第7章 立体
- 格式:ppt
- 大小:6.21 MB
- 文档页数:47
第七章 立体化学1. 区别下列各组概念并举例说明。
(略)2. 什么是手性分子?下面哪些是手性分子,写出它们的结构式,并用R ,S 标记其构型:(2)(1)CH 2CH 2CH 3CH 2CH 3BrH CH 2CH 2CH 3CH 2CH 3Br HRSCH(CH 3)2CH 2CH 3CH(CH 3)2CH 2CH 3RSClH Cl H(3)CH 2CH 2Cl CH 2CH 3ClH CH 2CH 2Cl CH 2CH 3Cl HRS(4)Cl Cl 无手性(5)SRS RCl Cl无手性(6)Cl ClCl ClCH 3CH 2CCH 2CH 3ClCH 3无手性无手性(7)无手性C=CH 2CH 3C=CH 2CH 3H 3CH 3C3.下列化合物哪些有旋光性?为什么? (1) 无(对称面);(2) 无(对称面);(3) 有;(4) 有;(5) 无(平面分子);(6) 有; (7) 无(对称中心);(8) 无(对称面)。
4. 命名下列化合物。
(1)R-3-溴-1-戊烯; (2)(2S ,3R )-2-甲基-1,3-二氯戊烷; (3)(2R ,3R )-2-氯-3-溴戊烷; (4)(2S ,3S ,4R )-2-氯-3,4-二溴己烷; (5)(1S ,2S ,4S )-1-甲基-4-异丙基-2-氯环己烷.5. 写出下列化合物的构型式:(2)(1)C 6H 5CH 3HOH CH 3CH 2CH 2OHOHHCH 3C=C HCl CH 3CH 3CH 2OH BrH (3)(4)OH CH 3HHO(7)(6)H Br CH 2CH 3CH 2C 6H 5H ClCH 2CH 3CH 3(5)H BrH CH 3CH 3CH 2CH 3OH6.写出下列化合物的所有立体异构体,并用R ,S 及Z ,E 表明构型。
(1)2,4-二溴戊烷:两个相同的手性碳,有3种异构体;H H CH 3CH 3H BrBr H Br HH H CH 3CH 3Br H H H CH 3CH 3Br HH Br (2R,4S)(2S,4S)(2R,4R)(2)1,2-二苯基-1-氯丙烷:两个不同的手性碳,有4种异构体;HClPh H (1R,2S)(1S,2R)(1R,2R)PhCH 3HClH Ph PhCH 3PhCH 3ClHPh H PhCH 3H Ph (1S,2S)ClH(3)1-甲基-2-乙叉基环戊烷:有旋光异构和顺反异构;(S,E)(S,Z)(R,E)(R,Z)CH CH 3CH 3H CCH 3HCH 3H CH CH 3CCH 3HHCH 3HCH 3(4)1,2-二氯环丁烷:反式无对称因素,有对映体Cl Cl Cl ClCl Cl(R,S)(R,R)(S,S)(5)1-氘-1-氯丁烷:一个手性碳,有一对对映体Cl CH 2CH 2CH 3DH Cl CH 2CH 2CH 3HD (S)(R)7.写出下列化合物的费歇尔投影式,并用R ,S 标定不对称原子。
第七章平面立体的投影基本要求§7-1 平面立体的投影特性§7-2 平面立体表面上取点§7-3 平面立体的切割基本要求§7-1 平面立体的投影特性一、棱柱的投影特性六棱柱的投影图二、棱锥的投影特性三棱锥的投影图例题1一、棱柱的投影特性一个投影为多边形,另外两个投影轮廓线为矩形。
六棱柱的投影图二、棱锥的投影特性一个投影为多边形,另外两个投影轮廓线为三角形。
三棱锥的投影图SCBA[例题1] 求立体的侧面投影§7-2 平面立体表面上取点一、棱柱表面上取点二、棱锥表面上取点一、棱柱表面上取点aaR1"11'r 'r Ⅰ二、三棱锥表面上取点Ⅰ2"2'Ⅱ23'3"Ⅲ3§7-3 平面立体的切割平面立体的截交线是截平面与平面立体表面的交线。
一、平面立体的截交线二、平面立体截交线的性质三、平面立体截交线的求法1.棱柱上截交线的求法2.棱锥上截交线的求法一、平面立体的截交线平面立体的截交线是截平面与平面立体表面的交线。
二、平面立体截交线的性质三、平面立体截交线的求法1 棱柱上截交线的求法例题2例题3[例题2] 求立体切割后的投影4"3"1"2"6"5"ⅠⅥⅤⅣⅢⅡ11'4'5'623(6')(2')(3')[例题3] 求立体截割后的投影7"11"8"87111"2"10"5"6"9"4"3"61(3)2(4)5ⅠⅪⅡⅨⅩⅣⅢ1'(2')8'3'(4')10' (5')9' 11'(6')(7')2.棱锥上截交线的求法例题4例题5[例题4] 求立体切割后的投影23541"11'6'6"5"4"3"2"6ⅠⅤⅣⅢⅡⅥ4'(5')2'(3')[例题5] 求立体切割后的投影1'(2')3412642"1"5"6"3"4"6'(5')3'(4')ⅢⅠⅥⅣⅡⅤ本章结束。
