人教版数学七年级下册《实数》单元测试题(含答案)
- 格式:doc
- 大小:144.50 KB
- 文档页数:5
人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。
16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。
14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。
第六章《实数》单元检测题题号 一 二三总分21 22 23 24 25 26 27 28 分数一、选择题(每小题3分,共30分)1、如图,数轴上的点A 、B 、C 、D 分别表示数﹣1、1、2、3,则表示2﹣的点P 应在( )A.线段AO 上B.线段OB 上C.线段BC 上D.线段CD 上 2、若,则估计的值所在的范围是( )A. B.C.D.3、若,则=( ) A.﹣1 B.1 C.D.4.下列各组数中互为相反数的一组是( ) A. - |-2|与38- B. -4与-()24-C. -32与|32- |D. -2与125.下列计算正确的是( ) A.255=± B.()233-=- C. 31255=± D.3273-=-6实数,-3.14,0,中,无理数共有( )A . 1个B . 2个C . 3个D . 4个 7.下列说法中正确的是( )A .若a 为实数,则a ≥0B .若a 为实数,则a 的倒数为C .若x ,y 为实数,且x=y ,则D .若a 为实数,则a 2≥0 8.若a <-2<b ,且a 、b 是两个连续整数,则a +b 的值是( )A . 1B . 2C . 3D . 4 9.实数a ,b 在数轴上的位置如图所示,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b 10.已知:|a|=5,=7,且|a+b|=a+b ,则a-b 的值为( )A.2或12B.2或-12C.-2或12D.-2或-12二、填空题(每小题4分,共28分)11、若2(3)3a a -=-,则a 与3的大小关系是 12、请写出一个比5小的整数 .13、计算:=---0123)( 。
14、如图2,数轴上表示数3的点是 .15、化简:32583-的结果为 。
16、对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =ba ba -+,如3※2=52323=-+.那么12※4= . 17. 数轴上有A 、B 、C 三个点,B 点表示的数是1,C 点表示的数是,且AB=BC ,则A 点表示的数是 .三、解答题(共62分)18.(8分)将下列各数填在相应的集合里.,π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0),0,,-. 有理数集合:{ …}; 无理数集合:{ …}; 正实数集合:{ …}; 整数集合:{ …}. 19、求下列各式中的x (每小题4分,共12分)(1)30.0270x -= (2)24925x =(3)()229x -=20.(8分)实数a,b在数轴上的位置如图所示.化简:|a-b|-.21.(8分)已知=0,求实数a,b的值,并求出的整数部分和小数部分.22.(10分)利用平方根(或立方根)的概念解下列方程:(1)9(x-3)2=64;(2)(2x-1)3=-8.23.(10分)如图是一个体积为25 cm3的长方体工件,其中a,b,c表示的是它的长、宽、高,且a∶b∶c=2∶1∶3,请你求出这个工件的表面积(结果精确到0.1 ).24.(10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=.(4)所以这个数为2m-6=2×-6=-.(5)综上可得,这个数为2或-.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.第六章测评答案解析(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.C2.C3.B4.B5.D6.B7.D8.D9.C10.D二、填空题(每小题4分,共28分)11、3a≤12、本题答案不唯一:如:-1,0 ,1,2等.13、2 14、B 15、214-16、2117. 2﹣.三、解答题(共62分)18.(8分)将下列各数填在相应的集合里.,π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0),0,,-.有理数集合:{…};无理数集合:{…};正实数集合:{…};整数集合:{…}.解有理数集合:{,3.141 592 6,-0.456,0,…}.无理数集合:{π,-,3.030 030 003…(每两个3之间依次多1个0)…}.正实数集合:{,π,3.141 592 6,3.030 030 003…(每两个3之间依次多1个0),…}.整数集合:{,0,…}.19、(1)x=0.3 (2)57x=± (3)x=5或x=-1解(1)原式=-1++2--2=-1.(2)原式=-8×4-4×-3=-32-1-3=-36.20.(8分)实数a,b在数轴上的位置如图所示.化简:|a-b|-.解|a-b|-=a-b-a=-b.21.(8分)已知=0,求实数a,b的值,并求出的整数部分和小数部分.解根据题意得3a-b=0,a2-49=0且a+7>0,解得a=7,b=21.∵16<21<25,∴4<<5,∴的整数部分是4,小数部分是-4.22.(10分)利用平方根(或立方根)的概念解下列方程:(1)9(x-3)2=64;(2)(2x-1)3=-8.解(1)(x-3)2=,则x-3=±.∴x=±+3,即x1=,x2=.(2)2x-1=-2,∴x=-.23.导学号14154048(10分)如图是一个体积为25 cm3的长方体工件,其中a,b,c表示的是它的长、宽、高,且a∶b∶c=2∶1∶3,请你求出这个工件的表面积(结果精确到0.1 ).解由题意设a=2x cm,b=x cm,c=3x cm,根据题意知2x·x·3x=25,所以x3=,所以x=,所以工件的表面积=2ab+2ac+2bc=4x2+12x2+6x2=22x2=22×≈57.0(cm2).答:这个工件的表面积约为57.0 cm2.24.(10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=.(4)所以这个数为2m-6=2×-6=-.(5)综上可得,这个数为2或-.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.解可以看出小张错在把“某个数的算术平方根”当成“这个数本身”.当m=4时,这个数的算术平方根为2m-6=2>0,则这个数为22=4,故(3)错误;当m=时,这个数的算术平方根为2m-6=2×-6=-<0(舍去),故(5)错误;综上可得,这个数为4,故(6)错误.所以小张错在(3)(5)(6).。
第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
人教版七年级下数学第六章《实数》单元测试题及答案一、用心填一填,一定能填对:(每空1分,共53分)1. 在数轴上表示的点离原点的距离是 。
设面积为5的正方形的边长为x ,那么x =2. 如果x 2=4,则x 叫作4的 ,记作 .3.25-的相反数是 ,32-= 4. 491的算术平方根的相反数是 ,平方根的倒数是 ,平方根的绝对值是 .5. 24-的相反数的倒数是 ,这个结果的算术平方根是 .6. 当a 时,1-a 有意义,当a 时,1-a =0.7. 如果2x =5,则x = .8. 如果一个正数的一个平方根是m,那么这个数的另一个平方根是 ,这个数的算术平方根是 ,两个平方根的和是 .9. 当x >0时,x-表示x 的 ,当x <0时,3x -表示x的 . 10. 16 的负的平方根是 ,2)5(-的平方根是 . 11. 962+-x x 的平方根是 .12. 如果a x =3那么x 是a 的 ,a 是x 的 .13. 0.064的立方根是 ,1-的立方根是 ,3的立方根是 ,0的立方根是 ,9-的立方根是 .14.35是5的 ,一个数的立方根是2-,则这个数是 .15.=-364 ,=-327 ,=--3125 .16.=--33)0001.0( .17.当x 时,32-x 有意义.18、若22)3(-=a ,则a = ,若23)3(-=a ,则a = .19.=--32)125.0( .20.若12-x 是225的算术平方根,则x 的立方根是 . 21. 3343的平方根是 .22. 若x 是64125的立方根,则x 的平方根是 . 23.25-的相反数是 .24.若1.1001.102=,则=±0201.1 .25. 若x x -+有意义,则=+1x26. 1- ,-22 , 33 27. 数轴上离原点距离是5的点表示的数是 .28. 无理数a 满足14-<<-a , 请写出两个你熟悉的无理数a .二、你很聪明,一定能选对:(每小题1分,共10分)1. 0.0196的算术平方根是( )A 0.014B 0.14C 14.0-D ±0.142. 下列各式正确的是( ) A 5)5(2-=- B 15)15(2-=-- C 5)5(2±=- D 2121= 3. 下列语句、式子中 ① 4是16的算术平方根,即.416=±②4是16的算术平方根,即.416=③-7是49的算术平方根,即.7)7(2=-④7是.)7(2-的算术平方根,即.7)7(2=-其中正确的是( )A ①③B ②③C ②④D ①④4. 下列说法错误的有( )①无限小数一定是无理数;②无理数一定是无限小数;③带根号的数一定是无理数;④不带根号的数一定是有理数.A ①②③B ②③④C ①③④D ①②④5. 3729--的平方根是( )A 9B 3C ±3D ±96. 若一个数的算术平方根与它的立方根相同,则这个数是( ) A 1 B 0或1 C 0 D 非负数7. 下列语句正确的是( )A 64的立方根是2.B -3是27的负的立方根。
