德布罗意物质波的假设
- 格式:ppt
- 大小:580.50 KB
- 文档页数:11
第一章绪论一、填空题1、1923年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性,对于质量为1克,速度为1米/秒的粒子,其德布洛意波长为0.123A(保留三位有效数字)。
2、自由粒子的质量为m,能量为E,其德布罗意波长为h/p=h/√2mE(不考虑相对论效应)。
3、写出一个证明光的粒子性的:康普顿效应的发现,从实验上证实了光具有粒子性。
4、爱因斯坦在解释光电效应时,提出光的频率决定光子的能量,光的强度只决定光子的数目概念。
5、德布罗意关系为p=h/λ n(没有写为矢量也算正确)。
7、微观粒子具有波粒二象性。
8、德布罗意关系是粒子能量E、动量P与频率ν、波长λ之间的关系,其表达式为E=hv9、德布罗意波长为λ,质量为m的电子,其动能为已知。
10、量子力学是反映微观粒子运动规律的理论。
11、历史上量子论的提出是为了解释的能量分布问题。
用来解释光电效应的爱因斯坦公式为已知。
12、设电子能量为4电子伏,其德布罗意波长为待定nm。
13、索末菲的量子化条件为在量子理论中,角动量必须是h的整数倍,E待定。
应用这个量子化条件可以求得一维谐振子的能级=n14、德布罗意假说的正确性,在1927年为戴维孙和革末所做的电子衍射实验所证实,德布罗意关系(公式)为见P11。
15、1923年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性。
根据其理论,质量为 ,动量为p的粒子所对应的物质波的频率为,波长为若对于质量为1克,速度为1米/秒的粒子,其德布洛意波长为待定(保留三位有效数字)。
16、1923年,德布罗意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性,对于经过电压为100伏加速的电子,其德布洛意波长为0.123A(保留三位有效数字)。
二、选择题1、利用爱因斯坦提出的光量子概念可以成功地解释光电效应。
A. 普朗克B. 爱因斯坦C. 玻尔D. 波恩2、1927年C和等人所做的电子衍射试验验证了德布洛意的物质波假设。
什么是德布罗意波德布罗意波的概念是什么?是谁提出的?
德布罗意波1924年法国青年物理学家德布罗意在光的波粒二象性的启发下想到:自然界在许多方面都是明显地对称的,既然光具有波粒二象性,则实物粒子也应该具有波粒二象性.他假设:实物粒子也具有波动性.于是他由质能方程以及量子方程出发,推得了德布罗意波的有关公式.他发现,粒子在以v为速度运动的时候总会伴随着一个速度为
c^2/v的波,这个波又因为不带任何能量与信息,所以不违反相对论.一个实物粒子的能量为E、动量大小为p,跟它们联系的波的频率ν和波长λ的关系为E=mc^2=hνp=mv=h/λ上两式称为德布罗意式.与实物粒子相联系的波称为德布罗意波.1927年戴维孙和革末用加速后的电子投射到晶体上进行电子衍射实验,证实了电子的波动性.同年汤姆逊做了电子衍射实验.将电子束穿过金属片(多晶膜),在感光片上产生圆环衍射图和X光通过多晶膜产生的衍射图样极其相似.这也证实了电子的波动性.对于实物粒子波动性的解释,是1926年玻恩提出概率波的概念而得到一致公认的.至于个别粒子在何处出现,有一定的偶然性;但是大量粒子在空间何处出现的空间分布却服从一定的统计规律.物质波的这种统计性解释把粒子的波动性和粒子性正确地联系起来了,成为量子力学的基本观点之一.。
相对论下德布罗意波长一、引言德布罗意波是指物质粒子具有波动性质的现象,这一概念最早由法国物理学家路易·德布罗意在1923年提出。
德布罗意假设物质粒子具有波动性质,即每个物质粒子都可以看作是一个波包,其波长与其动量成反比关系。
这一假设得到了爱因斯坦的支持,并成为了相对论中的基本理论之一。
二、相对论下的德布罗意波长1. 传统的德布罗意波长在传统的牛顿力学中,德布罗意波长λ是由以下公式计算得出:λ=h/p其中,h为普朗克常数,p为物体的动量。
这个公式也被称为“经典”德布罗意波长。
2. 相对论下的修正然而,在相对论中,由于物体运动速度接近光速时会发生时间膨胀和长度收缩等效应,因此需要对经典德布罗意波长进行修正。
根据相对论理论,当物体速度接近光速时,其能量将变得非常大。
因此,在计算德布罗意波长时,需要将物体的总能量考虑进去。
相对论下的德布罗意波长公式为:λ=h/p(1+v^2/c^2)^1/2其中,v为物体速度,c为光速。
3. 德布罗意波长与相对论的关系相对论下的德布罗意波长是一种修正后的计算方法,可以更准确地描述物质粒子的波动性质。