第七章⎪⎪⎪立体几何第一节空间几何体的结构特征及三视图与直观图1.简单几何体 (1)多面体的结构特征(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线. [小题体验]1.某三棱锥的三视图如图所示,则该三棱锥最长棱的长为( )A.5 B .2 2C .3D .2 3解析:选C 在棱长为2的正方体ABCD -A1B 1C 1D 1中,M ,N 分别为AD ,BC 的D 1B 1=22,D 1M 中点,该几何体的直观图如图中三棱锥D 1-MNB 1,故通过计算可得,=B 1N =5,MN =2,MB 1=ND 1=3,故该三棱锥中最长棱的长为3.2.(教材习题改编)如图,长方体ABCD -A ′B ′C ′D ′被截去一部分,其中EH∥A ′D ′,则剩下的几何体是________,截去的几何体是______.答案:五棱柱 三棱柱1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点. 2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.[小题纠偏]1.如图,能推断这个几何体可能是三棱台的是( )A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1, AB =2,B 1C 1=32,BC =3,A 1C 1=2,AC =3C .A 1B 1=1,AB =2,B 1C 1=32,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C 根据棱台是由棱锥截成的,可知A 1B 1AB =B 1C 1BC =A 1C 1AC ,故A ,B 不正确,C 正确;D 项中满足这个条件的是一个三棱柱,不是三棱台,故D 不正确.2.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是( )解析:选B 俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B. 3.(教材习题改编)利用斜二测画法得到的 ①三角形的直观图一定是三角形; ②正方形的直观图一定是菱形; ③等腰梯形的直观图可以是平行四边形; ④菱形的直观图一定是菱形. 以上结论正确的个数是________.解析:由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.答案:1考点一 空间几何体的结构特征(基础送分型考点——自主练透)[题组练透]1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A .圆柱 B .圆锥C .球体D .圆柱、圆锥、球体的组合体解析:选C 截面是任意的且都是圆面,则该几何体为球体. 2.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A .0B .1C .2D .3解析:选B ①不一定,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.3.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形.答案:②③④[谨记通法]解决与空间几何体结构特征有关问题的3个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型;(3)通过反例对结构特征进行辨析.考点二空间几何体的三视图(重点保分型考点——师生共研)[典例引领]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()解析:选A由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.2.(2018·杭州模拟)已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,那么该三棱锥的侧视图可能为()解析:选B由正视图可看出长为2的侧棱垂直于底面,侧视图为直角三角形,直角边长为2,另一直角边为底边三角形的高 3.故侧视图可能为B.[由题悟法]1.已知几何体,识别三视图的技巧已知几何体画三视图时,可先找出各个顶点在投影面上的投影,然后再确定线在投影面上的实虚.2.已知三视图,判断几何体的技巧(1)对柱、锥、台、球的三视图要熟悉.(2)明确三视图的形成原理,并能结合空间想象将三视图还原为直观图.(3)遵循“长对正、高平齐、宽相等”的原则.[提醒]对于简单组合体的三视图,应注意它们的交线的位置,区分好实线和虚线的不同.[即时应用]1.(2018·沈阳教学质量监测)“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是()解析:选B根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B,故选B.2.一个几何体的三视图如图所示,则该几何体的直观图可以是()解析:选D由俯视图是圆环可排除A、B、C,进一步将已知三视图还原为几何体,可得选项D.考点三 空间几何体的直观图(重点保分型考点——师生共研)[典例引领](2018·杭州模拟)在等腰梯形ABCD 中,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.解析:画出等腰梯形ABCD 的实际图形及直观图A ′B ′C ′D ′如图所示,因为OE =(2)2-12=1, 所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为 S ′=12×(1+3)×24=22.