一、选择题1.在实数:20192020,π2π,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52- ) A .4 B .5 C .6 D .72 )A .8B .±8C .D .±3.在实数,-3.14,0,π中,无理数有( )A .1个B .2个C .3个D .4个4.下列实数中,是无理数的为( )A .3.14B .13CD 5.下列说法中,正确的是 ( )A .64的平方根是8B 4和-4C .()23-没有平方根D .4的平方根是2和-26.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数C .和数轴上的点一一对应的数是有理数D .1的平方根是17. )A .287.2B .28.72C .13.33D .133.38.下列说法中,错误的有( )①符号相反的数与为相反数;②当0a ≠时,0a >;③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远;⑤数轴上的点不都表示有理数.A .0个B .1个C .2个D .3个 9.和数轴上的点一一对应的数是( ) A .自然数 B .有理数 C .无理数 D .实数10.0.31,3π,27-12-,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1 B .2C .3D .411.估计30的值在哪两个整数之间( ) A .5和6 B .6和7 C .7和8 D .8和9 12.下列计算正确的是( ) A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C .42=± D .()515-=- 二、填空题13.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-,38,0,13-,4-14.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.15.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当ab ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.16.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 17.81的算术平方根是________,25-的相反数是________.18.将1、2、3、6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(15,7)表示的数是____.19.若已知()21230a b c -++-=,则a b c -+=_____.20.比较大小:3--2.(填“>”“=”或“<”) 三、解答题21.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。
第六章《实数》单元测试题一、用心填一填,一定能填对:(每空1分,共53分)1. 正数a 的平方根记作 ,正数a 的正的平方根记作 ,正数a 的负的平方根记作 .2. 如果x 2=4,则x 叫作4的 ,记作 .3. 81的平方根是 ,0.64的算术平方根是 . 5的平方根是 ,0的平方根是 .4. 491的算术平方根的相反数是 ,平方根的倒数是 ,平方根的绝对值是 .5. 24-的相反数的倒数是 ,这个结果的算术平方根是 .6. 当a 时,1-a 有意义,当a 时,1-a =0.7. 如果2x =5,则x = .8. 如果一个正数的一个平方根是m,那么这个数的另一个平方根是 ,这个数的算术平方根是 ,两个平方根的和是 .9. 当x >0时,x -表示x 的 ,当x <0时,3x -表示x 的 . 10. 16 的负的平方根是 ,2)5(-的平方根是 .11. 962+-x x 的平方根是 .12. 如果a x =3那么x 是a 的 ,a 是x 的 .13. 0.064的立方根是 ,1-的立方根是 ,3的立方根是 ,0的立方根是 ,9-的立方根是 .14.35是5的 ,一个数的立方根是2-,则这个数是 .15.=-364 ,=-327 ,=--3125 .16.=--33)0001.0( .17.当x 时,32-x 有意义.18、若22)3(-=a ,则a = ,若23)3(-=a ,则a = .19.=--32)125.0( .20.若12-x 是225的算术平方根,则x 的立方根是 . 21. 3343的平方根是 .22. 若x 是64125的立方根,则x 的平方根是 . 23.25-的相反数是 .24.若1.1001.102=,则=±0201.1 .25. 若x x -+有意义,则=+1x26. 1- ,-22 , 33 27. 数轴上离原点距离是5的点表示的数是 .28. 无理数a 满足14-<<-a , 请写出两个你熟悉的无理数a .二、你很聪明,一定能选对:(每小题1分,共10分)1. 0.0196的算术平方根是( )A 0.014B 0.14C 14.0-D ±0.142. 下列各式正确的是( ) A 5)5(2-=- B 15)15(2-=-- C 5)5(2±=- D 2121= 3. 下列语句、式子中 ① 4是16的算术平方根,即.416=±②4是16的算术平方根,即.416=③-7是49的算术平方根,即.7)7(2=-④7是.)7(2-的算术平方根,即.7)7(2=-其中正确的是( )A ①③B ②③C ②④D ①④4. 下列说法错误的有( )①无限小数一定是无理数;②无理数一定是无限小数;③带根号的数一定是无理数; ④不带根号的数一定是有理数.A ①②③B ②③④C ①③④D ①②④5. 3729--的平方根是( )A 9B 3C ±3D ±96. 若一个数的算术平方根与它的立方根相同,则这个数是( )A 1B 0或1C 0D 非负数7. 下列语句正确的是( ) A 64的立方根是2. B -3是27的负的立方根。
一、选择题1.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤ B .①③⑥ C .④⑤⑥ D .③④⑤2.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158- 3.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④ B .①②④ C .②④ D .②4.下列实数中,是无理数的为( ) A .3.14 B .13C .5D .9 5.下列各数中无理数共有( )①–0.21211211121111,②3π,③227,④8,⑤39. A .1个 B .2个C .3个D .4个 6.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间7.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a bb ;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .① B .② C .①②D .①②③ 8.下列说法中,错误的是() A .实数与数轴上的点一一对应B .1π+是无理数C 3D 29.30 )A .5和6B .6和7C .7和8D .8和9 10.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭B .()239-=C 2=±D .()515-=- 11.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个12.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π;C ,π;D .0.1010101……101,π二、填空题13.已知一个正数的平方根是3a +和215a -.(1)求这个正数.(2的平方根和立方根.14.计算:(1)36 1.754⎛⎫--+ ⎪⎝⎭; (2)()()232524-⨯--÷;(3)()225--. 15.(1)小明解方程2x 1x a 332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x ,y 是有理数,且x ,y 满足等式2x 2y 17++=-x-y 的值. 16.计算.(1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3163⎫-⎪⎪⎭(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦17.计算:3612516-+-+=____. 18.若|2|30a b -+-=,则a b +=_________.19.计算:38642-+--.20.若()221210a b c -+++-=,则a b c ++=__________. 三、解答题21.已知(2m ﹣1)2=9,(n+1)3=27.求出2m+n 的算术平方根.22.求下列各式中x 的值.(1)2(1)2x +=; (2)329203x +=. 23.计算: (1)()2325273-+-.(2)()2411893⎡⎤⎛⎫--⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 24.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.25.已知一个正数m 的平方根为2n +1和4﹣3n .(1)求m 的值;(2)|a ﹣3|(c ﹣n )2=0,a +b +c 的立方根是多少?26.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.由此逐一判断即可得答案.【详解】①0.32是有限小数,是有理数, ②227是分数,是有理数, ③π是无限循环小数,是无理数,⑤0.2060060006(每两个6之间依次多个0)是无限循环小数,是无理数,,是整数,是有理数,综上所述:无理数是③④⑤,故选:D .【点睛】此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数;熟练掌握定义是解题关键.2.A解析:A【分析】先根据无理数的估算求出a 、b 的值,由此即可得.