½∠AOC=½(∠AOB-∠BOC)=½(90°-60°)=15°,∠BOD=∠BOC+∠COD=60°+15°=75°8、∠AOC=140°解析:∠AOC=∠AOB+∠BOC=2∠BOD+2∠BOE=2∠BOD+2(∠DOE-∠BOD)=2∠DOE=2×70°=140°。
马鸣风萧萧
马鸣风萧萧
专训1 巧用角平分线的有关计算
名师点金:角平分线的定义是进行角度计算常见的重要依据,因此解这类题要从角平分线找角的数量
关系,利用图形中相等的角的位置关系,结合角的和、差关系求解.
角平分线间的夹角问题(分类讨论思想)
1.已知∠AOB=100°,∠BOC=60°,OM平分∠AOB,ON平分∠BOC,求∠MON的度数.
巧用角平分线解决折叠问题(折叠法)
2.如图,将一张长方形纸斜折过去,使顶点A落在A′处,BC为折痕,然后把BE折过去,使之落在
A′B所在直线上,折痕为BD,那么两折痕BC与BD间的夹角是多少度?
(第2题)
巧用角平分线解决角的和、差、倍、分问
题(方程思想)
3.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=19°,求∠AOB的度数.
(第3题)
马鸣风萧萧
马鸣风萧萧
巧用角平分线解决角的推理说明问题
(转化思想)
4.如图,已知OD,OE,OF分别为∠AOB,∠AOC,∠BOC的平分线,∠DOE和∠COF有怎样的
关系?说明理由.
(第4题)
角平分线与线段中点的结合
5.如图,(1)已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;
(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数;
(3)如果(1)中∠BOC=β(0°<β<90°),其他条件不变,求∠MON的度数;
(4)从(1)(2)(3)的结果中能得到什么样的规律?
(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计
一道以线段为背景的计算题,给出解答,并写出其中的规律.【导学号:11972076】
马鸣风萧萧
马鸣风萧萧
(第5题)
答案
1.解:如图①,当OC落在∠AOB的内部时,
因为OM平分∠AOB,ON平分∠BOC,
所以∠BOM=12∠AOB=12×100°=50°,∠BON=12∠BOC=12×60°=30°,
所以∠MON=∠BOM-∠BON=50°-30°=20°.
(第1题)
如图②,当OC落在∠AOB的外部时,
马鸣风萧萧
马鸣风萧萧
因为OM平分∠AOB,ON平分∠BOC,
所以∠BOM=12∠AOB=12×100°=50°,∠BON=12∠BOC=12×60°=30°.
所以∠MON=∠BOM+∠BON=50°+30°=80°.
综上可知,∠MON的度数为20°或80°.
点拨:本题已知没有图,作图时应考虑OC落在∠AOB的内部和外部两种情况,体现了分类讨论思想
的运用.
2.解:因为∠CBA与∠CBA′折叠重合,
所以∠CBA=∠CBA′.
因为∠EBD与∠A′BD折叠重合,
所以∠EBD=∠A′BD.
又因为∠ABC+∠CBA′+∠A′BD+∠EBD=180°,
所以∠CBD=∠CBA′+∠A′BD=12×180°=90°.
即两折痕BC与BD间的夹角为90°.
点拨:本题可运用折叠法动手折叠,便于寻找角与角之间的关系.
3.解:设∠AOC=x,则∠COB=2x.
因为OD平分∠AOB,所以∠AOD=12∠AOB=12(∠AOC+∠BOC)=32x.
又因为∠DOC=∠AOD-∠AOC,所以19°=32x-x,
解得x=38°.
所以∠AOB=3x=3×38°=114°.
点拨:根据图形巧设未知数,用角与角之间的数量关系构建关于未知数的方程,求出角的度数,体现
了方程思想的运用.
4.解:∠DOE=∠COF.理由如下:
因为OD平分∠AOB,所以∠DOB=12∠AOB.
因为OF平分∠BOC,所以∠BOF=12∠BOC,所以∠DOB+∠BOF=12∠AOB+12∠BOC=12∠AOC,
即∠DOF=12∠AOC.又因为OE平分∠AOC,所以∠EOC=12∠AOC,所以∠DOF=∠EOC.又因为∠DOF
=∠DOE+∠EOF,∠EOC=∠EOF+∠COF,所以∠DOE=∠COF.
点拨:欲找出∠DOE与∠COF的关系,只要找到∠DOF与∠COE的关系即可.而OD,OF分别是
∠AOB,∠BOC的平分线,那么由此可得到∠DOF与∠AOC的关系,而且又有∠EOC=12∠AOC,即可
转化成∠DOF与∠EOC的关系,进而可得∠DOE与∠COF的关系,体现了转化思想的运用.
5.解:(1)因为OM平分∠AOC,ON平分∠BOC,
所以∠MOC=12∠AOC,∠NOC=12∠BOC,
马鸣风萧萧
马鸣风萧萧
所以∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOB+∠BOC)-12∠BOC=12∠AOB=
45°.
(2)∠MON=12∠AOB=α2.
(3)∠MON=12∠AOB=45°.
(4)从(1)(2)(3)的结果中可看出:∠MON的大小总等于∠AOB的一半,而与∠BOC的大小无关.
(5)可设计的问题为:如图,线段AB=a,延长AB到C使BC=b,点M,N分别是线段AC,BC的
中点,求线段MN的长.
(第5题)
解:因为点M,N分别是线段AC,BC的中点,
所以MC=12AC,NC=12BC.
所以MN=MC-NC=12(AC-BC)=12AB=12a.
初中数学试卷
马鸣风萧萧