答案:22[由题悟法]原图与直观图中的“三变”与“三不变” (1)“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度改变(减半)图形改变(2)“三不变”⎩⎪⎨⎪⎧平行性不变与x 轴平行的线段长度不变相对位置不变[即时应用]如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形2×22=4 2解析:选C 如图,在原图形OABC 中,应有OD =2O ′D ′=cm ,CD =C ′D ′=2 cm.∴OC =OD 2+CD 2=(42)2+22=6 cm , ∴OA =OC ,故四边形OABC 是菱形.一抓基础,多练小题做到眼疾手快1.某几何体的正视图和侧视图完全相同,均如图所示,则该几何体的俯视图一定不可能是()解析:选D几何体的正视图和侧视图完全一样,则几何体从正面看和侧面看的长度相等,只有等边三角形不可能.2.下列说法正确的是()A.棱柱的两个底面是全等的正多边形B.平行于棱柱侧棱的截面是矩形C.{直棱柱}⊆{正棱柱}D.{正四面体}⊆{正三棱锥}解析:选D因为选项A中两个底面全等,但不一定是正多边形;选项B中一般的棱柱不能保证侧棱与底面垂直,即截面是平行四边形,但不一定是矩形;选项C中{正棱柱}⊆{直棱柱},故A、B、C都错;选项D中,正四面体是各条棱均相等的正三棱锥,故正确.3.(2019·杭州四校联考)如图所示的为一个几何体的三视图,则该几何体的直观图是()解析:选A对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图中,对角线是虚线,故B不符合题意;对于C,该几何体的正视图中,对角线是从左上到右下的,故C不符合题意;对于D,该几何体的侧视图中,对角线是虚线,故D不符合题意.故选A.4.(2019·台州质检)如图,网络纸上正方形小格的边长为1,粗线画出的是某几何体的三视图,则该几何体中最长棱的长度为()A.62B.6 3C.8 D.9解析:选D由三视图还原几何体如图,该几何体为三棱锥,侧棱PA⊥底面ABC,底面三角形ABC为等腰三角形,且PB=62+(32)2=36,PC=62+(35)2=9,则该几何体中最长棱的长度为9.故选D.5.在如图所示的直观图中,四边形O′A′B′C′为菱形且边长为2 cm,则在直角坐标系xOy中,四边形ABCO的形状为________,面积为________cm2.解析:由斜二测画法的特点知该平面图形是一个长为4 cm,宽为 2 cm的矩形,所以四边形ABCO的面积为8 cm2.答案:矩形8二保高考,全练题型做到高考达标1.(2018·台州模拟)一个简单几何体的正视图、俯视图如图所示,则其侧视图不可能为()A.正方形B.圆C.等腰三角形D.直角梯形解析:选D该几何体是一个长方体时,其中一个侧面为正方形,A可能;该几何体是一个横放的圆柱时,B可能;该几何体是横放的三棱柱时,C可能,只有D不可能.2.如图所示是水平放置三角形的直观图,点D是△ABC的BC边中点,AB,BC分别与y′轴、x′轴平行,则三条线段AB,AD,AC中()A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD解析:选B由条件知,原平面图形中AB⊥BC,从而AB<AD<AC.3.(2018·沈阳教学质量监测)如图,网格纸的各小格都是正方形,粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体可能为()A .三棱台B .三棱柱C .四棱柱D .四棱锥解析:选B 根据三视图的法则:长对正,高平齐,宽相等,可得几何体如图所示,这是一个三棱柱.4.(2018·温州第八高中质检)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA 1⊥平面A 1B 1C 1,正视图是边长为2的正方形,该三棱柱的侧视图面积为( )A .4B .2 3C .2 2D. 3解析:选B 由题可得,该几何体的侧视图是一个长方形,其底边长是底面正三角形的高3,高为2,所以侧视图的面积为S =2 3.5.已知四棱锥P -ABCD 的三视图如图所示,则四棱锥P -ABCD 的四个侧面中面积最大的是( )A .3B .2 5C .6D .8解析:选C 四棱锥如图所示,取AD 的中点N ,BC 的中点M ,连接PM ,PN ,则PM =3,PN =5,S △PAD =12×4×5=25,S △PAB =S △PDC =12×2×3=3,S △PBC =12×4×3=6.所以四个侧面中面积最大的是6.6.(2018·台州模拟)如图所示,在正方体ABCD-A1B1C1D1中,点E为棱BB1的中点,若用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的侧视图为()解析:选C取DD1的中点F,连接AF,FC1,则过点A,E,C1的平面即为面AEC1F,所以剩余几何体的侧视图为选项C.7.