【详解】91516<<,<<34<<,3,3a b ∴==,)336a b ∴-=-=,故选:A .【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.3.D解析:D【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得.【详解】①在1和2之间的无理数有无限个,此说法错误;②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②,故选:D .【点睛】 本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键. 4.C解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.13是分数,属于有理数;3,是整数,属于有理数.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.C解析:C【分析】根据无理数的概念确定无理数的个数即可解答.【详解】解:无理数有3π3个. 故答案为C .【点睛】 本题主要考查了无理数的定义,无理数主要有以下三种①带根号且开不尽方才是无理数,②无限不循环小数为无理数,③π的倍数.6.B解析:B【分析】借助O 、A 、B 、C 的位置以及绝对值的定义解答即可.【详解】解:-5<c<0,b=5,|d ﹣5|=|d ﹣c |∴BD=CD ,∴D 点介于O 、B 之间.故答案为B .【点睛】本题考查了实数、绝对值和数轴等相关知识,掌握实数和数轴上的点一一对应是解答本题的关键.7.A解析:A【分析】①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立;③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时,a a bb ★, b a a b ★, ∴=a b b a ★★;a b <时,a b ba ★,b b a a★,∴=a b b a ★★;∴①符合题意.②由①,可得:=a b b a ★★,当a b ≥时,∴()()()()22a b b a a b a a a bb b ba b ====★★★★, ∴()()a b b a ★★不一定等于1, 当a b <时, ∴()()()()22a b b a a b b b b aa a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立,∴②不符合题意. ③当a b ≥时,0a >,0b>, ∴1a b≥,∴(12a b a b a b ab ++====≥≥★★, 当ab <时,∴(12a b a b a b a b ab ab ++===+=≥≥★★, ∴12a b a b +<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A .【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.8.C【分析】根根据有理数和无理数的定义可对C、B、D进行判断;根据实数与数轴上点的关系可对A 进行判断.【详解】解:A. 实数与数轴上的点是一一对应的,此说法正确,不符合题意;B.1π+是无理数,此说法正确,不符合题意;C.2是无理数,原说法错误,符合题意;是无限不循环小数,此说法正确,不符合题意.故选:C.【点睛】本题考查了实数的有关概念:有理数和无理数统称为实数;整数和分数统称为有理数;无限不循环小数叫无理数;实数与数轴上的点是一一对应的.9.A解析:A【分析】【详解】解:∵∴56,∴在两个相邻整数5和6之间.故选:A.【点睛】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.10.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-=⎪⎝⎭,所以,选项A运算错误,不符合题意;B.()239-=,正确,符合题意;2=,所以,选项C运算错误,不符合题意;D.()511-=-,所以,选项D运算错误,不符合题意;【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.11.B解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误;③﹣2 是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确;⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误;故其中错误的说法的个数为6个.故选:B .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数. 12.C解析:C【分析】根据无理数的定义,依次判断即可.【详解】解:A. 0.07,23是有理数,故该选项错误; B .0.7 是有理数,故该选项错误;C ,π都是无理数,故该选项正确;D .0.1010101……101是有理数,故该选项错误.故选:C .【点睛】本题主要考查了无理数的定义.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.13.(1)441或49;(2)或【分析】(1)分情况讨论这两个平方根相等或互为相反数求出a 的值在算出这个正数;(2)由(1)的结果分情况讨论根据平方根和立方根的定义算出结果【详解】解:(1)若这两个平方解析:(1)441或49;(2)2± 【分析】(1)分情况讨论,这两个平方根相等或互为相反数,求出a 的值,在算出这个正数; (2)由(1)的结果分情况讨论,根据平方根和立方根的定义算出结果.【详解】解:(1)若这两个平方根相等,则3215a a +=-,解得18a =,这个正数是:()2218321441+==;若这两个平方根互为相反数,则32150a a ++-=,解得4a =,这个正数是:()2243749+==;(2)若18a ==若4a =4==,4的平方根是2±.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的定义以及计算方法. 14.(1);(2)22;(3)-1【分析】(1)先去括号同时将小数化为分数再计算加减法;(2)先计算乘方再计算乘除法最后计算加减法;(3)先计算乘方和绝对值再计算加减法【详解】(1)==;(2)==20解析:(1)182;(2)22;(3-1 【分析】(1)先去括号,同时将小数化为分数,再计算加减法;(2)先计算乘方,再计算乘除法,最后计算加减法;(3)先计算乘方和绝对值,再计算加减法.【详解】 (1)36 1.754⎛⎫--+ ⎪⎝⎭=336144++ =182;(2)()()232524-⨯--÷=()4584⨯--÷=20+2=22;(3)()225--=4-()=【点睛】此题考查运算能力,掌握有理数的加减法计算法则,乘方的计算法则,实数的绝对值化简,有理数的混合运算法则是解题的关键. 15.(1)x =−13;(2)(2)x-y 的值为9或-1【分析】(1)将错就错把x =2代入计算求出a 的值即可确定出正确的解;(2)根据题意可以求得xy 的值从而可以求得x−y 的值【详解】(1)把x =2代入2解析:(1)x =−13;(2)(2)x-y 的值为9或-1.【分析】(1)将错就错把x =2代入计算求出a 的值,即可确定出正确的解;(2)根据题意可以求得x 、y 的值,从而可以求得x−y 的值.【详解】(1)把x =2代入2(2x−1)=3(x +a )−3中得:6=6+3a−3,解得:a =1, 代入方程得:2x 1x 1332-+=-, 去分母得:4x−2=3x +3−18,解得:x =−13;(2)∵x 、y 是有理数,且 x ,y 满足等式2x 2y 17++=-∴22174x y y ⎧+=⎨=-⎩, 解得,54x y =⎧⎨=-⎩或54x y =-⎧⎨=-⎩, ∴当x =5,y =−4时,x−y =5−(−4)=9,当x =−5,y =−4时,原式=−5−(−4)=−1.故x-y 的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数. 16.(1);(2)-1;(3);(4)9【分析】(1)运用乘法分配律去括号再进行乘法运算最后进行加减运算即可得到答案;(2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根再进行加解析:(1)354;(2)-1;(3)1-;(4)9.【分析】(1)运用乘法分配律去括号,再进行乘法运算,最后进行加减运算即可得到答案;(2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根,再进行加减运算即可得到答案;(4)首先计算乘方运算,再计算括号内,最后算乘法即可得到答案.【详解】解:(1)3218433⎛⎫-⨯-+-⎪⎝⎭=33231(8)()()() 44343 -⨯-+-⨯+-⨯-=11 624 -+=354;(2)178(4)4(5)-÷-+⨯-=17+2-20=-1;(316 3⎫-⎪⎪⎭=115+()633-+-=5+0-6 =-1;(4)223232 23⎡⎤⎛⎫-⨯-⨯--⎢⎥⎪⎝⎭⎢⎥⎣⎦=34(92) 29-⨯-⨯-=3(42) 2-⨯--=3(6) 2-⨯-=9.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.17.5【分析】先化简绝对值求立方根和算术平方根再加减即可【详解】解:==5故答案为:5【点睛】本题考查了绝对值立方根算术平方根的运算准确运用法则是解题关键解析:5【分析】先化简绝对值、求立方根和算术平方根,再加减即可.【详解】解:6-,=6(5)4+-+,=5,故答案为:5.【点睛】本题考查了绝对值、立方根、算术平方根的运算,准确运用法则是解题关键. 