在相对论中,物质粒子的波动性质与其运动状态有关。
当物体接近光速时,其德布罗意波长将变得非常短,这也说明了为什么高能粒子在加速器中具有非常短的波长。
三、应用1. 电子显微镜德布罗意假设为电子显微镜的发展提供了理论基础。
电子显微镜利用电子束代替光束成像,因此可以观察到比光学显微镜更小尺寸和更高分辨率的样品。
这是因为电子具有比光子更小的德布罗意波长。
2. 加速器技术加速器技术利用粒子在加速器中运动时产生的高能辐射来进行研究。
加速器中的粒子速度接近光速,因此其德布罗意波长非常短,可以用来研究极小尺寸的物质结构。
3. 量子力学量子力学是描述微观世界的理论体系,其中德布罗意波假设是一个基本理论。
量子力学中的粒子被描述为波包,其波长与动量成反比关系。
这一概念对于解释原子和分子结构、核物理和宇宙学等领域都非常重要。
粒子物质波波长
粒子的物质波波长,也称为德布罗意波长(de Broglie wavelength),由法国物理学家路易·德布罗意(Louis de Broglie)于1924年提出。
根据德布罗意假设,每个物质粒子都具有波动性,其波长与其动量有关。
粒子的物质波波长可以用下式表示:
λ= h / p
其中,λ是物质波的波长,h是普朗克常数(6.62607015 ×10^-34 J·s),p是粒子的动量。
由于动量可以表示为质量m乘以速度v,因此上述公式也可以表示为:
λ= h / (mv)
这意味着,粒子的物质波波长与其质量和速度有关。
质量越大,速度越小,波长越短;质量越小,速度越大,波长越长。
对于普通大小的物体,其波长通常非常短,难以直接观测到。
只有在微观尺度下,例如电子、中子等粒子的波动性才能得到明显的展示。
德布罗意波长的发现对量子力学的发展起到了重要作用,为解释粒子行为提供了新的视角。
第十五单元 量子物理第十五单元 量子物理Quantum PhysicsQuantum Physics第五讲 德布罗意波实物粒子的波粒二象性1923年, 提出电子既具有粒子性又具有波动性, 1924年在他的博士论文《关于量子理论的研究》中提出把粒子性和波动性统一起来。
为量子力学的建立提供了物理基础。
他的论述被爱因斯坦誉为 “揭开了巨大面罩的一角”。
德布罗意为此获得1929年诺贝尔物理学奖。
一、背景1、Planck-Einstein光量子理论量子理论是首先在黑体辐射问题上突破的,Planck提出了能量子的概念;Einstein利用能量子假设提出了光量子的概念,从而解决了光电效应的问题;光量子概念在Compton散射实验中得到了直接的验证。
2、Bohr的量子论Bohr把Planck-Einstein的量子概念创造性的用来解决原子结构和原子光谱的问题,成功地解释了氢原子光谱。
“同我(Louis Victor de Broglie)哥哥进行的这些长期讨论……对我非常有益,这些讨论使我深深考虑将波的观点和粒子的观点必须综合在一起的必要性。
”光的本性:(1905年,爱因斯坦)光同时具有波动性和粒子性,波粒二象性的联系:νεh =λh p = 波长、频率是描写波动性的物理量,而动量、能量是描写粒子性的物理量。
光的波动性和粒子性是通过普朗克常数联系在一起的。
●很早认识到光的波动性;●直到1905年认识到光的粒子性。
光: 物理学家十分看重自然界的和谐和对称,运用对称性思想研究性问题,发现新规律以至于在科学上取得突破性成就,在物理学史上屡见不鲜。
问题: 实物粒子:●实物粒子是否也有波动性?●很早认识到实物粒子的粒子性;(经典物理)“整个世纪以来,在辐射理论上,比起波动的研究方法来,是过于忽略了粒子的研究方法;在实物理论上,是否发生了相反的错误呢?是不是我们关于‘粒子’的图像想得太多,而过分地忽略了波的图像呢?”“我我我我我我我我我我我我我我我我我我我我我我1923我我我—我我我我我我我我我我我我我我我我我我我我我我我我我我我我我我我我我我我”这种和实物粒子相联系的波称为德布罗意波或物质波(matter wave ) , 1924年 ,青年博士研究生德布罗意 ,在Planck-Einstein 光量子论和Bohr 原子论的启发下,仔细分析了光的微粒说与波动说的发展历史,根据类比的方法,德布罗意假设:不仅光具有波粒二象性,一切实物粒子(电子、原子、分子等)也都具有波粒二象性; 具有确定动量 P 和确定能量 E 的实物粒子相当于频率为ν和波长为λ的波,满足:hνmc E ==2λh m p ==v P Eλνh爱因斯坦的支持 :德布罗意的物质波开始并没有受到物理学界的重视,他的导师朗之万将论文寄给了爱因斯坦。