(2019·义乌六校联考)图①是棱长为1的正方体ABCD-A1B1C1D1截去三棱锥A1-AB1D1后得到的几何体,将其绕着棱DD1所在的直线逆时针旋转45°,得到如图②所示的几何体,该几何体的正视图为()解析:选B由题意可知,该几何体的正视图是长方形,底面对角线DB在正视图中的长为2,棱CC1在正视图中为虚线,D1A,B1A在正视图中为实线,故该几何体的正视图为B.8.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④9.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12 cm ,BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:1310.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________. 解析:如图,图①、图②所示的分别是实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64. 所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:64三上台阶,自主选做志在冲刺名校1.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A .8B .7C .6D .5解析:选C 画出直观图,共六块.2.(2018·湖南东部六校联考)某三棱锥的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是( )A .4 3B .8 3C .47D .8解析:选C 设该三棱锥为P -ABC ,其中PA ⊥平面ABC ,PA =4,则由三视图可知△ABC 是边长为4的等边三角形,故PB =PC =42,所以S △ABC =12×4×23=43,S △PAB =S △PAC =12×4×4=8,S △PBC =12×4×(42)2-22=47,故四个面中面积最大的为S △PBC =47,选C.3.如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积; (2)求PA .解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm 的正方形,如图,其面积为36cm 2.(2)由侧视图可求得PD =PC 2+CD 2=62+62=6 2. 由正视图可知AD =6, 且AD ⊥PD , 所以在Rt △APD 中, PA =PD 2+AD 2=(62)2+62=6 3 cm.第二节空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式[小题体验]1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得:l =22+(23)2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π. 2.(教材习题改编)某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知,该几何体是一个直三棱柱,其底面为侧视图,该侧视图是底边为2,高为3的三角形,正视图的长为三棱柱的高,故h =3,所以该几何体的体积V =S ·h =⎝⎛⎭⎫12×2×3×3=3 3.答案:3 33.若球O 的表面积为4π,则该球的体积为________.解析:由题可得,设该球的半径为r ,则其表面积为S =4πr 2=4π,解得r =1.所以其体积为V =43πr 3=43π. 答案:43π1.求组合体的表面积时,组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.易混侧面积与表面积的概念. [小题纠偏]1.(教材习题改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱体积之比为________,球的表面积与圆柱的侧面积之比为________.答案:2∶3 1∶12.若某几何体的三视图如图所示,则此几何体的表面积是________.解析:由三视图可知,该几何体由一个正四棱柱和一个棱台组成,其表面积S =3×4×2+2×2×2+4×22×2+4×6+12×(2+6)×2×2=72+16 2.答案:72+16 2考点一 空间几何体的表面积(基础送分型考点——自主练透)[题组练透]1.某几何体的三视图如图所示,则该几何体的表面积等于( ) A .8+2 2 B .11+2 2 C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.2.(2018·浙江新高考联盟高三期初联考)如图是某四棱锥的三视图,则该几何体的表面积等于( )A .34+65B .44+12 5C .34+6 3D .32+6 5解析:选A 由三视图知几何体底面是一个长为6,宽为2的矩形,高为4的四棱锥,所以该几何体的表面积为12×6×25+12×6×4+2×12×2×5+6×2=34+65,故选A.3.