18.5【分析】根据非负数的性质列式求出ab 的值然后相加即可【详解】解:根据题意得解得∴故答案为:5【点睛】本题考查了非负数的性质:有限个非负数的和为零那么每一个加数也必为零解析:5【分析】根据非负数的性质列式求出a 、b 的值,然后相加即可.【详解】解:根据题意得,20a -=,30b -=,解得2a =,3b =,∴235a b +=+=.故答案为:5.【点睛】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零. 19.4【分析】原式利用平方根立方根定义及绝对值化简计算即可得到结果【详解】解:原式【点睛】本题考查了实数的运算熟练掌握平方根立方根定义是解本题的关键解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.20.【分析】先根据绝对值算术平方根偶次方的非负性求出abc 的值再代入即可得【详解】由题意得:解得则故答案为:【点睛】本题考查了绝对值算术平方根偶次方的非负性的应用等知识点熟练掌握绝对值算术平方根偶次方的 解析:12- 【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:2102010a b c -=⎧⎪+=⎨⎪-=⎩,解得1221a b c ⎧=⎪⎪=-⎨⎪=⎪⎩, 则()112122a b c ++=+-+=-, 故答案为:12-. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键. 三、解答题21.0.【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3,然后再解方程即可;最后分别代入计算即可.【详解】解:(2m-1)2=9,,2m-1=3或2m-1=-3,∴m=-1或m=2,(n+1)3=27,n+1=3,∴n=2,当m=-1,n=2时,2m+n=-2+2=0,∴2m+n 的算术平方根是0;当m=2,n=2时,2m+n=4+2=6,∴2m+n;故2m+n 的算术平方根是0.【点睛】此题考查了立方根与平方根的定义,此题难度不大,注意掌握方程思想的应用,不要丢解.22.(1)11x =,21x =;(2)23x =-. 【分析】(1)根据平方根的意义求解即可;(2)变形后根据立方根的意义求解即可.【详解】(1)2(1)2x +=,1x +=11x =,21x =.(2)329203x +=, 32923x =-, 3827x =-, 23x =-. 【点睛】本题考查了利用平方根和立方根的意义解方程,熟练掌握平方根和立方根的意义是解答本题的关键.23.(1)11;(2)-10【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方、开方和括号里面的运算,然后计算括号外面的乘法,求出算式的值是多少即可.【详解】解:(1()23- 539=-+11=.(2)()21183⎤⎛⎫-⨯-⎥ ⎪⎝⎭⎥⎦ ()211839⎛⎫=-⨯- ⎪⎝⎭()5189=⨯- 10=﹣.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.24.(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.25.(1)m =121;(2)a +b +c 的立方根是2【分析】(1)由正数的平方根互为相反数,可得2n +1+4﹣3n =0,可求n =5,即可求m ; (2)由已知可得a =3,b =0,c =n =5,则可求解.【详解】解:(1)正数m 的平方根互为相反数,∴2n +1+4﹣3n =0,∴n =5,∴2n +1=11,∴m =121;(2)∵|a ﹣3|(c ﹣n )2=0,∴a =3,b =0,c =n =5,∴a +b +c =3+0+5=8,∴a +b +c 的立方根是2.【点睛】本题考查平方根的性质;熟练掌握正数的平方根的特点,绝对值和偶次方根数的性质是解题的关键.26.(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。
一、选择题1.27(7)0y z ++-=,则x y z -+的平方根为( ) A .±2 B .4 C .2 D .±42.,则x+y 的值为( ) A .-3B .3C .-1D .13 )A .8B .±8C .D .±4.下列说法中错误的有( ) ①实数和数轴上的点是一一对应的; ②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±7=±. A .0个 B .1个C .2个D .3个5.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .66.在0、0.536227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是( ) A .3 B .4 C .5 D .6 7.下列各数中无理数共有( )①–0.21211211121111,②3π,③227,A .1个B .2个C .3个D .4个8.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12-B .12C .2-D .29.1的值( ) A .在7和8之间 B .在6和7之间 C .在5和6之间 D .在4和5之间10.下列实数31,7π-,3.14,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( ) A .5个 B .4个 C .3个 D .2个 11.估计50的立方根在哪两个整数之间( )A .2与3B .3与4C .4与5D .5与612.若1a >,则a ,a -,1a的大小关系正确的是( ) A .1a a a>->B .1a a a>-> C .1a a a>>- D .1a a a->>二、填空题13.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324) (1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.14.观察下列各式:322111124==⨯⨯,33221129234+==⨯⨯,33322112336344++==⨯⨯,33332211234100454+++==⨯⨯;…回答下面的问题:(1)猜想:33333123(1)n n ++++-+=_________;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+......+93+103的值是_________; (3)计算:213+223+233+......+293+303的值.15.定义新运算:对于任意实数a ,b ,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算,比如:252(25)12(3)1615⊕=⨯-+=⨯-+=-+=-,则(2)3-⊕=________.16.把下列各数填入相应的集合里:﹣3,|﹣5|,+(13-),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|45-|,3π正数集合:{_____________…}; 整数集合:{_____________…}; 负分数集合:{_____________…}; 无理数集合:{_____________…}. 17.已知290x ,310y +=,求x y +的值.18.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+=()4344313-=⨯-=(1)请你想一想:a b = ;(2)若ab ,那么ab ba (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.19.计算:(1)(1)|2|3-⨯-+ (2)2111(3)2⎛⎫-+--- ⎪⎝⎭20.求下列各式中的x 的值 (1)21(1)82x +=;(2)3(21)270x -+= 三、解答题21.“比差法”是数学中常用的比较两个数大小的方法,即0,0,0,a b a b a b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则2与2的大小;224-=,1619<<,则45<<,2240-=>,22>.请根据上述方法解答以下问题: (1_______3;(2)比较23-的大小,并说明理由. 22.1 23.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”.(1)试举一个例子来判断上述结论的猜测是否成立? (21-的值.24.计算:()214322--⨯-( 25.计算:3011(2)(200422-+-- 26.解方程:(1)24(1)90--=x(2)31(1)7x +-=-【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据绝对值,平方,二次根式的非负性求出x ,y ,z ,算出代数式的值计算即可; 【详解】∵27(7)0y z ++-=,∴207070x y z -=⎧⎪+=⎨⎪-=⎩, 解得277x y z =⎧⎪=-⎨⎪=⎩,∴()27716x y z -+=--+=,∴4=±; 故选:D . 【点睛】本题主要考查了平方根的求解,结合绝对值、二次根式的非负性计算是解题的关键.2.D解析:D 【分析】先根据绝对值和算术平方根的非负性,求得x 、y 的值,最后求和即可. 【详解】 解:∵∴x-2=0,y+1=0 ∴x=2,y=-1 ∴x+y=2-1=1. 故答案为D . 【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x 、y 的值是解答本题的关键.3.C解析:C 【分析】【详解】,8的算术平方根是,. 故选择:C . 【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.4.D解析:D 【分析】利用实数和数轴的关系,算术平方根,立方根及平方根定义判断即可. 