如图,网格纸上小正方形的边长为1,粗线是一个棱锥的三视图,则该棱锥的表面积为( )A .6+42+2 3B .8+4 2C .6+6 2D .6+22+4 3解析:选A 由三视图可知该棱锥为如图所示的四棱锥P -ABCD ,S △PAB =S △PAD =S △PDC =12×2×2=2,S △PBC =12×22×22×sin 60°=23,S 四边形ABCD=22×2=42,故该棱锥的表面积为6+42+2 3.[谨记通法]几何体的表面积的求法(1)求表面积问题的思路是将立体几何问题转化为平面问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得几何体的表面积.注意衔接部分的处理.考点二 空间几何体的体积(重点保分型考点——师生共研)[典例引领]1.(2018·金华高三期末考试)某几何体的三视图如图所示,则该几何体的体积为( )A.223B.233C.423D.433解析:选D 由三视图可知该几何体是一个以俯视图为底面的四棱锥,其直观图如=13×4×3图所示.底面ABCD 的面积为2×2=4,高PO =3,故该几何体的体积V =433. 2.(2018·宁波十校联考)某几何体的三视图如图所示,则该几何体的体积等于________,表面积等于________.解析:如图,由三视图可知该几何体是底面半径为2,高为3的圆柱的一半,故该几何体的体积为12×π×22×3=6π,表面积为2×12×π×22+4×3+π×2×3=10π+12.答案:6π 12+10π[由题悟法]有关几何体体积的类型及解题策略1.(2018·杭州高级中学模拟)一个几何体的三视图如图所示,则该几何体的体积为( )A .1 B.32 C.12D.34解析:选C 由题可得,该几何体是一个四棱锥,底面是上下底边分别为1和2,高为1的直角梯形,又四棱锥的高为1.所以该几何体的体积为V=13×12×(1+2)×1×1=12.2.(2019·台州高三适考)如图是一个几何体的三视图,则该几何体的体积为________,几何体中最长棱的长是________.解析:由三视图可知,该几何体是棱长为2的正方体ABCD -A 1B 1C 1D 1中的三棱锥M -A 1B 1N ,如图所示,M 是棱AB 上靠近点A 的一个三等分点,N 是棱C 1D 1的中点,所以VM -A 1B 1N =13×12×2×2×2=43.又A 1B 1=2,A 1N =B 1N =22+12=5,A 1M =22+⎝⎛⎭⎫232=2103,B 1M =22+⎝⎛⎭⎫432=2133,MN =22+22+⎝⎛⎭⎫132=733,所以该几何体中最长棱的长是733. 答案:437333.(2018·温州高三一模)如图,一个简单几何体的三视图的正视图与侧视图都是边长为1的正三角形,其俯视图的轮廓为正方形,则该几何体的体积为________,表面积为________.解析:如图,还原三视图为正四棱锥,易得正四棱锥的高为32,底面积为1,体积V =13×1×32=36;易得正四棱锥侧面的高为⎝⎛⎭⎫322+⎝⎛⎭⎫122=1,所以表面积S =4×12×1×1+1=3.答案:363 考点三 与球有关的切、接问题(题点多变型考点——多角探明) [锁定考向]与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点,命题角度多变. 常见的命题角度有: (1)球与柱体的切、接问题; (2)球与锥体的切、接问题.[题点全练]角度一:球与柱体的切、接问题1.如图,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A.66π B.π3 C.π6D.33π 解析:选C 平面ACD 1截球O 的截面为△ACD 1的内切圆.因为正方体的棱长为1,所以AC =CD 1=AD 1=2,所以内切圆的半径r =22×tan 30°=66, 所以S =πr 2=π×16=16π.2.(2018·金华一模)一个圆柱的轴截面是正方形,在圆柱内有一个球O ,该球与圆柱的上、下底面及母线均相切.记球O 的体积为V 1,圆柱内除了球之外的几何体体积为V 2,则V 1V 2的值为________.解析:如图,设圆柱的底面半径为r ,则圆柱的高为2r ,球O 的半径为r ,∴球O 的体积V 1=43πr 3,圆柱内除了球之外的几何体体积 V 2=πr 2×2r -43πr 3=23πr 3,∴V 1V 2=43πr 323πr 3=2. 答案:2角度二:球与锥体的切、接问题3.(2018·绍兴质检)四棱锥P -ABCD 的底面ABCD 是边长为6的正方形,且PA =PB =PC =PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( )A .6B .5 C.92D.94解析:选D 过点P 作PH ⊥平面ABCD 于点H .由题知,四棱锥P -ABCD 是正四棱锥,内切球的球心O 应在四棱锥的高PH 上.过正四棱锥的高作组合体的轴截面如图,其中PE ,PF 是斜高,M 为球面与侧面的一个切点.设PH =h ,易知Rt △PMO ∽Rt △PHF ,所以OM FH =PO PF ,即13=h -1h 2+32,解得h =94.4.