【详解】①实数和数轴上的点是一一对应的,正确; ②负数有立方根,错误;③算术平方根和立方根均等于其本身的数有0和1,错误;④49的平方根是7±7=,错误. 综上,错误的个数有3个. 故选:D . 【点睛】本题考查了实数和数轴,平方根,算术平方根及立方根,熟练掌握各自的定义是解本题的关键.5.C解析:C 【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8. 【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,… ∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8. 故答案是:8. 【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….6.B解析:B【分析】根据无理数的定义逐一判断即可.【详解】解:0、0.536、227-是有理数,π,0.1616616661-(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)是无理数,故选:B.【点睛】本题考查无理数的定义,掌握无理数的定义是解题的关键.7.C解析:C【分析】根据无理数的概念确定无理数的个数即可解答.【详解】解:无理数有3π3个.故答案为C.【点睛】本题主要考查了无理数的定义,无理数主要有以下三种①带根号且开不尽方才是无理数,②无限不循环小数为无理数,③π的倍数.8.C解析:C【分析】根据新定义的运算得到关于a的方程,求解即可.【详解】解:因为211a=-※,所以132112a a⨯-=-,解得2a=-.故选:C【点睛】本题考查了新定义的运算与一元一次方程,根据新定义运算得到一元一次方程是解题关键.9.C解析:C【分析】利用36<48<49得到6<7−1进行估算.【详解】解:∵36<48<49,∴6<7,∴5-1<6.故选:C.【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.10.C解析:C【分析】根据无理数的定义、算术平方根与立方根逐个判断即可得.【详解】31=小数点后的428571是无限循环的,属于有理数,4.4285717=-属于有理数,3=-⋯,共有3个,则无理数为π故选:C.【点睛】本题考查了无理数、算术平方根与立方根,熟记各定义是解题关键.11.B解析:B【分析】,可得答案.【详解】,得34,所以,50的立方根在3与4之间故选:B.【点睛】本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系.12.C解析:C 【分析】可以用取特殊值的方法,因为a>1,所以可设a=2,然后分别计算|a|,-a,1a,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a=,∵2>12>-2,∴|a|>1a>-a;故选:C.【点睛】此类问题运用取特殊值的方法做比较简单.二、填空题13.(1)正方形纸板的边长为18厘米;(2)剩余的正方形纸板的面积为30平方厘米【分析】(1)根据正方形的面积公式进行解答;(2)由正方体的体积公式求得正方体的边长然后由正方形的面积公式进行解答【详解】解析:(1)正方形纸板的边长为18厘米;(2)剩余的正方形纸板的面积为30平方厘米【分析】(1)根据正方形的面积公式进行解答;(2)由正方体的体积公式求得正方体的边长,然后由正方形的面积公式进行解答.【详解】解:(1=18(cm),答:正方形纸板的边长为18厘米;(2=7(cm),则剪切纸板的面积=7×7×6=294(cm2),剩余纸板的面积=324﹣294=30(cm2)答:剩余的正方形纸板的面积为30平方厘米.【点睛】本题考查了立方根,算术平方根,解题的关键是熟悉正方形的面积公式和立方体的体积公式,属于基础题.14.(1);(2)3025;(3)172125【分析】(1)根据题中所给各式可直接进行分析求解;(2)由(1)可直接代入求值即可;(3)根据(1)可直接进行求解【详解】解:(1)根据题意可得出:=;(2解析:(1)221(1)4n n ⨯⨯+;(2)3025;(3)172125 【分析】(1)根据题中所给各式可直接进行分析求解; (2)由(1)可直接代入求值即可; (3)根据(1)可直接进行求解. 【详解】解:(1)根据题意可得出:33333123(1)n n ++++-+=221(1)4n n ⨯⨯+;(2)将n =10代入221(1)4n n ⨯⨯+, 原式221×1010130254=⨯+=(); (3)原式=22221130(301)20(201)44⨯⨯+-⨯⨯+=172125. 【点睛】本题主要考查实数的运算,熟练掌握实数的运算是解题的关键.15.11【分析】新运算的法则是对于任意实数ab 都有a ⊕b =a (a ﹣b )+1根据新运算的法则把新运算(﹣2)⊕3转化为实数的运算进行计算求值【详解】解:根据题意得:(﹣2)⊕3=﹣2×(﹣2﹣3)+1=﹣解析:11 【分析】新运算的法则是对于任意实数a ,b ,都有a ⊕b =a (a ﹣b )+1,根据新运算的法则把新运算(﹣2)⊕3转化为实数的运算进行计算求值. 【详解】解:根据题意得:(﹣2)⊕3=﹣2×(﹣2﹣3)+1=﹣2×(﹣5)+1=10+1=11. 故答案为:11. 【点睛】本题考查实数的混合运算,熟练掌握运算法则是解本题的关键.16.|﹣5|﹣(﹣25)3π﹣3|﹣5|0+()﹣314﹣||﹣12121121112…3π【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号再根据正数整数负分数无理数的定义求解即可【解析:|﹣5|,﹣(﹣2.5),34,3π ﹣3,|﹣5|,0 +(13-),﹣3.14,﹣|45-| ﹣1.2121121112…,3π 【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号,再根据正数、整数、负分数、无理数的定义求解即可. 【详解】解:|﹣5|=5,+(13-)13=-,﹣(﹣2.5)=2.5,﹣|45-|45=-, 17.2或4【分析】根据平方根和立方根的性质计算得到x 和y 的值再结合绝对值的性质计算即可得到答案【详解】∵∴∵∴∴当时=当时=【点睛】本题考查了平方根立方根绝对值的知识;解题的关键是熟练掌握平方根立方根绝解析:2或4 【分析】根据平方根和立方根的性质计算,得到x 和y 的值,再结合绝对值的性质计算,即可得到答案. 【详解】 ∵290x∴3x =±∵310y += ∴1y =-∴当3x =,1y =-时,x y +=312-= 当3x =-,1y =-时,x y +=314--=. 【点睛】本题考查了平方根、立方根、绝对值的知识;解题的关键是熟练掌握平方根、立方根、绝对值的性质,从而完成求解.18.(1)4a+b ;(2);(3)6a-3b-12【分析】(1)观察得到新运算等于第一个数乘以4加上第二个数据此列式即可;(2)根据新运算分别计算出与即可得到答案;(3)根据新运算分别化简再将ab 的值代解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12 【分析】(1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可; (2)根据新运算分别计算出a b 与ba 即可得到答案;(3)根据新运算分别化简再将a 、b 的值代入计算.【详解】 (1)a b =4a+b ,故答案为:4a+b ;(2)a b =4a+b ,ba =4b+a ,∵a b ,∴ab ≠b a ,故答案为:≠; (3)()()2a b a b -+=4(a-b )+(2a+b )=4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.19.(1)1;(2)【分析】(1)先计算绝对值再计算乘法最后计算加法;(2)先同时计算乘方减法化简算术平方根再计算乘法最后计算加减法【详解】(1)==-2+3=1;(2)===【点睛】此题考查有理数的混解析:(1)1;(2)1112.【分析】(1)先计算绝对值,再计算乘法,最后计算加法;(2)先同时计算乘方、减法、化简算术平方根,再计算乘法,最后计算加减法.【详解】(1)(1)|2|3-⨯-+=(1)23-⨯+=-2+3=1;(2)2111(3)2⎛⎫-+--- ⎪⎝⎭=11(3)42-+--⨯ =1122-+ =1112. 【点睛】此题考查有理数的混合运算,掌握绝对值的化简,乘方法则,求数的算术平方根,有理数的加减法计算法则,乘除法计算法则是解题的关键.20.(1)或;(2)【分析】(1)适当变形后利用平方根的定义即可解方程;(2)适当变形后利用立方根的定义即可解方程【详解】解:(1)两边乘以2得开平方得即或∴或;(2)移项得开立方得解得【点睛】本题考查解析:(1)3x =或5x =-;(2)1x =-.【分析】(1)适当变形后,利用平方根的定义即可解方程;(2)适当变形后,利用立方根的定义即可解方程.【详解】解:(1)21(1)82x += 两边乘以2得,2(1)16x +=,开平方得,14x +=±,即14x +=或14x +=-,∴3x =或5x =-;(2)3(21)270x -+=移项得,3(21)27x -=-,开立方得,213x -=-,解得,1x =-.【点睛】本题考查的是利用平方根,立方根的含义解方程,掌握平方根与立方根的定义和等式的性质是解题的关键.三、解答题21.(1)>;(2)3-<2【分析】(1,可得:3<4,从而可得答案;(245,从而可得:0<5-0<()23-,从而可得答案.【详解】解:(1)327<,3∴<4,故答案为:>.(2)16<4∴5,0∴<50∴<3+2,0∴<()23-,∴3-<2-.【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.22.1+【分析】先根据开方的意义,绝对值的意义进行化简,最后计算即可求解.【详解】解:原式123122=-+++⨯1=+ 【点睛】本题考查了实数的混合运算,理解开方的意义,能正确去绝对值是解题关键.23.(1)见解析;(2)13-=-【分析】(10=,则2与﹣2互为相反数进行说明.(2)利用(1)的结论,列出方程(3﹣2x )+(x +5)=0,从而解出x 的值,代入可得出答案.【详解】解:(10=,则2与﹣2互为相反数;(2)由已知,得(3﹣2x )+(x +5)=0,解得x =8,∴1=1=1﹣4=﹣3.【点睛】本题考查立方根的知识,难度一般,注意一个数的立方根有一个,它和这个数正负一致,本题的结论同学们可以记住,以后可直接运用.24.【分析】利用实数的混合运算法则计算得出答案.【详解】 解:原式=4+9⨯12-(2)2⎡⎤⨯-⎢⎥⎣⎦=4+9⨯[]2+1=4+9⨯3=4+27=31.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.25.8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+-8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键. 26.(1)152x =,212x =-;(2)x =﹣1. 【分析】(1)方程整理后,利用平方根性质计算即可求出解; (2)方程整理后,利用立方根性质计算即可求出解.【详解】解:(1)24(1)90--=x 方程整理得:2(1)9=4x -, 开方得:321=x -±解得,152x =,212x =-; (2)31(1)7x +-=-方程整理得:(x ﹣1)3=﹣8,开立方得:x ﹣1=﹣2,解得:x =﹣1.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解本题的关键.。
第六章 实数 单元检测题一、选择题(每小题只有一个正确答案)1.a 2的算术平方根一定是( )A. aB. |a|C.D. -a2+2的值( )A. 在2和3之间B. 在3和4之间C. 在4和5之间D. 在5和6之间3.下列对实数的说法其中错误的是( )A. 实数与数轴上的点一一对应B. 两个无理数的和不一定是无理数C. 负数没有平方根也没有立方根D. 算术平方根等于它本身的数只有0或14.下列各组数中互为相反数的一组是( )A. - |-2|B. -4C. 与|D.5.下列计算正确的是( )A. 5=±B. 3=-C. 5=±D. 3=-6.下列各数中,3.141 59, ,0.131 131 113…,-π,, 17-,无理数的个数有( )A. 1个B. 2个C. 3个D. 4个7.如图,数轴上A ,B 两点表示的数分别为1,点A 关于点B 的对称点是点C ,则点C 所表示的数是( )A. 1-B. 1+C. 1D. 2-8 1.333≈, 2.872≈约等于( ). A. 13.33 B. 28.72 C. 0.1333 D. 0.28729.用“☆”定义一种新运算:对于任意有理数a 和b ,规定22a b ab ab a =++☆,若()1382a +-=☆,则a 的值为( ). A. 1- B. 0 C.1 D. 310.当0<x <1时,x 2,x ,1x的大小顺序是( ) A. x 2<x <1x B. 1x <x <x 2 C. 1x <x 2<x D. x <x 2<1x 二、填空题11.如果)2a -+,那么a=_________,b=_________.12.若a 、b 互为相反数,c 、d =_______.13的整数部分是__________.14.将下列各数填入相应的集合中. ﹣7,0, 227,﹣2213,﹣2.55555…,3.01,+9,﹣2π.+10%,4.020020002…(每两个2之间依次增加1个0),无理数集合:{________…};负有理数集合:{________…};正分数集合:{________…};非负整数集合:{________…}.15.如果一个数的平方根是a +3和2a ﹣15,则a 的值为_____,这个数为_____﹣三、解答题16.计算: ()()0211432120.95103235⎛⎫⎛⎫÷----⨯+-⨯÷- ⎪ ⎪⎝⎭⎝⎭17.求x 的值:(1)(x +2)2=25 (2)(x-1)3=27.18.已知8a +与()2236b ⨯-互为相反数,求的平方根.19.已知18y =++的值.20.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e ,f 的算术平方根是8,求12ab +5c d ++e 2的值.21.观察下列两个等式: 1122133-=⨯+, 2255133-=⨯+,给出定义如下: 我们称使等式1a b ab -=+成立的一对有理数a ) b 为“共生有理数对”,记为(a ) b ),如:数对(2, 13),(5, 23),都是“共生有理数对”. (1)判断数对(2-,1),(3, 12)是不是“共生有理数对”,写出过程; (2)若(a ) 3)是“共生有理数对”,求a 的值; (3)若(m ) n )是“共生有理数对”,则(n -) m -) “共生有理数对”(填“是”或“不是”);说明理由;(4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复)参考答案1.B2.C3.C4.C5.D6.B7.C8.D9.D10.A11.-2 12.-113.314. ﹣2π,4.020020002…(每两个2之间依次增加1个0) ﹣7,﹣2213,﹣2.55555 (227),3.01,+10% 0,+9 15. 4 4916.1.7517.(1)3,-7 ;(2)4解析: ()1 ()2225,x += 25,x ∴+=±123,7.x x ==-()()32127x -=. 13,x -=4.x ∴=18.2±. 解析:根据相反数的定义可知: ()282360.a b ++⨯-= ()280,360.a b +≥-≥Q 80,360.a b ∴+=-=解得: 8,36.a b =-=26 4.∴=+=-+= 4的平方根是: 2.±19.解:由题意得:x ﹣8≥0,8﹣x ≥0,则x =8,y =18,-- =. 20.162解析:由题意可知:ab =1,c +d =0,e =,f =64,∴e 2=)2=2, =4.∴12ab +5c d ++e 212+0+2+4=612. 21.(1)(3, 12);(2)2a =-(3)是(4)(4, 35)或(6, 57) 解析:(1)-2-1=-3,(-2) ×1+1=-1,-3≠-1,故(2-,1)不是共生有理数对; 3-12=52,3×12+1=52,故(3, 12)是共生有理数对; (2)由题意得: 331a a -=+,解得2a =-. (3)是.理由: ()n m n m ---=-+, ()11n m mn -⋅-+=+,∵(m ,n )是“共生有理数对”∴m-n=mn+1,∴-n+m=mn+1,∴(-n ,-m )是“共生有理数对”;(4)(4,35)或(6, 57)等(答案不唯一,只要不和题中重复即可).。
一、选择题1.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上 2.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;④16的平方根是4±,其中正确的个数有( )A .0个B .1个C .2个D .3个3.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个4.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数 C .和数轴上的点一一对应的数是有理数D .1的平方根是1 5.81的算术平方根是( )A .3B .﹣3C .±3D .66.如果32.37≈1.333,323.7≈2.872,那么32370约等于( )A .287.2B .28.72C .13.33D .133.3 7.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 138.在下列各数中是无理数的有( ) 0.111-453π,3.1415926,2.010101(相邻两个0之间有1个1),76.0102030405060732A .3个B .4个C .5个D .6个 9.30.31,3π,27-912-38 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( )A .1B .2C .3D .410.在1.414,3-,213,5π,23-中,无理数的个数是( ) A .1 B .2C .3D .4 11.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B 7C 11D .无法确定 12.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个 B .6个 C .5个 D .4个二、填空题13.已知(2m ﹣1)2=9,(n+1)3=27.求出2m+n 的算术平方根.14.计算:(1)(23)(41)----; (2)1111115()13()3()555-⨯-+⨯--⨯-; (3)23(2)|21|27-+; (4)311()()(2)424-⨯-÷-.15.解方程:(1)2810x -=;(2)38(1)27x +=. 16.把下列各数的序号填入相应的括号内①-3,②π,327-,④-3.14,2,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …},无理数集合{ …}.17.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.18.若已知()2120a b -++=,则a b c -+=_____.19.请仔细阅读材料并完成相应的任务.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根(提示:59319是一个整数的立方).华罗庚脱口而出答案,邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?