(2018·嘉兴一模)如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为( )A.20π3 B .8π C .9πD.19π3解析:选D 如图,该几何体为三棱锥A -BCD ,设三棱锥外接球的球心为O ,O 1,O 2分别为△BCD ,△ABD 的外心,依题意得,OO 1=36AB =33,O 1D =12CD =52,∴球的半径R =OO 21+O 1D 2= 1912,∴该几何体外接球的表面积S =4πR 2=19π3. [通法在握]解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:[演练冲关]1.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A .20π B.205π3C .5πD.55π6解析:选D 由题意知六棱柱的底面正六边形的外接圆半径r =1,其高h =1,∴球半径为R =r 2+⎝⎛⎭⎫h 22=1+14=52,∴该球的体积V =43πR 3=43×⎝⎛⎭⎫523π=55π6. 2.(2018·镇海期中)一个棱长为6的正四面体纸盒内放一个正方体,若正方体可以在纸盒内任意转动,则正方体体积的最大值为________.解析:由题可得,要使正方体可以在纸盒内任意转动,则只需该正方体在正四面体的内接球内即可.因为正四面体的棱长为6,所以其底面正三角形的高为33,正四面体的高为26,则该正四面体的内球的半径为62,设该正方体的边长为a ,要满足条件,则3a ≤6,即a ≤ 2.所以正方体的最大体积为V =a 3≤2 2. 答案:2 2一抓基础,多练小题做到眼疾手快1.(2018·浙江名校联考)“某几何体的三视图完全相同”是“该几何体为球”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 由题可得,球的三个视图都是圆,所以三视图完全相同;三视图完全相同的几何体除了球,还有正方体,所以是必要不充分条件.2.(2018·长兴中学适应性测试)一个几何体的三视图如图所示,则该几何体的体积为( )A .64B .72C .80D .112解析:选C 由题可得,该几何体是一个棱长为4的正方体与一个底面是边长为4的正方形,高为3的四棱锥的组合体,所以其体积为V =43+13×42×3=80.3.(2019·杭二月考)一个几何体的三视图如图所示,则该几何体的体积为( )A .π+33B .2π+33C .2π+ 3D .π+ 3解析:选A 由三视图知,该几何体的上半部分是一个三棱锥,下半部分是一个圆柱.由题图中的数据知V 圆柱=π×12×1=π,三棱锥垂直于底面的侧面是边长为2的等边三角形,故其高即为三棱锥的高,故三棱锥的高为3,由于三棱锥底面为一等腰直角三角形,且斜边长为2,因此两直角边长都是2,则底面三角形的面积是12×2×2=1,故V 三棱锥=13×1×3=33,故该几何体的体积为π+33.4.(2018·嘉兴模拟)如图是一个几何体的三视图,若它的体积是33,则a =________,该几何体的表面积为________.解析:由题可得,该几何体是一个水平放置的三棱柱,其底面是一个底边长为2、高为a 的等腰三角形,高为3.因为其体积为33,所以V =12×2a ×3=3a =33,解得a = 3.所以该几何体的表面积为S =2×12×2×3+2×3×3=23+18.答案:3 23+185.(2018·丽水模拟)若三棱锥P -ABC 的最长的棱PA =2,且各面均为直角三角形,则此三棱锥的外接球的体积是________,表面积是________.解析:如图,根据题意,可把该三棱锥补成长方体,则该三棱锥的外接球即该长方体的外接球,易得外接球的半径R =12PA =1,所以该三棱锥的外接球的体积V =43×π×13=43π,表面积S =4πR 2=4π.答案:43π 4π二保高考,全练题型做到高考达标1.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .3解析:选A 设圆台较小底面半径为r , 则另一底面半径为3r .由S =π(r +3r )·3=84π,解得r =7.2.(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π解析:选B 设圆柱的轴截面的边长为x , 则x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×2 2 =12π.故选B.3.(2018·温州十校联考)已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积是( )A .4 B.163 C .8D.323解析:选B 由题可得,该几何体是一个底面为长方形的四棱锥,所以其体积为V =13×4×2×2=163.4.(2018·兰州实战考试)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为( )A.32πB.32C .3πD .3解析:选A 由题意得,该几何体为四棱锥,且该四棱锥的外接球即为棱长为1的正方体的外接球,其半径为32,故体积为43π⎝⎛⎭⎫323=32π,故选A.。