(1)由3101000=,31001000000=,11000593191000000<<______位数;(2)由59319的个位数字是9______;(3)如果划去59319后面的319得到数59,而3327=,3464=上的数是______.20_____;16的平方根为_____;()34-的立方根是_____. 三、解答题21.求下列各式中的x :(1)2940x -=;(2)3(1)8x -=22.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.23.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(1)解方程:log x 4=2;(2)求值:log 48;(3)计算:(lg 2)2+lg 2•1g 5+1g 5﹣201824.计算:(1)(1)|2|3-⨯-+ (2)2111(3)2⎛⎫-+--- ⎪⎝⎭25.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根.26.观察下列各式:322111124==⨯⨯,33221129234+==⨯⨯,33322112336344++==⨯⨯,33332211234100454+++==⨯⨯;… 回答下面的问题:(1)猜想:33333123(1)n n ++++-+=_________;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+......+93+103的值是_________; (3)计算:213+223+233+......+293+303的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据A 、C 、O 、B 四点在数轴上的位置以及绝对值的定义即可得出答案.【详解】∵|m-5|表示点M 与5表示的点B 之间的距离,|m−c|表示点M 与数c 表示的点C 之间的距离,|m-5|=|m−c|,∴MB =MC .∴点M 在线段OB 上.故选:D .【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应的关系是解答此题的关键. 2.C解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2±,故④说法错误;故其中正确的个数有:2个.故选:C .【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点. 3.D解析:D【分析】直接根据无理数的定义直接判断得出即可.【详解】π,2.32232223共3个.故选D.【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.4.A解析:A【分析】根据算术平方根、实数与数轴上的点是一一对应关系、实数、平方根,即可解答.【详解】A、正数的算术平方根一定是正数,故选项正确;B、如果a表示一个实数,那么-a不一定是负数,例如a=0,故选项错误;C、和数轴上的点一一对应的数是实数,故选项错误;D、1的平方根是±1,故选项错误;故选:A.【点睛】本题主要考查了实数,实数与数轴,解决本题的关键是熟记实数的有关性质.5.A解析:A【分析】9,再利用算术平方根的定义求出答案.【详解】∵9,∴3,故选:A.【点睛】. 6.C解析:C【分析】【详解】1.3331013.33==≈⨯=.故答案为:C.【点睛】本题考查了立方根的定义,正确变形、熟练掌握立方根的概念是关键.7.B解析:B【分析】首先确定A ,B 对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A 点对应的数是1,B 点对应的数是3,A.-2<<-1,不符合题意;B.2<3,符合题意;C 、34,不符合题意;D. 34,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.8.B解析:B【分析】根据无理数是无限不循小数,可得答案.【详解】3π,76.0102030405060732 故选:B .【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数. 9.C解析:C【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得.【详解】解∵3=2=,∴在所列的83π,1.212 212 221…(每两个1之间依次多一个2)这3个,故选:C .【点睛】 本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键. 10.C解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:1.414是有限小数,属于有理数;213是分数,属于有理数; 5π是无理数;2是无理数,∴无理数的个数是3个,故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数.11.B解析:B【分析】首先利用估算的方法分别得到间),从而可判断出被覆盖的数.【详解】 ∵221,23<<,34<<而墨迹覆盖的范围是1-3∴故选B.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.12.B解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误; ③﹣2π是无理数,所以原说法错误;④237是无限循环小数,是分数,所以是有理数,所以原说法错误;⑤无限小数不都是有理数,所以原说法正确;⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误;故其中错误的说法的个数为6个.故选:B.【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.二、填空题13.0或【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3然后再解方程即可;最后分别代入计算即可【详解】解:(2m-1)2=92m-1=±=±32m-1=3或2m-1解析:0.【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3,然后再解方程即可;最后分别代入计算即可.【详解】解:(2m-1)2=9,,2m-1=3或2m-1=-3,∴m=-1或m=2,(n+1)3=27,n+1=3,∴n=2,当m=-1,n=2时,2m+n=-2+2=0,∴2m+n的算术平方根是0;当m=2,n=2时,2m+n=4+2=6,∴2m+n;故2m+n的算术平方根是0.【点睛】此题考查了立方根与平方根的定义,此题难度不大,注意掌握方程思想的应用,不要丢解.14.(1)4;(2)-11;(3);(4)【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)逆用分配律直接提取公因数-进而计算得出答案;(3)直接利用绝对值和立方根的性质分别化简得出答案;(解析:(1)4;(2)-11;(3;(4)16-. 【分析】(1)直接利用有理数的加减运算法则计算得出答案; (2)逆用分配律,直接提取公因数-115,进而计算得出答案; (3)直接利用绝对值和立方根的性质分别化简得出答案;(4)直接利用有理数的混合运算法则计算得出答案.【详解】解:(1)(23)(41)---- 15=-+4=;(2)原式11()(5133)5=-⨯-+- 1155=-⨯ 11=-;(3)原式413=+-=(4)原式314429=-⨯⨯ 16=-. 【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.15.(1);(2)【分析】(1)移项利用平方根的性质解方程;(2)方程两边同时除以8然后利用立方根的性质解方程【详解】(1)移项得:解得:;(2)方程两边同时除以8得:∴解得:【点睛】本题考查了平方根和 解析:(1)9x =±;(2)12x =. 【分析】(1)移项,利用平方根的性质解方程;(2)方程两边同时除以8,然后利用立方根的性质解方程.【详解】(1)2810x -=,移项得:281x =,解得:9x =±;(2)()38127x +=,方程两边同时除以8,得:()32718x +=, ∴312x +=, 解得:31122x =-=. 【点睛】本题考查了平方根和立方根,熟练掌握平方根和立方根的定义与性质是解题关键. 16.见解析【分析】先求出立方根再根据整数负分数正有理数无理数的定义即可得【详解】解析:见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,17.【分析】分别根据平方根立方根的定义可以求出甲数乙数进而即可求得题目结果【详解】甲数是的平方根甲数等于;乙数是的立方根乙数等于∵甲乙两个数的积是故答案:【点睛】此题主要考查了立方根平方根的定义解题的关 解析:2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果.【详解】 甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.18.6【分析】分别根据绝对值平方和算术平方根的非负性求得abc 的值代入即可【详解】解:因为所以解得故故答案为:6【点睛】本题考查非负数的性质主要考查绝对值平方和算术平方根的非负性理解几个非负数(式)的和 解析:6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为()2120a b -++=,所以10,20,30a b c -=+=-=,解得1,2,3a b c ==-=,故1(2)36a b c -+=--+=,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键. 19.(1)两(2)9(3)3【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9据此可判断;(3)<59<据此可判断【详解】解:(1)∵103=10001003=1 000 000解析:(1)两 (2)9 (3)3.【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9,据此可判断;(3)33<59<34,据此可判断.【详解】解:(1)∵103=1000,1003=1 000 000,而1000<59319<1000000,∴10100,因此结果为两位数;故答案是:两;(2)因为只有9的立方的个位数字才是9,因此结果的个位数字为9,故答案是:9;(3)∵33<59<343.故答案为:3.【点睛】考查实数的意义,立方根的意义以及立方的尾数特征等知识,理解题意是关键. 20.【分析】分别根据算术平方根相反数平方根和立方根的概念直接计算即可求解【详解】解:=所以的相反数是;16的平方根为;的立方根是故答案为:;±4;-4【点睛】本题考查了算术平方根平方根和立方根的概念进行解析:- 4± 4-【分析】分别根据算术平方根、相反数、平方根和立方根的概念直接计算即可求解.【详解】-;16的平方根为4±;()34-的立方根是4-.故答案为:—±4;-4【点睛】本题考查了算术平方根、平方根和立方根的概念进行求解即可.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0. 三、解答题21.1)23x =±;(2)3 【分析】(1)先将原方程移项、系数化为1后,再利用平方根的定义求解即可;(2)先利用立方根的定义求得12x -=,解此方程即可.【详解】解:(1)2940x -= 294x =249x = 23x =±; (2)3(1)8x -=12x -=3x =.【点睛】此题考查了利用平方根、立方根解方程,解答此题的关键是掌握平方根与立方根的定义并能准确理解题意.22.(1)a=-8;(2)1或9.【分析】(1)根据平方运算,可得(1-a)的值,求解可得答案;(2)根据题意可知x y,相等或互为相反数,列式求解可得a的值,根据平方运算,可得答案.【详解】解:(1)∵x的算术平方根是3,∴1-a=9,∴a=-8;(2)x,y都是同一个数的平方根,∴1-a=2a-5或1-a+(2a-5)=0,解得a=2,或a=4,当a=2时,(1-a)=(1-2)2=1,当a=4时,(1-a)=(1-4)2=9,答:这个数是1或9.【点睛】本题考查了平方根和算术平方根,注意第(2)问符合条件的答案有两个,小心漏解.23.(1)x=2;(2)32;(3)-2017【分析】(I)根据对数的定义,得出x2=4,求解即可;(Ⅱ)根据对数的定义求解即可;(Ⅲ)根据log a(M•N)=log a M+log a N求解即可.【详解】解:(I)解:∵log x4=2,∴x2=4,∴x=2或x=-2(舍去)(II)解法一:log48=log4(4×2)=log44+log42=1+12=32;解法二:设log48=x,则4x=8,∴22x=32,∴2x=3,x=32,即log48=32;(Ⅲ)解:(lg2)2+lg2•1g5+1g5﹣2018 = lg2•( lg2+1g5) +1g5﹣2018= lg2 +1g5﹣2018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义和运算法则.24.(1)1;(2)1112.【分析】(1)先计算绝对值,再计算乘法,最后计算加法;(2)先同时计算乘方、减法、化简算术平方根,再计算乘法,最后计算加减法.【详解】(1)(1)|2|3-⨯-+=(1)23-⨯+=-2+3=1;(2)2111(3)2⎛⎫-+--- ⎪⎝⎭=11(3)42-+--⨯ =1122-+ =1112. 【点睛】此题考查有理数的混合运算,掌握绝对值的化简,乘方法则,求数的算术平方根,有理数的加减法计算法则,乘除法计算法则是解题的关键.25.(1)a=2,b=3;(2)±4.【分析】(1)首先根据4a+1的平方根是±3,可得:4a+1=9,据此求出a 的值是多少;然后根据3a +b ﹣1的立方根为2,可得:3a +b ﹣1=8,据此求出b 的值是多少即可.(2)把(1)中求出的a 与b 的值代入2a +4b ,求出它的值,然后根据平方根的定义即可得出答案.【详解】解:(1)∵4a+1的平方根是±3,∴4a+1=9,解得a=2,∵3a +b ﹣1的立方根为2,∴3a +b ﹣1=8,解得:b=3;(2)由(1)得a=2,b=3,∴24224316a b +=⨯+⨯=.它的平方根为:±4.【点睛】本题考查了平方根,立方根,列式求出a 、b 的值是解题的关键. 26.(1)221(1)4n n ⨯⨯+;(2)3025;(3)172125【分析】(1)根据题中所给各式可直接进行分析求解;(2)由(1)可直接代入求值即可;(3)根据(1)可直接进行求解.【详解】解:(1)根据题意可得出:33333123(1)n n ++++-+=221(1)4n n ⨯⨯+; (2)将n =10代入221(1)4n n ⨯⨯+, 原式221×1010130254=⨯+=(); (3)原式=22221130(301)20(201)44⨯⨯+-⨯⨯+=172125.【点睛】本题主要考查实数的运算,熟练掌握实数的运算是解题的关键.。
人教版数学七年级下册
《实数》单元测试题
一、选择题
1.
下列各数中,是无理数的是( )
A.3.1415 B. C. D.
2.
下列说法错误的个数是( )
①无理数都是无限小数;
②的平方根是±2;
③﹣9是81的一个平方根;
④=()2;
⑤与数轴上的点一一对应的数是实数.
A.1个 B.2个 C.3个 D.4个
3.下列数没有算术平方根是( )
A.5 B.6 C.0 D.-3
4.
已知|a﹣1|+=0,则a+b=( )
A.﹣8 B.﹣6 C.6 D.8
5.下列说法:
①任何数都有算术平方根;
②一个数的算术平方根一定是正数;
③a2的算术平方根是a;
④(π-4)2的算术平方根是π-4;
⑤算术平方根不可能是负数.其中,不正确的有( )
A.2个 B.3个 C.4个 D.5个
6.已知正方形的边长为a,面积S,则( )
7.
8的立方根是( )
A.2 B.﹣2 C.±2 D.2
8.下列计算正确的是( )
A.4= ±2 B.327-= -3 C.2)4(= -4 D.39=3
9.
三个实数﹣,﹣2,﹣之间的大小关系是( )
A.﹣>﹣>﹣2 B.﹣>﹣2>﹣
C.﹣2>﹣>﹣ D.﹣<﹣2<﹣
10.
的运算结果应在哪两个连续整数之间( )
A.2和3 B.3和4 C.4和5 D.5和6
11.
实数a,b,c在数轴上的对应点如图,化简a+-的值是( )
A.-b-c B.c-b C.2(a-b+c) D.2a+b+c
12.
黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算
﹣1的值( )
A.在1.1和1.2之间 B.在1.2和1.3之间
C.在1.3和1.4之间 D.在1.4和1.5之间
二、填空题
13.写出一个3到4之间的无理数 .
14.
4的平方根是 .
15.
的平方根是_______
16.若x-1是125的立方根,则x-7的立方根是__________.
17.在数轴上﹣与﹣2之间的距离为 .
18.
若|a|=, =2,且ab<0,则a+b= .
三、计算题
19.求x的值:
(x﹣15)2=169
20.求x的值:
(x+4)3=﹣64.
21.
计算:.
22.计算:47)2()3(332.
四、解答题
23.
已知一个数的平方根是±(a+4),算术平方根为2a﹣1,求这个数.
24.
小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm
2
桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不
能,请说明理由.
25.
已知互为相反数,求x+4y的平方根.
26.
如图,王丽同学想给老师做一个粉笔盒.她把一个正方形硬纸片的四个角各剪去一个正方形,
折起来用透明胶粘住,做成一个无盖的正方体盒子.要使这个盒子的容积为1 000 cm3,那
么她需要的正方形纸片的边长是多少?
27.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是
大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体
祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很
好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,
他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”
如图所示,不妨设原祭坛边长为a,想一想:
(1)做出来的新祭坛是原来体积的多少倍?
(2)要做一个体积是原来祭坛的2倍的新祭坛,它的棱长应该是原来的多少倍?
28.
已知+(ab﹣2)2=0,
求+…+的值.
0.
答案解析
1.
答案为:D.
2.
答案为:C
3.D
4.
答案为:B.
5.C
6.C
7.
A.
8.B
9.答案为:C.
10.D
11.B
12.
答案为:B
13.答案为:Π
14.
答案为:±2.
15.
答案为±:
16.答案为:-1
17.答案为:2﹣.
18.
答案为:4﹣.
19.
答案为:x=3或x=﹣5.
20.答案为:-8;
21.答案为:-0.5;
22.答案为:17.
23.
解:∵一个数的平方根是±(a+4),算术平方根为2a﹣1,
∴a+4=2a﹣1,解得:a=5,
∴这个数的平方根为±9,这个数是81.
24.
解:能做到,理由如下
设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,
4x×3x=588.
12x2=588
x2=49,x>0,
x==7
∴4x=4×7=28 (cm),3x=3×7=21(cm)
∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm
∴能够裁出一个长方形面积为588 cm2并且长宽之比为4:3的桌面,
答:桌面长宽分别为28cm和21cm.
25.解:
26.
解:正方形纸片的边长是30 cm.
27.解:
28.
解: