2013安徽省“江南十校”联考理科数学高清版试卷有答案
- 格式:doc
- 大小:5.47 MB
- 文档页数:10
安徽省江南十校2024-2025学年高二(上)联考数学试题(12月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合M ={a ⃗ |a ⃗ =(−1,2,1)+λ(1,2,3),λ∈R},N ={b ⃗ |b ⃗ =μ(1,−2,−1)+(1,2,3),μ∈R},则M ∩N =( ) A. {(−2,0,−2)}B. {0,4,4}C. {(0,4,4)}D. ⌀2.条件p:m >0,n >0,条件q:方程mx 2+ny 2=1表示的曲线是椭圆,则p 是q 的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件D. 既不充分也不必要条件3.若点P(3,−4)是直线a 1x +b 1y +2=0和a 2x +b 2y +2=0的公共点,则相异两点A(a 1,b 1)和B(a 2,b 2)所确定的直线AB 方程是( ) A. 3x −4y +2=0B. 4x −3y +2=0C. 3x −4y −2=0D. 4x −3y −2=04.六氟化硫,化学式为SF 6,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫分子结构为正八面体结构(正八面体每个面都是正三角形,可以看作是两个棱长均相等的正四棱锥将底面重合的几何体).如图所示,在正八面体P −ABCD −Q 中,G 是△BCQ 的重心,记PA ⃗⃗⃗⃗⃗ =a ⃗ ,PB ⃗⃗⃗⃗⃗ =b ⃗ ,PC⃗⃗⃗⃗⃗ =c ⃗ ,,则PG ⃗⃗⃗⃗⃗ 等于( )A. −13a ⃗ +13b ⃗ +23c ⃗B. 13a ⃗ −13b ⃗ +23c ⃗ C. 13a ⃗ −13b ⃗ −23c ⃗ D. 13a ⃗ +13b ⃗ +23c ⃗ 5.已知m ⃗⃗ =(2,1,1)是直线l 的方向向量,直线l 经过点P(−1,0,1),则点Q(2,4,6)到直线l 的距离为( ) A. 52B. 5√ 22C. 5√ 62D. 3√ 626.已知圆C 的方程为x 2+y 2−2y −1=0,P(a,b)为圆C 上任意一点,则2a+b−5a−2的取值范围为( )A. [−1,2]B. (−∞,−1]∪[2,+∞)C. [1,3]D. (−∞,1]∪[3,+∞)7.焦点为F(1,0)的抛物线y 2=2px(p >0)上有一点P(不与原点重合),它在准线l 上的投影为Q 。
2023年安徽省江南十校高考数学联考试卷1. 已知集合,,则( )A. B.C. D.2. 设i为虚数单位,复数,则z在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知平面向量的夹角为,且,则( )A. B. C. D.4. 安徽徽州古城与四川阆中古城、山西平遥古城、云南丽江古城被称为中国四大古城.徽州古城中有一古建筑,其底层部分可近似看作一个正方体已知该正方体中,点E,F分别是棱,的中点,过,E,F三点的平面与平面ABCD的交线为l,则直线l与直线所成角为( )A. B. C. D.5. 为庆祝中国共产党第二十次全国代表大会胜利闭幕,某高中举行“献礼二十大”活动,高三年级派出甲、乙、丙、丁、戊5名学生代表参加,活动结束后5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有种.( )A. 40B. 24C. 20D. 126. 已知函数,则下列说法正确的是( )A. 点是曲线的对称中心B. 点是曲线的对称中心C. 直线是曲线的对称轴D. 直线是曲线的对称轴7. 在三棱锥中,底面ABC,,,则三棱锥外接球的表面积为( )A. B. C. D.8. 已知,则a,b,c的大小关系为( )A.B. C.D.9. 已知函数,则( )A. 是奇函数B. 的单调递增区间为和C. 的最大值为D.的极值点为10.在平行六面体中,已知,,则( )A. 直线与BD 所成的角为B. 线段的长度为C.直线与所成的角为D. 直线与平面ABCD 所成角的正弦值为11. 已知O 为坐标原点,点,,线段AB 的中点M 在抛物线C :上,连接OB 并延长,与C 交于点N ,则( )A. C 的准线方程为B. 点B 为线段ON 的中点C. 直线AN 与C 相切D. C 在点M 处的切线与直线ON 平行12. 已知函数和及其导函数和的定义域均为R ,若,,且为偶函数,则( )A. B. 函数的图象关于直线对称C. 函数的图象关于直线对称D.13.的展开式中,常数项为______ 用数字作答14. 已知圆C :,直线l :是参数,则直线l 被圆C 截得的弦长的最小值为______ .15. 已知直线l 与椭圆交于M ,N 两点,线段MN 中点P 在直线上,且线段MN 的垂直平分线交x 轴于点,则椭圆E 的离心率是______ .16. 若过点有3条直线与函数的图象相切,则m 的取值范围是______ .17. 在平面直角坐标系Oxy 中,锐角、的顶点与坐标原点O 重合,始边与x 轴的非负半轴重合,终边与单位圆O 的交点分别为P ,已知点P 的纵坐标为,点Q 的横坐标为求的值;记的内角A ,B ,C 的对边分别为a ,b ,请从下面两个问题中任选一个作答,如果多选,则按第一个解答计分.①若,且,求周长的最大值.②若,,且,求的面积.18. 已知在递增数列中,,为函数的两个零点,数列是公差为2的等差数列.求数列的通项公式;设数列的前n 项和为,证明:19. 渔船海上外出作业受天气限制,尤其浪高对渔船安全影响最大,二月份是某海域风浪最平静的月份,浪高一般不超过某研究小组从前些年二月份各天的浪高数据中,随机抽取50天数据作为样本,制成频率分布直方图:如图根据海浪高度将海浪划分为如下等级:浪高海浪等级微浪小浪中浪大浪海事管理部门规定:海浪等级在“大浪”及以上禁止渔船出海作业.某渔船出海作业除受浪高限制外,还受其他因素影响,根据以往经验可知:“微浪”情况下出海作业的概率为,“小浪”情况下出海作业的概率为,“中浪”情况下出海作业的概率为,请根据上面频率分布直方图,估计二月份的某天各种海浪等级出现的概率,并求该渔船在这天出海作业的概率;气象预报预计未来三天内会持续“中浪”或“大浪”,根据以往经验可知:若某天是“大浪”,则第二天是“大浪”的概率为,“中浪”的概率为;若某天是“中浪”,则第二天是“大浪”的概率为,“中浪”的概率为现已知某天为“中浪”,记该天的后三天出现“大浪”的天数为X,求X的分布列和数学期望.20. 如图,四棱锥中,为等腰三角形,,,,证明:;若,点M在线段PB上,,求平面DMC与平面PAD夹角的余弦值.21. 我们约定,如果一个椭圆的长轴和短轴分别是另一条双曲线的实轴和虚轴,则称它们互为“姊妺”圆锥曲线.已知椭圆,双曲线是椭圆的“姊妺”圆锥曲线,,分别为,的离心率,且,点M,N分别为椭圆的左、右顶点.求双曲线的方程;设过点的动直线l交双曲线右支于A,B两点,若直线AM,BN的斜率分别为,试探究与的比值是否为定值.若是定值,求出这个定值;若不是定值,请说明理由;求的取值范围.22. 已知函数若在定义域上具有唯一单调性,求k的取值范围;当时,证明:答案和解析1.【答案】C【解析】解:,,,则,,,,,故选:分别将两个集合中的元素表示出来,再求补集,交集.本题考查集合的运算,考查二次不等式的解法,属于基础题.2.【答案】D【解析】解:因为,所以复数对应的点为在第四象限,故选:利用复数的运算性质化简复数z,求出对应的点的坐标,由此即可求解.本题考查了复数的运算性质,涉及到复数的实际意义,属于基础题.3.【答案】C【解析】解:已知平面向量的夹角为,且,则,则,故选:由平面向量数量积的运算,结合平面向量的模的运算求解即可.本题考查了平面向量数量积的运算,重点考查了平面向量的模的运算,属基础题.4.【答案】A【解析】解:如图所示,在平面中,连接与DA交于H,则,在平面中,连接与DC交于G,则,则GH为平面与平面ABCD的交线l,且,而在等边中AC与所成的角为,故l与直线所成角为故选:作出平面与平面ABCD的交线l,再求l与直线所成角.本题考查异面直线所成的角的求法,属基础题.5.【答案】B【解析】解:由题意得,5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有种,故选:根据相邻问题用捆绑法和不相邻问题用插空法即可求解.本题考查了排列组合的应用,属于基础题.6.【答案】C【解析】解:,当,则,此时,则函数关于对称,故A错误,当,则,此时,则函数关于对称,故B错误,当,则,此时,则函数关于对称,故C正确,当,则,此时,则函数关于点对称,故D错误,故选:利用辅助角公式进行化简,然后分别利用对称性进行判断即可.本题主要考查三角函数对称性的判断,根据辅助角公式进行化简是解决本题的关键,是中档题.7.【答案】B【解析】解:在三棱锥中,底面ABC,如图所示:在中,,,利用余弦定理:,解得:,设的外接圆的半径为R,利用正弦定理,解得,过点E作的垂线和AP的垂直平分线交于点O,即点O为三棱锥外接球的球心,设球的半径为r,故;所以故选:首先利用正弦定理和余弦定理求出三棱锥的外接球的半径,进一步利用球的表面积公式求出结果.本题考查的知识要点:正弦定理和余弦定理,求和三棱锥的关系,球的表面积公式,主要考查学生的理解能力和计算能力,属于中档题和易错题.8.【答案】D【解析】解:,,,,设,,所以在上单调递减,因为,所以,所以,,令,,,所以在上单调递增,又,所以,所以,所以,故选:,,,则,设,,求导分析单调性,即可得出b与a的大小关系;,令,,求导分析单调性,即可得出b与c的大小关系,即可得出答案.本题考查函数的单调性,数的大小,属于基础题.9.【答案】AB【解析】解:对于A,因为对,,所以是R上的奇函数,故A正确;对于B,由得或,所以的单调递增区间为和,故B正确;对于C,因为时,,所以无最大值,故C错误;对于D,由得,经检验是函数的极大值点,是函数的极小值点,极值点是实数,故D错误,故选:根据奇偶性的定义可判断A;对函数求导,令可得函数的增区间,即可判断B;根据时,,所以无最大值,即可判断C;由得,检验可得为函数的极值点,即可判断本题主要考查了三次函数的性质,属于基础题.10.【答案】AC【解析】解:在平行六面体中,取,,,,,,,对于A:,,,则,故直线与BD所成的角为,故A正确;对于B:,则,即,故B错误;对于C:,故,即,故直线与所成的角为,故C正确;对于D:在平行六面体中,四边形ABCD是菱形,则,又,,平面,平面,平面,又平面ABCD,则平面平面ABCD,连接AC交BD于点O,过点作于点E,如图所示:平面平面,平面,平面ABCD,直线与平面ABCD所成角为,,则,即,在中,,故D错误,故选:在平行六面体中,取,,,利用空间向量的线性运算,逐一分析选项,即可得出答案.本题考查直线与平面的夹角、异面直线的夹角,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.11.【答案】BCD【解析】解:对A,根据中点公式得,将其代入C:得,则,所以抛物线C:的准线方程为,故A错误;对B,因为,则直线OB的斜率为a,则直线OB的方程为,将其代入C:得,解得或舍去,此时,则,所以B为ON中点,故B正确;对C,C:,即,则,故抛物线C在点N处的切线的斜率为,故切线方程为,令得,所以直线AN为C的切线,故C正确;对D,抛物线C:在处的切线方程的斜率为,而直线ON的斜率为a,则两直线的斜率相等,且两直线显然不可能重合,所以C在点M处的切线与直线ON平行.故选:将代入抛物线得,则得到其准线方程,则可判断A,联立直线OB的方程与抛物线方程即可得到,即可判断B,利用导数求出抛物线C在点N处的切线方程,令,则可判断C,再次利用导数求出抛物线在处的切线斜率,则可判断本题考查了抛物线的性质,属于中档题.12.【答案】ABC【解析】解:对于A,由为偶函数得,即有,则的图象关于直线对称,对两边同时求导得:,令,得,故A正确;对于B,由关于直线对称得,由,得,所以,即的图象关于直线对称,故B正确;对于C,对两边同时求导得,由,得,则,即,所以的图象关于直线对称,故C正确;对于D,由,得,结合C选项可知,,即,所以,所以4是函数的一个周期,由,得4也是函数的一个周期,由,得,所以,故D错误.故选:根据为偶函数,可得,两边求导即可判断A;由关于直线对称得,结合,即可判断B;根据,两边同时求导得,从而可判断C;先求出函数和的周期,再结合函数的对称性即可判断本题考查了复合函数的奇偶性、周期性、对数性及复合函数的求导、导数的对称性及奇偶性,属于中档题.13.【答案】60【解析】解:的展开式的通项公式为,,1,,当,即时,;当时,无解;展开式中的常数项为,故答案为:当前边括号取3时,后边括号取常数项;当前边括号取x时,后边括号取项,无解;由此计算出常数项即可.本题考查二项式展开式的应用,考查学生计算能力,属于基础题.14.【答案】【解析】解:圆C:的圆心坐标为,半径为由直线l:,得,联立,解得直线l过定点,又,点在圆内部,则当直线l与线段PC垂直时,直线l被圆C截得的弦长最小.此时直线l被圆C截得的弦长的最小值为故答案为:由圆的方程求出圆心坐标与半径,由直线方程可得直线过定点,求得,再由垂径定理求得直线l被圆C截得的弦长的最小值.本题考查直线与圆的位置关系,考查了垂径定理的应用,属中档题.15.【答案】【解析】解:根据题意设MN中点,又,直线的斜率为,又,直线MN的斜率为,设,,则,两式相减可得:,,,椭圆E的离心率,故答案为:根据直线垂直的条件,点差法,方程思想,化归转化思想,即可求解.本题考查椭圆的离心率的求解,点差法的应用,方程思想,属中档题.16.【答案】【解析】解:设切点为,则,过点P的切线方程为,代入点P坐标化简为,即这个方程有三个不等根即可,令,求导得到,函数在上单调递减,在上单调递增,在上单调递减,又,当时,,要使方程有三个不等实数根,则,的取值范围是:故答案为:求出函数的导函数,可得函数的最值,即可求得实数m的取值范围.本题考查的是导数的几何意义的应用,将函数的切线条数转化为切点个数问题,最终转化为零点个数问题是解决此题的关键,是中档题.17.【答案】解:因为,是锐角,所以P,Q在第一象限,又因为P,Q在单位圆上,点P的纵坐标为,点Q的横坐标为,所以,所以故选①:由中结论可得,又,,由余弦定理可得,即,,,,当时,等号成立,,即当为等边三角形时,周长最大,最大值为选②:由可知,则,由正弦定理,可得,故,则【解析】先利用三角函数的定义与同角的平方关系求得,,,,再利用余弦的和差公式即可得解;选①:先结合中条件得到,再利用余弦定理与基本不等式推得,从而得解;选②:先结合中条件求得,再利用正弦定理求得a,b,从而利用三角形面积公式即可得解.本题考查了正余弦定理、三角函数的定义以及基本不等式的应用,属于中档题.18.【答案】解:在递增数列中,,为函数的两个零点,可得,,公差,则数列是首项为5,公差为2的等差数列,则,则;证明:,则,因为,所以【解析】令,解方程可得,,再由等差数列的通项公式和数列的恒等式,等差数列的求和公式,计算可得所求通项公式;求得,再由数列的裂项相消求和,结合不等式的性质可得证明.本题考查等差数列的通项公式和求和公式的运用,以及数列的裂项相消求和,考查转化思想和运算能力、推理能力,属于中档题.19.【答案】解:记这天浪级是“微浪”为事件,浪级是“小浪”为事件,浪级是“中浪”为事件,浪级是“大浪”为事件,该渔船当天出海作业为事件B ,则由题意可知:,,,所以依题意可知,X 的所有可能取值为0,1,2,3,所以,,,,则X 的分布列为:X 0123P所以【解析】根据频率分布直方图计算频率即可估计二月份的某天各种海浪等级出现的概率;根据全概率公式可求得该渔船在这天出海作业的概率;依题意可知,X 的所有可能取值为0,1,2,3,求出对应的概率,即可得出分布列,根据期望公式求出期望.本题主要考查概率的求法,离散型随机变量分布列及数学期望,考查运算求解能力,属于中档题.20.【答案】证明:取AD的中点O,连接OP,OC,如图,因为,则,又,即有,而,于是四边形ABCO为平行四边形,又,则,又,PO,平面POC,所以平面POC,又,因此平面POC,而平面POC,所以;解:因为,,且,AD,平面PAD,则平面PAD,又,则平面PAD,分别以OC,OP,OD所在的直线为x,y,z轴建立空间直角坐标系,如图,又,则,,又,则,所以,,,,,则,,设平面DMC的法向量为,则,令,得,又平面PAD的一个法向量为,则,所以平面DMC与平面PAD夹角的余弦值为【解析】根据给定条件,取AD的中点O,利用线面垂直的判定证明平面POC即可推理作答;以O为原点,建立空间直角坐标系,利用空间向量求解作答.本题考查了线线垂直的证明和二面角的计算,属于中档题.21.【答案】解:由题意可设双曲线:,则,解得,双曲线的方程为;设,,直线AB的方程为,由,消去x得,则,,且,,;设直线AM:,代入双曲线方程并整理得,由于点M为双曲线的左顶点,此方程有一根为,,解得,点A在双曲线的右支上,,解得,即,同理可得,由,,【解析】由题意可设双曲线:,利用,可求b;设,,直线AB的方程为,与双曲线联立方程组可得,,进而计算可得为定值.设直线AM:,代入双曲线方程可得,进而可得,,进而由可得,进而求得的取值范围.本题考查椭圆和双曲线的标准方程与离心率,双曲线的几何性质,直线与双曲线的位置关系,渐近线与双曲线的位置关系,属中档题.22.【答案】解:由题意得的定义域为,,若在定义域上单调递增,则恒成立,即在上恒成立,又,;若在定义域上单调递减,则恒成立,即在上恒成立,而这样的k不存在;综上所述:在定义域上单调递增,且,所以k的取值范围为;证明:要证成立,只需证,只需证,只需证,只需证,当时,,原不等式即证,由知在上单调递增,,,又,则,原不等式成立.【解析】求导后若在定义域上单调递增,则恒成立,若在定义域上单调递减,则恒成立,利用恒成立知识即可求解;,再根据的单调性即可得证.本题考查了导数的综合应用,属于中档题.。
江南十校2013届新高三模底联考数学(文)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是最符合题目要求的。
)1.设复数z 满足(1)1,||i z i z -=+则=A .0B .1CD .22.已知2{|2,},{|log 1},M x x x N N x x MN =>-∈=<则=A .{|21}x x -<<B .{|22}x x -<<C .{0,1}D .{1} 3.已知命题2:*,1,p x N x p ∀∈≥⌝则是A .2*,1x N x ∀∈<B .2*,1x N x ∀∉≥C .200*,1x N x ∃∉≥D .200*,1x N x ∃∉<4.22"2""00"a b a b ab+≤-><是且的A .必要不充分条件B .充要条件C .充分不必要条件D .既不充分也不必要条件5.函数()lg(||1)f x x =-的大致图象是6.设{}n a 是等差数列,246a a +=,则这个数列的前5项和等于A .12B .13C .15D .18 7.下列命题正确的是A .在(,2ππ)内,存在x ,使5sin cos 4x x +=B .函数2sin()5y x π=+的图像的一条对称轴是45x π=C .函数211tan y x =+的周期为2π D .函数2sin y x =的图像可以由函数2sin(2)4y x π=-的图像向左平移8π个单位得到 8.如下程序框图输出的结果是2021,则判断框内应填入的条件是A .20?n ≤B .20?n <C .20?n >D .20?n ≥9.已知,x y 满足约束条件02,02,32,x y z ax y y x ≤≤⎧⎪≤≤=-⎨⎪-≥⎩如果的最大值的最优解为4(2,)3,则a 的取值范围是A .1[,1]3 B .1(,1)3 C .1[,)3+∞ D .1(,)3+∞10.下列四个选项给出的条件中,能唯一确定四面体ABCD 的是A .四面体ABCD 三对对棱(即没有公共顶点的棱)分别相等,长度分别是1cm ,2cm,3cmB .四面体ABCD 有五条棱长都是1cmC .四面体ABCD 内切球的半径是1cmD .四面体ABCD 外接球的半径是1cm第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分。
安徽省江南十校 2013届高三开学第一考数学(文)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分种。
第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是最符合题目要求的) 1.若{}{}{},,,,,,,,,,,U a b c d e M a b c N b c d ===则()U M N = ðA .{},,a b cB .{},a eC .{a}D .{e}2.复数(1)2i i i +-的实部和虚部分别为A .35-和15B .35和-15C .-15和35D .15和-353.已知实数x 、y 满足3,2,1,x y y x y +≤⎧⎪≤⎨⎪≥⎩则z=x -3y 的最大值为A .1B .-5C .-1D .-34.执行右面的框图,若输出结果为12,则输入的实数x 的值是A .32B .1-或32C .-1D25.直线12y x =-被圆C :x 2+y 2-2x -4y -4=0截得的弦长为A .4B .5C .6D .86.在[0,2]π内,使sin 2sin x x >的x 的取值范围是A .53,,4242ππππ⎛⎤⎛⎫⎪⎥⎝⎦⎝⎭B .50,,64πππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C .74,,3263ππππ⎛⎤⎛⎫⎪⎥⎝⎦⎝⎭D .50,,33πππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭7.双曲线2213x y -=的右焦点和抛物线22y px =的焦点相同,则p=A .2B .4C D .8.已知0,0,a b a >>、b 的等比中项是1,且11,m b n a a b=+=+,则m+n 的最小值是A .3B .4C .5D .69.右图是甲、乙两名运动员某赛季6个场次得分的茎叶图,用x甲,x 乙分别表示甲乙得分的平均数,则下列说法正确的是A .x甲>x 乙 且甲得分比乙稳定B .x 甲=x乙 且乙得分比甲稳定 C .x 甲=x乙 且甲得分比乙稳定D .x甲<x 乙 且乙得分比甲稳定10.已知函数2()f x ax bx c =++,且()0f x >的解集为(-2,1)。
2024年“江南十校”高二年级联考数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并收回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 等差数列中,,,则()A. B. C. 0D. 2【答案】C 【解析】【分析】利用等差数列的性质求解即可.【详解】由等差数列性质得:,即,又,即,故.故选:C2. 安徽省某市石斛企业2024年加入网络平台直播后,每天石斛的销售量(单位:盒),估计300天内石斛的销售量约在1950到2050盒的天数大约为( )(附:若随机变量,则,,)A. 205B. 246C. 270D. 286【答案】A{}n a 12318a a a ++=53a =8a =2-1-2318a =26a =8252a a a +=866a +=80a =()~2000,2500X N ()2~,X N μσ()0.6827P X μσμσ-≤≤+≈()22P X μσμσ-≤≤+0.9545≈()330.9973P X μσμσ-≤≤+≈【解析】【分析】由题意可得,进而由可得结论.【详解】由,所以,所以销售量约在1950到2050盒的概率为,所以由可知大约有205天.故选:A.3. 已知,,圆M 经过A ,B 两点,且圆的周长被x 轴平分,则圆M 的标准方程为( )A B. C. D. 【答案】B 【解析】【分析】求出线段的中垂线,求得与轴的交点即为圆心坐标,进而求得圆的方程.【详解】由题意,中点为,所以线段的中垂线为,令得,所以,半径,所以圆M 的标准方程为.故选:B.4. “一带一路”2024国际冰雪大会中国青少年冰球国际邀请赛在江苏无锡举行,现将4名志愿者分成3组,每组至少一人,分赴3个不同场馆服务,则不同的分配方案种数是( )A. 18 B. 36 C. 54 D. 72【答案】B【解析】【分析】先将4人分成3组,一组2人,一组1人,一组1人,再分配.【详解】将4人分成3组,一组2人,一组1人,一组1人,分法有种,再分配给3个.2000,50μδ==0.6827300204.81⨯=(2000,2500)X N 2000,50μδ==()0.6827P X μδμδ-≤≤-=0.6827300204.81⨯=()4,0A (B 22532x y ⎛⎛⎫-+= ⎪ ⎝⎭⎝()2224x y -+=224x y +=()2214x y -+=AB x ABk ==AB 52⎛ ⎝AB 52y x ⎫-=-⎪⎭0y =2x =()2,0M 2r =()2224x y -+=24C不同场馆有,所以不同的分配方案种数种.故选:B.5. 在棱长均相等的正三棱柱中,E 为棱AB 的中点,则直线与平面所成角的正弦值为( )A.B.C.D.【答案】A 【解析】【分析】本题线面角的定义,作出线面角,根据勾股定理算出线面角所在直角三角形的边长,进而求出正弦值.【详解】过E 作,F 为垂足,连接,则为直线与平面所成角,设三棱柱的棱长为2,则,∴故选:A33A 2343C A 36⋅=111ABC A B C -1B E 11BB C C 13EFBC ⊥1B F 1EB F ∠1B E 1B C EF =1B E =1sin EB F ∠=6. 已知是各项均为正数的等比数列,若,,,则数列的最小项为( )A. B. C. D. 【答案】B 【解析】【分析】设公比为,可得,可求的通项公式,进而可得,进而可得时,,可得结论.【详解】由,,是各项均为正数的等比数列,设其公比为,则有,解得或(舍去),所以,,由得,所以时,,又,,,故最小.故选:B.7. 已知抛物线的焦点为F ,直线l 过点F 且与抛物线交于P ,Q 两点,若,则直线l 倾斜角的正弦值为( )A.B.C. 2D. 3【答案】A 【解析】【分析】由抛物线的定义作出图象,结合几何关系求出即可.{}n a 13a =339S =3nn a b n={}n b 2b 3b 5b 7b q 233339q q ++={}n a 33n n b n=3n ≥1n n b b +≥13a =339S ={}n a q 233339q q ++=3q =4q =-3nn a =33n n b n =31311n nb n b n +⎛⎫=> ⎪+⎝⎭2n >3n ≥1n n b b +≥13b =298b =31b =3b 24x y =2FP QF =1312【详解】过P ,Q 分别作,垂直于准线,垂足分别为,,过Q 作,垂足为R ,设,则,,.故选:A.8. 已知函数,若在上单调,则实数a 的取值范围为( )A. B. C. D. 【答案】D 【解析】【分析】先判断函数为奇函数,根据奇函数的性质有:要使函数在上单调,只要函数在上单调,对函数求导,代特殊值求得,结合函数在上单调,可知在上恒成立,即可知,确定值并检验即可求解.【详解】因为,且,所以为奇函数,要使函数在上单调,只要函数在上单调;又,且,又函数在上单调,故函数在上只能单调递减,PP 'QQ 'P 'Q 'QR PP '⊥FQ r =2FP r =QQ r '=1sin 33PR r PR r PQR PQr =⇒∠===()sin cos f x a x x x =+()f x []π,π-[]0,1[)1,-+∞(],1-∞-{}1-()f x []π,π-()f x []0,πππ022f ⎛⎫'=-<⎪⎝⎭[]0,π[]0,π()0f x '≤()()()010π10f a f a ⎧=+≤⎪⎨=-+≤''⎪⎩a[]π,πx ∈-()()()()sin cos sin cos f x a x x x a x x x f x -=---=--=-()f x ()f x []π,π-()f x []0,π()()1cos sin f x a x x x =+-'ππ022f ⎛⎫'=-<⎪⎝⎭()f x []0,π()f x []0,π由,即,解得,当时,,时,,,故有在上恒成立,经检验知,时符合题意.故选:D【点睛】关键点点睛:本题关键在于根据函数的单调性,判断出导数的取值情况,由此确定值并检验.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知函数,下列关于的说法正确的是( )A. 在上单调递减B. 在上单调递增C. 有且仅有一个零点D. 存在极大值点【答案】BC 【解析】【分析】利用导数的正负的单调性和极值,即可判断ABD ;令可判断D.【详解】对于AB ,由题意知函数的定义域为,所以,令,得,当时,,在上单调递减;当时,,在上单调递增;故A 错误.B 正确;对于D ,由上可知,是的极小值点,无极大值点.故D 错误;令,得,当时,,故为的唯一零点,故C 正确.()()()010π10f a f a ⎧=+≤⎪⎨=-+≤''⎪⎩11a a ≤-⎧⎨≥-⎩1a =-1a =-()sin f x x x '=-[]0,πx ∈0x -≤sin 0x ≥()sin 0f x x x '=-≤[]0,πx ∈1a =-a ()()1e xf x x =-()f x ()f x ()0,1()f x ()1,+∞()f x ()f x ()f x ()0f x =()()1e xf x x =-R ()()e 1e e xxxf x x x =+-='()0f x '=0x =0x <()0f x '<()f x (),0∞-0x >()0f x '>()f x ()0,∞+0x =()f x ()0f x =1x =1x <()0f x <1x =()f x故选:BC10. 现有甲、乙两个盒子,各装有若干个大小相同的小球(如图),则下列说法正确的是( )A. 甲盒中一次取出3个球,至少取到一个红球的概率是B. 乙盒有放回的取3次球,每次取一个,取到2个白球和1个红球的概率是C. 甲盒不放回的取2次球,每次取一个,第二次取到红球的概率是D. 甲盒不放回的多次取球,每次取一个,则在第一、二次都取到白球的条件下,第三次也取到白球的概率是【答案】ABC 【解析】【分析】A 选项利用超几何分布求概率公式即可计算;B 根据二项分布求概率公式计算即可;C 选项、D 选项利用全概率公式与条件概率公式即可求解.【详解】对于A ,记“甲盒中取3球至少一个红球”,则,故A 正确;对于B ,记“乙盒有放回的取3次球,取到2个白球”,则,故B 正确;对于C ,记“甲盒不放回第i 次取到红球”,则,故C 正确.对于D ,,故D 不正确.故选:ABC.1621381337A =()3639C 161C 21P A =-=B =()32313C 28P B ⎛⎫== ⎪⎝⎭=i A ()()()()()()21212121121||P A P A A A P A P A A P A P A A =+=⋅+⋅3263198983=⨯+⨯=()()()312312126544987|65798P A A A P A A A P A A ⨯⨯===⨯11. 达·芬奇方砖是在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转化为图3所示的几何体,图3中每个正方体的棱长为1,E ,F 为棱,AB 的中点,则( )A. 点P 到直线CQ 的距离为2B. 直线平面C. 平面和平面D. 平面截正方体【答案】ABD 【解析】【分析】由余弦定理可求得,可求P 到CQ 的距离的距离,判断A ;以点D为坐标原点,以DA ,DC ,所在的直线分别为x 轴,y 轴,z 轴,利用向量法平面,判断B ;结合B ,可求得到平面的距离,到平面的距离,可求得平面与平面的距离,判断C ;连接并延长交CD 延长线于U ,连接UF 交AD于V ,交CB 的延长线于W ,可得截面为,求得截面的周长判断D.【详解】由勾股定理可得,由余弦定理得,得,P 到CQ 的距离为,所以A 正确;选项B :如图,以点D 为坐标原点,以DA ,DC ,所在的直线分别为x 轴,y 轴,z 轴,1DD 1AC ⊥1A BD1A BD 11B CD 1C EF 1111ABCD A B C D -45PCQ ∠=︒1DD 1AC ⊥1A BD A 1A BD 1C 11B CD 1A BD 11B CD 1C E 1EVFXC PQ ==PC 3QC ==222cos 2PC QC PQ PCQ PC QC +-∠==45PCQ ∠=︒sin 452PC ⋅︒=1DD则,,,,,∴,设平面的法向量分别为,所以 ,∴,所以平面,故B 正确;选项C :由B 可知平面,同理可证平面,易求,设到平面的距离为,由,可得,所以,解得,所以到平面到平面所以平面与平面C 不正确;选项D :连接并延长交CD 延长线于U ,连接UF 交AD 于V,交CB 的延长线于W ,,,,,的()0,0,0D ()1,0,0A ()10,1,1C ()11,0,1A ()1,1,0B ()11,1,1AC =-1A BD (),,m x y z =()()()()()11,0,1,,01,1,11,1,0,,0DA m x y z x z m DB m x y z x y ⎧⋅=⋅=+=⎪⇒=--⎨⋅=⋅=+=⎪⎩1AC m ∥1AC ⊥1A BD 1AC ⊥ 1A BD 1AC ⊥11B D C 1AC =A 1A BD d 11A A BD A ABD V V --=1111133A BD A ABD S d S AA -=V V g g 1111sin 601113232d ⨯︒⨯=⨯⨯⨯⨯d =A 1A BD 1C 11B CD 1A BD 11B CD =1C E 1C E ==152263ED EV DV ⎧=⎪⎪⇒=⎨⎪=⎪⎩1312AV VF AF ⎧=⎪⎪⇒=⎨⎪=⎪⎩1214FB FX BX ⎧=⎪⎪⇒=⎨⎪=⎪⎩,所以D 正确.故选:ABD.【点睛】方法点睛:求点到面的距离,常用等体积法转化为一个面上的高的方法处理,求截面周长,关键是作出截面图形.三、填空题:本题共3小题,每小题5分,共15分.12. 展开式中的常数项为______.【答案】135【解析】【分析】根据二项式展开式的通项特征,即可求解.【详解】展开式的通项为,令,所以常数项为,故答案为:13513. 已知函数,其中,若是的极小值点,则实数a 的取值范围为______.【答案】【解析】【分析】求导可得,由是的极小值点,结合已知可得,求解可得实数的取值范围.【详解】因为函数的定义域为,求导得,111115344B C C X B X =⎧⎪⇒=⎨=⎪⎩5564++++=63x ⎛- ⎝63x ⎛- ⎝(){}3662613,0,1,2,3,4,5,6k k k k C x k ---∈36042k k -=⇒=()442613135C -=()()213ln 312f x x ax a x =-+-0a <3x =()f x 1,3⎛⎫-∞- ⎪⎝⎭()()()13ax x f x x--'-=3x =()f x 13a-<a ()f x (0,)+∞()()()()()231313331ax a x ax x f x ax a x x x-+-+--'-=-+-==令,可得或,因为是的极小值点,又,所以,从而.所以实数的取值范围为.故答案为:14. 过双曲线的左焦点F 作渐近线的垂线,与双曲线及渐近线的交点分别为A ,B ,点A ,B 均在第二象限,且A 为线段FB 的中点,则______.【答案】1【解析】【分析】首先利用点到直线的距离公式计算出,进而得到,在根据双曲线的定义计算出,然后在中使用余弦定理即可求解。
2024届安徽省“江南十校”联考数学(答案在最后)姓名__________座位号__________注意事项:1.答卷前,考生务必将自已的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并收回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}221,10x A x B x x =≥=->∣∣,则A B ⋃=()A.{}11x x -<< B.{}01x x ≤< C.{}1x x >- D.{}0x x ≥【答案】C 【解析】【分析】根据指数函数的单调性,结合一元二次不等式的解法、集合并集的定义进行求解即可.【详解】因为{}{}{}{}2210,1011xA x x xB x x x x =≥=≥=->=-<<,所以A B ⋃={}1x x >-,故选:C2.已知复数z 满足()12i 43i z +=+,则z =()A.2i + B.2i- C.2i 5-+ D.2i 5--【答案】A 【解析】【分析】根据复数的除法和共轭复数的概念即可得到答案.【详解】()()()()43i 12i 43i 105i2i 12i 12i 12i 5z +-+-====-++-,所以2i z =+.故选:A.3.已知向量,a b 满足()()1,,3,1a b m a b +=-= .若//a b ,则实数m =()A.13-B.13C.3D.-3【答案】B 【解析】【分析】根据给定条件,求出,a b的坐标,再利用向量共线的坐标表示计算即得.【详解】由()()1,,3,1a b m a b +=-= ,得11(2,),(1,)22m m a b +-==- ,由//a b,得112022m m -+⋅+=,所以13m =.故选:B4.已知函数π()3sin(2)(||)2f x x ϕϕ=+<的图象向右平移π6个单位长度后,得到函数()g x 的图象.若()g x 是偶函数,则ϕ为()A.π6B.π6-C.π3D.π3-【答案】B 【解析】【分析】利用给定的图象变换求出()g x 的解析式,再利用正弦函数的奇偶性列式计算即得.【详解】依题意,()ππ3sin 263g x f x x ϕ⎛⎫⎛⎫=-=-+ ⎪ ⎪⎝⎭⎝⎭,由()g x 是偶函数,得πππ,Z 32k k ϕ-+=+∈,而π||2ϕ<,则π1,6k ϕ=-=-.故选:B5.酒驾严重危害交通安全.为了保障交通安全,交通法规定:机动车驾驶人每100ml 血液中酒精含量达到2079mg 为酒后驾车,80mg 及以上为醉酒驾车.若某机动车驾驶员饮酒后,其血液中酒精含量上升到了1.2m g /m l .假设他停止饮酒后,其血液中酒精含量以每小时20%的速度减少,则他能驾驶需要的时间至少为()(精确到0.001.参考数据:lg20.3010,lg30.4771≈≈)A.7.963小时B.8.005小时C.8.022小时D.8.105小时【答案】C 【解析】【分析】根据题意列出指数不等式,根据对数运算法则即可计算.【详解】由已知得:1.20.80.2x ⨯<,所以lg 6lg 2lg 313lg 213lg 2x +>=--,即0.30100.47710.77818.022130.30100.0970x +>=≈-⨯,所以8.022x >故选:C.6.已知函数()1ln f x x x=-在点()1,1-处的切线与曲线()212y ax a x =+--只有一个公共点,则实数a 的取值范围为()A.{}1,9 B.{}0,1,9 C.{}1,9-- D.{}0,1,9--【答案】B 【解析】【分析】求出切线方程,再对a 分0a =和0a ≠讨论即可.【详解】由211()f x x x'=+得(1)2f '=,所以切线方程是2(1)123y x x =--=-,①若0a =,则曲线为2y x =--,显然切线与该曲线只有一个公共点,②若0a ≠,则223(1)2x ax a x -=+--,即2(3)10ax a x +-+=,由2(3)40a a ∆=--=,即21090a a -+=,得1a =或9a =,综上:0a =或1a =或9a =.故选:B.7.已知圆22:8120C x y x +-+=,点M .过原点的直线与圆C 相交于两个不同的点,A B ,则||MA MB +的取值范围为()A.2)-+B.2]+ C.4)-+ D.4]+【答案】D 【解析】【分析】取线段AB 的中点P ,求出点P 的轨迹方程,再利用平面向量数量积的运算律及圆的性质求解即得.【详解】圆22:(4)4C x y -+=的圆心(4,0)C ,半径为2,取线段AB 的中点P ,连接CP ,当P 与圆C 的圆心C 不重合时,CP OP ⊥,点P 在以线段OC 为直径的圆在圆C 内的圆弧上,当P 与C 重合时,也在此圆弧上,因此点P 的轨迹是以线段OC 为直径的圆在圆C 内的圆弧,圆弧所在圆心为()2,0,方程为22(2)4(34)x y x -+=<≤,显然|||2|M MA MB P += ,过点M 与点(2,0)的直线斜率12k =-,过点M与点3(,的直线斜率23k =-,显然21k k <,即过点M 与点(2,0)的直线与该圆弧相交,因此max ||22MP == ,点M与点的距离为3,则||3MP > ,所以||MA MB +的取值范围为4]+.故选:D8.已知数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,且111,1,1n n n n a S n a b a +=+==+,则使得n T M <恒成立的实数M 的最小值为()A.1B.32 C.76D.2【答案】C 【解析】【分析】根据给定条件,求出数列{}1n a +的通项,再利用等比数列前n 项和公式求出n T 即可得解.【详解】数列{}n a 中,11a =,1n n a S n +=+,当2n ≥时,11n n a S n -=+-,两式相减得11n n n a a a +-=+,即121n n a a +=+,整理得112(1)n n a a ++=+,而211112a S a =+=+=,因此数列{}(2)1n a n +≥是首项为3,公比为2的等比数列,2132n n a -+=⨯,11a =不满足上式,则111112b a ==+,当2n ≥时,21132n n b -=⨯,1211111211721232332612n n n T ---=+⨯=+-⨯<-,而111726T b ==<,依题意,76M ≥,所以实数M 的最小值为76.故选:C【点睛】思路点睛:给出n S 与n a 的递推关系,求n a ,常用思路是:一是利用1n n n S S a +-=转化为n a 的递推关系,再求其通项公式;二是转化为n S 的递推关系,先求出n S 与n 之间的关系,再求n a .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.箱线图是用来表示一组或多组数据分布情况的统计图,因形似箱子而得名.在箱线图中(如图1),箱体中部的粗实线表示中位数;中间箱体的上、下底,分别是数据的上四分位数(75%分位数)和下四分位数(25%分位数);整个箱体的高度为四分位距;位于最下面和最上面的实横线分别表示最小值和最大值(有时候箱子外部会有一些点,它们是数据中的异常值).图2为某地区2023年5月和6月的空气质量指数(AQI )箱线图.AQI 值越小,空气质量越好;AQI 值超过200,说明污染严重.则()A.该地区2023年5月有严重污染天气B.该地区2023年6月的AQI 值比5月的AQI 值集中C.该地区2023年5月的AQI 值比6月的AQI 值集中D.从整体上看,该地区2023年5月的空气质量略好于6月【答案】ACD 【解析】【分析】根据给定信息,结合图示,逐项判断即得.【详解】对于A ,图2所示中5月份有AQI 值超过200的异常值,A 正确;对于B ,C ,图2中5月份的箱体高度比6月份的箱体高度小,说明5月的AQI 值比6月的AQI 值集中,B 错误,C 正确;对于D ,虽然5月有严重污染天气,但从图2所示中5月份箱体整体上比6月份箱体偏下且箱体高度小,AQI 值整体集中于较小值,说明从整体上看,该地区2023年5月的空气质量略好于6月,D 正确.故选:ACD10.已知抛物线2:2E y px =的焦点为F ,从点F 发出的光线经过抛物线上的点P (原点除外)反射,则反射光线平行于x 轴.经过点F 且垂直于x 轴的直线交抛物线E 于,B C 两点,经过点P 且垂直于x 轴的直线交x 轴于点Q ;抛物线E 在点P 处的切线l 与,x y 轴分别交于点,M N ,则()A.2||PQ BF QF=⋅ B.2||PQ BC OQ=⋅C.PF MF = D.FN l⊥【答案】BCD 【解析】【分析】根据题意,得到各线段的长度,从而判断AB ,利用抛物线光学性质,结合抛物线的定义判断CD.【详解】对于AB ,设点(,)P x y ,则(,0)Q x ,y =,则||PQ =,2pBF p QF x ==-,所以2||22pPQ px px BF QF =≠-=⋅,故A 错误;又||2,||BC p OQ x ==,则2||2PQ px BC OQ ==⋅,故B 正确;对于C ,如下图所示,过点P 作x 轴的平行线RH ,与抛物线E 的准线KH 交于点H ,又题意所给抛物线的光学性质可得SPR MPF ∠=∠,又SPR PMF ∠=∠,所以MPF PMF ∠=∠,从而||||PF MF =,故C 正确;对于D ,因为SPR HPM ∠=∠,所以MPF HPM ∠=∠,即PM 为HPF ∠的角平分线,又由抛物线定义知PH PF =,结合||||PF MF =,可得四边形MFPH 为菱形,而y 轴经过线段FH 中点,从而PM 与y 轴的交点即为点N ,所以FN l ⊥,故D 正确.故选:BCD.11.已知点,,,S A B C均在半径为的球面上,ABC是边长为的等边三角形,SA BC ⊥,SA =,则三棱锥S ABC -的体积可以为()A.3B.C.D.【答案】BC 【解析】【分析】利用线线垂直构造面面垂直结合三棱锥的外接球特征分类讨论计算即可.【详解】取,BC SA 的中点,D F ,设三棱锥S ABC -的外接球球心为O,半径R =作⊥EO AD 于E ,连接,,AO AD OF ,易知,,AD BC AS AD A AS AD ⊥⋂=⊂、平面ADS ,因为SA BC ⊥,所以BC ⊥平面ADS ,又BC ⊂平面ABC ,所以平面ABC⊥平面ADS ,作⊥SG AD 于G 点,平面ABC ⋂平面ADS AD =,则SG ⊥平面ABC ,故三棱锥S ABC -的体积为211334ABC V S SG AB SG =⋅=⨯⨯⨯= ,由题意可知22,1,32AE AD OA OE OF ===⇒===,即11tan ,tan 23OAE OAF ∠=∠=,若S 在直线AO 的下方,则()111323tan tan 1175123SAD EAO FAO SG -∠=∠-∠====+⨯,若S 在直线AO 的上方,则()1123tan tan 1311123SAD EAO FAO SG +∠=∠+∠====-⨯,综上所述V =或335.故选:BC【点睛】思路点睛:先根据条件得出球心与S 点所在平面垂直于底面ABC ,再根据三棱锥的外接球性质及勾股定理计算夹角,OAE OAF ∠∠,最后分类讨论S 点的位置计算三棱锥的高即可.三、填空题:本题共3小题,每小题5分,共15分.12.从0,2,4,6中任意选1个数字,从1,3,5中任意选2个数字,得到没有重复数字的三位数.在所组成的三位数中任选一个,则该数是偶数的概率为__________.【答案】411【解析】【分析】根据两个计数原理及古典概型计算即可.【详解】根据题意可知:若从0,2,4,6中任意选1个不为0的数字有13C 3=种选法,从1,3,5中任意选2个数字有23C 3=种选法,由选出的3个数字组成三位数有3!种组法,共333!54⨯⨯=种方法,其中偶数有1233C A 18⨯=个;若从0,2,4,6中选0,再从1,3,5中任意选2个数字有23C 3=种选法,由选出的3个数字组成三位数有12C 2!4⨯=种组法,共13412⨯⨯=种方法,其中偶数有23A 6=个;所以该数为偶数的概率为1864541211P +==+.故答案为:41113.若函数()2f x +为偶函数,()15y g x =+-是奇函数,且()()22f x g x -+=,则()2023f =__________.【答案】3-【解析】【分析】根据抽象函数的奇偶性、对称性、周期性计算即可.【详解】由题意可知()f x 关于2x =轴对称,()g x 关于()1,5中心对称,()()()()()()2221022228f x g x f x g x f x g x -+=⇒-+--=⇒---=-,所以()()8f x g x -=-,故()()()()262f x f x f x f x +-=-=++,所以()()()()2464f x f x f x f x +++=-⇒=+,即4T =是()f x 的一个正周期,则()()()202331f f f ==由()()()()26136f x f x f f -+=-⇒-+=-,且()()13f f -=,则()13f =-,故答案为:3-14.过双曲线2222:1(0,0)x y E a b a b-=>>的右焦点F 的直线分别在第一、第二象限交E 的两条渐近线于,M N 两点,且OM MN ⊥.若23OM MN ON a +-=,则双曲线E 的离心率为__________.【答案】【解析】【分析】根据渐近线的斜率与倾斜角的关系,结合正切二倍角的公式、正切的定义、勾股定理、双曲线离心率的公式进行求解即可.【详解】由题意可知该双曲线的渐近线方程为by x a=±,如图所示:令MOF θ∠=,于是有tan b aθ=,由双曲线和两条渐近线的对称性可得:π2MON θ∠=-,因为OM MN ⊥,所以ππππ00π22242MON θθ<∠<⇒<-<⇒<<,即tan 1bb a aθ=>⇒>,在直角三角形MOF 中,设()tan 0,MF bm m MF bm OM am OMaθ===>⇒==,根据勾股定理可得:222222222221MF OM OF b m a m c c m c m +=⇒+=⇒=⇒=,或1m =-舍去,即,MF b OM a ==,在直角三角形MON 中,()222222tan tan π2tan 21bNM NM aba MONb b a OM a a θθ∠=-=-=-===--2222a bNM b a⇒=-,由勾股定理可知:22222222222a b ac ON NM OM a b a b a ⎛⎫=+=+= ⎪--⎝⎭,因为23OM MN ON a +-=,所以()2222222222222226306303a b ac a a b a ab c b a ab a b b a b a +-=⇒-+-=⇒-+-+=--2223230202b bb b a ab a a a ⎛⎫⇒+-=⇒-+=⇒= ⎪⎝⎭,或1b a =舍去,由222222224455b b c a c e a a a a-=⇒=⇒=⇒=⇒=,故答案为:5【点睛】关键点睛:本题的关键是利用二倍角的正切公式、由已知等式化简成为,a b 的齐次方程,进而求出双曲线的离心率.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知,,a b c 分别是ABC 三个内角,,A B C 3sin cos c A a C b c +=+.(1)求A ;(2)若2BC =,将射线BA 和CA 分别绕点,B C 顺时针旋转15 ,30 ,旋转后相交于点D (如图所示),且30DBC ∠= ,求AD .【答案】(1)π3A =(2)63【解析】【分析】(1)根据正弦定理实现边角转化,结合两角和的正弦公式、辅助角公式进行求解即可;(2)根据正弦定理,结合余弦定理、两角和的正弦公式进行求解即可.【小问1详解】根据正弦定理,由3sin cos 3sin sin cos sin sin c A a C b c C A A C B C+=+⇒+=+()3sin sin cos sin πsin C A A C A C C ⇒+=--+()3sin sin cos sin sin C A A C A C C⇒+=++3sin sin cos sin cos cos sin sin C A A C A C A C C ⇒+=++3sin cos sin sin C A A C C ⇒=+,因为()0,πC ∈,所以sin 0C ≠,π3sin cos sin sin 3sin cos 12sin 16C A A C C A A A ⎛⎫=+⇒=+⇒-= ⎪⎝⎭π1sin 62A ⎛⎫⇒-= ⎪⎝⎭,因为因为()0,πA ∈,所以ππ5π,666A ⎛⎫-∈- ⎪⎝⎭,因此πππ663A A -=⇒=.【小问2详解】由(1)可知π3A =,由题意可知ππ,126ABD ACD ∠=∠=,而π6DBC ∠=,所以πππ5π5ππ7ππ,4341212612ABC ACB BCD ∠=⇒∠=--=⇒∠=+=π7πππ6124BDC ⇒∠=--=,在ABC中,由正弦定理可知:1232632,π5πππ22223sin sin sin 3126422BC AB AC AB ⎛=⇒=⇒=⨯⨯= ⎛⎫⎝⎭+ ⎪⎝⎭在DBC △中,由正弦定理可知:11π7πππ222222sin sin sin 4123422BC BD AC BD ⎛=⇒=⇒=⨯⨯= ⎛⎫⎝⎭+ ⎪⎝⎭,在DBA中,由余弦定理可知:AD =.3=16.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,1,2,60PB AB AD PD BAD ∠=====.(1)求证:平面PAB ⊥平面ABCD ;(2)若二面角P BD A --的大小为120 ,点E 在棱PD 上,且2PE ED =,求直线CE 与平面PBC 所成角的正弦值.【答案】(1)证明见解析(2)65【解析】【分析】(1)根据余弦定理求出BD =,再利用勾股定理逆定理和面面垂直的判定即可;(2)建立合适的空间之间坐标系,求出相关法向量,根据线面角的空间向量求法即可.【小问1详解】证明:由余弦定理得BD =所以222222,AD AB BD PD PB BD =+=+,因此,AB BD PB BD ⊥⊥,又因为,,AB PB B AB PB ⋂=⊂平面PAB ,所以BD ⊥面PAB ,又因为BD ⊂平面ABCD ,故平面PAB ⊥平面ABCD .【小问2详解】由于,AB BD PB BD ⊥⊥,所以二面角P BD A --的平面角为PBA ∠,即120PBA ︒∠=,在平面PAB 内过点B 作AB 的垂线,交AP 于F ,由平面PAB ⊥平面ABCD ,且BF ⊂平面PAB ,平面PAB ⋂平面ABCD AB =,得BF ⊥平面ABCD ,以B 为坐标原点,,,BA BD BF为x ,y ,z 轴正方向,建立如图所示的空间直角坐标系B xyz -,则1(0,0,0),(,0,22B D C P ⎛⎫-- ⎪ ⎪⎝⎭,设平面PBC 的法向量为(,,)n x y z =,由于1(,0,22BC BP ⎛⎫=-=- ⎪ ⎪⎝⎭ 则00n BC n BP ⎧⋅=⎪⎨⋅=⎪⎩,即013022x x z ⎧-+=⎪⎨-+=⎪⎩,令x =,则1y z ==,所以n =设直线CE 与平面PBC 所成角为θ,2533,,3636CE CP PE CP PD ⎛⎫=+=+=- ⎪ ⎪⎝⎭ ,63sin cos ,5CE n CE n CE nθ⋅∴===⋅,因此直线CE 与平面PBC所成角的正弦值为5.17.某产品的尺寸与标准尺寸的误差绝对值不超过4mm 即视为合格品,否则视为不合格品.假设误差服从正态分布且每件产品是否为合格品相互独立.现随机抽取100件产品,误差的样本均值为0,样本方差为4.用样本估计总体.(1)试估计100件产品中不合格品的件数(精确到1);(2)在(1)的条件下,现出售随机包装的100箱该产品,每箱均有100件产品.收货方对每箱产品均采取不放回地随机抽取方式进行检验,箱与箱之间的检验相互独立.每箱按以下规则判断是否接受该箱产品:如果抽检的第1件产品不合格,则拒绝该箱产品;如果抽检的第1件产品合格,则再抽1件,如果抽检的第2件产品合格,则接受该箱产品,否则拒绝该箱产品.若该箱产品通过检验后生产方获利1000元;该箱产品被拒绝,则亏损89元.求100箱该产品利润的期望值.附:若随机变量Z 服从正态分布()2,N μσ,则()0.6827P Z μσμσ-+≈≤≤,()()220.9545,330.9973.P Z P Z μσμσμσμσ-≤≤+≈-≤≤+≈【答案】(1)约为5件;(2)89330元.【解析】【分析】(1)根据给定条件,利用正态分布的概率求出这批产品的合格率即可得估计值.(2)利用互斥事件的概率及条件概率公式求出一箱产品通过的概率,再利用二项分布的期望公式及期望的性质计算即得.【小问1详解】分别用样本均值和样本标准差估计正态分布的参数μ和σ,得产品的尺寸误差2)~(0,2X N ,(||4)(22)0.9545P X P X μσμσ≤=-≤≤+≈,因此估计这批产品的合格率为95.45%,样本的不合格品率为10.95450.0455-=,所以估计100件产品中有1000.0455 4.555⨯=≈件不合格品.【小问2详解】设1A =“抽检的第1件产品不合格”,2A =“抽检的第2件产品不合格”,则一箱产品被拒绝的事件为112)(A A A ,因此1121121121))())((((()(|))P A A A P A P A A P A P A P A A =+=+ 59559710010099990=+⨯=,设100箱产品通过检验的箱数为Y ,则893~(100,990Y B ,因此100箱利润1000(89)(100)10898900W Y Y Y =+--=-,所以平均利润893()(10898900)1089()890010891008900990E W E Y E Y =-=-=⨯⨯89330=(元).18.已知矩形ABCD 中,,,,AB BC E F G H ==分别是矩形四条边的中点,以矩形中心O 为原点,HF 所在直线为x 轴,EG 所在直线为y 轴,建立如图所示的平面直角坐标系.直线,HF BC 上的动点,R S 满足(),OR OF CS CF λλλ==∈R.(1)求直线ER 与直线GS 交点P 的轨迹方程;(2)当3λ=-时,过点R 的直线m (与x 轴不重合)和点P 轨迹交于,M N 两点,过点N 作直线:3l x =-的垂线,垂足为点Q .设直线MQ 与x 轴交于点K ,求KMN △面积的最大值.【答案】(1)221(62x y +=不含点(0,;(2)34.【解析】【分析】(1)根据给定条件,借助向量共线用λ表示点,R S ,再求出直线,ER GS 的方程,联立消去参数λ即得.(2)设出直线m 的方程,与点P 的轨迹方程联立,借助韦达定理求出点K 坐标,再建立三角形面积的函数关系,并求出最大值即得.【小问1详解】依题意,(()0,,,,E G FC ,设点)(,),(,0),R S P x y R x S y ,由OR OF λ=,得R x =,即,0)R ,由CS CF λ=,得)S y λ=-,即))S λ-,当0λ≠时,直线:ER y x =,直线:GS y x =+,联立消去参数λ得21(3y y x +-=-,即221(0)62x y x +=≠,当0λ=时,得交点P ,满足上述方程,所以直线ER 与直线GS 交点P 的轨迹方程:221(62x y +=不含点(0,.【小问2详解】当3λ=-时,点(2,0)R -,过点R 的直线m可设为2(x ty t =-≠,由22236x ty x y =-⎧⎨+=⎩消去x 得:22(2)36ty y -+=,即22(3)420t y ty +--=,设1112)(,,)(,M x y N x y ,则12122242,33t y y y y t t -+==++,依题意,2()3,Q y -,直线1221:(3)3y y MQ y y x x --=++,令0y =,得点K 横坐标()212111212333K y x y x y x y y y y -+--=-=--,又111212)2,2(x ty ty y y y =-=-+,则122112211122112121212155(23(2)32352222)Ky y y y y y y ty y ty y y y x y y y y y y y y ++--+----+-=====-----,因此直线MQ 过定点5(,0)2K -,显然1212||11||||24KMN S KR y y y y =-=- ,而12||y y-===,令21(1)n t n=+≥,12y y-==≤=当且仅当2n=,即1t=±取等号,此时4KMNS=,所以KMN△面积的最大值为4.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.19.已知函数()()()e,,xf x x a x a f x=--∈'R是()f x的导函数.(1)证明:()f x'在(),-∞+∞上存在唯一零点x;(2)设函数()()2211e12xg x x ax x x⎛⎫=-+-++⎪⎝⎭.①当e4,2a∞-⎡⎫∈+⎪⎢⎣⎭时,求函数()g x的单调区间;②当e4,2a∞-⎛⎫∈- ⎪⎝⎭时,讨论函数()g x零点的个数.【答案】(1)证明见解析;(2)①答案见解析;②只一个零点.【解析】【分析】(1)对函数求导,构造()()1e xh x x a-=-+-利用其单调性结合零点存在性定理计算即可证明;(2)①先求导函数,构造()()1e xh x x a-=-+-,利用其单调性及()10h-<,得出1x>-,从而判定单调区间;②利用(1)、①的结论,分类讨论函数的单调性,极大值与0的关系判定零点个数即可.【小问1详解】由题意可知()()1e 1xf x x a +'=--,由()01e 0xf x x a -+'=⇒--=,令()1e xh x x a -=-+-,易知()y h x =在R 上单调递增,又11(1)0e a h a --=-<,若0a ≥,由于11a a +>-且11(1)20ea h a ++=->;若a<0,由于1a a ->-且11()12120e e a ah a a a --⎛⎫-=--=-->⎪⎝⎭;所以在(),-∞+∞上存在唯一零点0x ,使得()00h x =,即()f x '在(),-∞+∞上存在唯一零点0x ;【小问2详解】①当e 4,2a ∞-⎡⎫∈+⎪⎢⎣⎭时,易知()()()()221e 1x g x x a x a x =+-+--+'()()11e e x xx x a -⎡⎤=+-+-⎣⎦,由(1)知()1e xh x x a -=-+-单调递增,且只存在一个零点0x ,注意到()3e 41e 02h a --=--≤-<,所以01x >-,可得在区间(),1-∞-和()0,x +∞上,()0g x '>,即此时()g x 单调递增,在()01,x -上,()0g x '<,即此时()g x 单调递减;②易知()00g =,即()g x 的一个零点为0x =,(i )当e 4e,2a -⎛⎫∈- ⎪⎝⎭时,由上可知()1e 0h a -=--<,即01x >-,此时在区间(),1-∞-和()0,x +∞上,()0g x '>,()g x 单调递增,在()01,x -上,()0g x '<,()g x 单调递减,则=1x -时取得极大值()24e102ea g +--=<,又()()()22252e 59e e 50g a =-->-->,即此时()g x 的零点只一个为0x =;(ii )当a e =-时,易知01x =-,此时()0g x '≥,则()g x 在R 上单调递增,所以此时()g x 的零点只一个为0x =;(iii )当e a <-时,易知01x <-,此时在区间()0,x -∞和()1,-+∞上,()0g x '<,()g x 单调递增,在()0,1x -上,()0g x '<,()g x 单调递减,则0x x =时取得极大值()()()002222000000000111e 1e 1e 122xx g x x ax x x x x x x ⎛⎫⎛⎫=-+-++<++-++⎪ ⎪⎝⎭⎝⎭,因为01x <-,所以()()2200111111022x x ++>⨯-+-+>,若200e 10x x ++≤,则()02200001e 1e 102xx x x x ⎛⎫++-++<⎪⎝⎭,若200e 10x x ++>,则()02200001e 1e 12xx x x x ⎛⎫++-++⎪⎝⎭()22000011e 11e 2x x x x ⎛⎫<++⨯-++ ⎪⎝⎭()()0220000e 2111e 110222x x x x x --⎛⎫<++⨯-++=< ⎪⎝⎭,所以()00g x <,同上此时()g x 的零点只一个为0x =;综上所述:()g x 的零点只一个为0x =.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.。
安徽省江南十校2025届高中毕业班第一次模拟(数学试题理)试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若点(2,k)到直线5x-12y+6=0的距离是4,则k 的值是( ) A .1B .-3C .1或53D .-3或1732.P 是正四面体ABCD 的面ABC 内一动点,E 为棱AD 中点,记DP 与平面BCE 成角为定值θ,若点P 的轨迹为一段抛物线,则tan θ=( )AB .2C .4D .3.复数z 满足()11z i -=-,则复数z 等于() A .1i -B .1i +C .2D .-24.将函数f (x )=sin 3x 3x +1的图象向左平移6π个单位长度,得到函数g (x )的图象,给出下列关于g (x )的结论: ①它的图象关于直线x =59π对称; ②它的最小正周期为23π; ③它的图象关于点(1118π,1)对称;④它在[51939ππ,]上单调递增. 其中所有正确结论的编号是( ) A .①②B .②③C .①②④D .②③④5.若函数()()222cos 137f x x x m x m m =+-+++-有且仅有一个零点,则实数m 的值为( )A B C .4- D .26.已知集合{}1,0,1,2A =-,{}|lg(1)B x y x ==-,则A B =( )A .{2}B .{1,0}-C .{}1-D .{1,0,1}-7.复数5i12i+的虚部是 ( )A .iB .i -C .1D .1-8.若双曲线()22210x y a a-=>的一条渐近线与圆()2222x y +-=至多有一个交点,则双曲线的离心率的取值范围是( ) A.)+∞B .[)2,+∞C.(D .(]1,29.在ABC ∆中,“cos cos A B <”是“sin sin A B >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件10.已知3ln 3,log ,log a b e c e π===,则下列关系正确的是( ) A .c b a <<B .a b c <<C .b a c <<D .b c a <<11.下列命题为真命题的个数是( )(其中π,e 为无理数)32>;②2ln 3π<;③3ln 3e<. A .0B .1C .2D .312.已知函数()2xf x x a =+⋅,()ln 42xg x x a -=-⋅,若存在实数0x ,使()()005f x g x -=成立,则正数a 的取值范围为( )A .(]01,B .(]04,C .[)1+∞,D .(]0,ln2 二、填空题:本题共4小题,每小题5分,共20分。
高考数学高三模拟试卷试题压轴押题“江南十校”高三联考数学试题(理科)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再涂其他答案标号.写在本试卷上无效.3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}22530A x x x =--≤,{}2B x Z x =∈≤,则A B ⋂中的元素个数为(A)2(B)3(C)4(D)5(2)若复数z 满足11z i i i -=-+(),则z 的实部为(A)121(C)1(D)12(3)“=0a ”是“函数1()sin f x x a x=-+为奇函数”的 (A)充分不必要条件(B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件(4)已知l 是双曲线22:124x y C -=的一条渐近线,P 是l 上的一点,12,F F 是C 的两个焦点,若120PF PF ⋅=,则P 到x 轴的距离为(A)3(C)2(D)3(5)在平面直角坐标系xOy 中,满足221,0,0x y x y +≤≥≥的点(,)P x y 的集合对应的平面图形的面积为4π;类似的,在空间直角坐标系O xyz -中,满足2221x y z ++≤,0,0,0x y z ≥≥≥的点(,,)P x y z 的集合对应的空间几何体的体积为 (A)8π(B)6π(C)4π(D)3π (6)在数列}{n a 中,12n n a a +-=,n S 为}{n a 的前n 项和.若1050S =,则数列1{}n n a a ++ 的前10项和为(A)100(B)110(C)120(D)130(7)设D 是ABC ∆所在平面内一点,2AB DC =,则(A)12BD AC AB =-(B)12BD AC AB =- (C)32BD AC AB =-(D)32BD AC AB =- (8)执行如图所示的程序框图,如果输入的50t =,则输出的n = (A)5(B)6(C)7(D)8 (9)已知函数()sin()(0,)2f x x πωϕωϕ=+><的最小正周期为4π,且对x R ∀∈,有()()3f x f π≤成立,则()f x 的一个对称中心坐标是(A)2(,0)3π-(B)(,0)3π-(C)2(,0)3π(D)5(,0)3π (10)若,x y 满足约束条件230,40,1,2x y x y y x ⎧⎪-≥⎪+-≤⎨⎪⎪≥⎩则z y x =-的取值范围为(A) []2,2-(B)1,22⎡⎤-⎢⎥⎣⎦(C)[]1,2-(D)1,12⎡⎤-⎢⎥⎣⎦(11)某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为(A)416π++(B)516π++(C)416π++(D)516π++ (12)已知函数21()ln 2f x a x x bx =-+存在极小值,且对于b 的所有可能取值,()f x 的极小值恒大于0,则a 的最小值为 (A)3e -(B)2e - (C)e -(D)1e-侧视图32正视图俯视图第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答,第22题~第24题为选考题,考生根据要求做答. 二.填空题:本大题共4小题,每小题5分.(13)2016年1月1日我国全面二孩政策实施后,某中学的一个学生社团组织了一项关于生育二孩意愿的调查活动.已知该中学所在的城镇符合二孩政策的已婚女性中,30岁以下的约2400人,30岁至40岁的约3600人,40岁以上的约6000人.为了解不同年龄层的女性对生育二孩的意愿是否存在显著差异,该社团用分层抽样的方法从中抽取了一个容量为N 的样本进行调查,已知从30岁至40岁的女性中抽取的人数为60人,则N =.(14)5(2)x y -的展开式中,23x y 的系数为.(15)椭圆2222:1(0)x y C a b a b+=>>的右顶点为A ,经过原点的直线l 交椭圆C 于P Q 、 两点,若=PQ a ,AP PQ ⊥,则椭圆C 的离心率为.(16)已知n S 为数列}{n a 的前n 项和,1=1a ,2=(1)n n S n a +,若存在唯一的正整数n 使得不等式2220n n a ta t --≤成立,则实数t 的取值范围为.三.解答题:解答应写出文字说明,证明过程和演算步骤. (17)(本小题满分12分)如图,平面四边形ABCD中,AB =,AD =,CD =,30CBD ∠=,120BCD ∠=,求 (Ⅰ)ADB ∠;(Ⅱ)ADC ∆的面积S .(18)(本小题满分12分)如图,多面体ABCDEF 中,四边形ABCD 是边长为2的正方形,四边形EFBD 为等腰梯形,//EF BD ,12EF BD =,平面⊥EFBD 平面ABCD .(Ⅰ)证明:DE //平面ACF ;(Ⅱ)若梯形EFBD 的面积为3,求二面角A BF D --的余弦值.(19)(本小题满分12分)第31届夏季奥林匹克运动会将于8月5日—21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);(Ⅱ)甲、乙、丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率中国俄罗斯1 2 3 4 5ABDCA都为45,丙猜中国代表团的概率为35,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X ,求X 的分布列及数学期望EX .(20)(本小题满分12分)已知抛物线2:2C y px =经过点(2,2)M ,C 在点M 处的切线交x 轴于点N ,直线1l 经过点N 且垂直于x 轴.(Ⅰ)求线段ON 的长;(Ⅱ)设不经过点M 和N 的动直线2:l x my b =+交C 于点A 和B ,交1l 于点E ,若直线MA 、ME 、MB 的斜率依次成等差数列,试问:2l 是否过定点?请说明理由.(21)(本小题满分12分)已知函数2()=21xf x e ax ax +--.(Ⅰ)当1=2a 时,讨论()f x 的单调性;(Ⅱ)设函数()()g x f x '=,讨论()g x 的零点个数;若存在零点,请求出所有的零点或给出每个零点所在的有穷区间,并说明理由(注:有穷区间指区间的端点不含有-∞和+∞的区间).请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分,做答时请写清题号.(22)(本小题满分10分) 选修41 :几何证明选讲如图,过O 外一点E 作O 的两条切线EA EB 、,其中A B 、为切点,BC 为O 的一条直径,连CA 并延长交BE 的延长线于D 点. (Ⅰ)证明:ED BE =;(Ⅱ)若3AD AC =,求:AE AC 的值.(23)(本小题满分10分)选修44:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知在极坐标系中,),(),,(33233ππB A ,圆C 的方程为θρcos 2=(Ⅰ)求在平面直角坐标系xOy 中圆C 的标准方程; (Ⅱ)已知P 为圆C 上的任意一点,求ABP ∆面积的最大值.(24)(本小题满分10分)选修45:不等式选讲已知函数12)(--=x x x f ,记1)(->x f 的解集为M . (Ⅰ)求M ;(Ⅱ)已知M a ∈,比较12+-a a 与a1的大小. “江南十校”高三联考OB AC数学(理科)试题参考答案与评分标准(1)B 【解析】132A x x ⎧⎫=-≤≤⎨⎬⎩⎭,{}0,1,2A B ⋂=,A B ⋂中有3个元素,故选B (2)A 【解析】由11z i i i-=-+(),得z ===+,z 的实部为12,故选A (3)C 【解析】()f x 的定义域为{}0x x ≠,关于原点对称当=0a 时,1()sin f x x x=-, 111()sin()sin (sin )()()f x x x x f x x x x-=--=-+=--=--,故()f x 为奇函数; 反之,当1()sin f x x a x=-+为奇函数时,()()0f x f x -+=又11()()sin()sin 2()f x f x x a x a a x x-+=--++-+=-,故=0a 所以“=0a ”是“函数1()sin f x x a =-+为奇函数”的充要条件,故选C(4)C 【解析】12(F F ,不妨设l 的方程为y =,设00()P x由21200000(,),)360PF PF x x x ⋅=-⋅=-=得0x =P 到x 02=,故选C(5)B 【解析】所求的空间几何体是以原点为球心,1为半径的球位于第一卦限的部分,体积为3141836ππ⨯⨯=,故选B(6)C 【解析】1{}n n a a ++的前10项和为12231011a a a a a a +++++=12101112()a a a a a +++-102102120S =+⨯=,故选C(7)D 【解析】1322BD AD AB AC CD AB AC AB AB AC AB =-=+-=--=-,故选D(8)B 【解析】第一次运行后1,3,2===n a s ;第二次运行后2,5,5===n a s ;第三次运行后3,9,10===n a s ;第四次运行后4,17,19===n a s ;第五次运行后5,33,36===n a s ;第六次运行后6,65,69===n a s ;此时不满足t s <,输出6=n ,故选B(9)A 【解析】由)sin()(ϕω+=x x f 的最小正周期为π4,得21=ω.因为()()3f x f π≤恒成立,所以max ()()3f x f π=,即12()232k k Z ππϕπ⨯+=+∈,由2πϕ<,得3πϕ=,故)321sin()(π+=x x f .令1()23x k k Z ππ+=∈,得22()3x k k Z ππ=-∈,故()f x 的对称中心为))(0,322(Z k k ∈-ππ,当0=k 时,()f x 的对称中心为)0,32(π-,故选A(10)B 【解析】作出可行域,设直线:l y x z =+,平移直线l ,易知当l 过30x y -=与40x y +-=的交点(1,3)时,z 取得最大值2;当l 与抛物线212y x =相切时z 取得最小值由212z y xy x =-⎧⎪⎨=⎪⎩,消去y 得:2220x x z --=,由480z ∆=+=,得12z =-,故122z -≤≤,故选B (11)D 【解析】由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为16242=⨯⨯,两个底面面积之和为3232212=⨯⨯⨯;半圆柱的侧面积为ππ44=⨯,两个底面面积之和为ππ=⨯⨯⨯21212,所以几何体的表面积为32165++π,故选D(12)A 【解析】2()a x bx af x x b x x-++'=-+=因为()f x 存在极小值,所以方程20x bx a -++=有两个不等的正根故12122+0040x x b x x a b b a ⎧=>⎪⋅=->⇒>⎨⎪∆=+>⎩由()0f x '=得1x =,2x =,分析易得()f x 的极小值点为1x ,因为b >1x == 211111()=()ln 2f x f x a x x bx =-+极小值 2221111111ln ln 22a x x x a a x x a =-+-=+-设21()ln (02g x a x x a x =+-<<,则()f x 的极小值恒大于0等价于()g x 恒大于0因为2()0a a x g x x x x+'=+=<,所以()g x在单调递减故3()02g x g a a >=≥,解得3a e ≥-,故3min a e =-,故选A (13)200【解析】由题意可得360060=2400+3600+6000N,故200N =(14)40-【解析】23x y 的系数为40)1(23235-=-⨯⨯C(15)【解析】不妨设点P 在第一象限,由对称性可得22PQ a OP ==,因为AP PQ ⊥在Rt POA ∆中,1cos 2OP POA OA ∠==,故60POA ∠=,易得1()4P a ,代入椭圆方程得:116316122=+b a ,故222255()a b a c ==-,所以离心率552=e(16)21t -<≤-或112t ≤<【解析】2n ≥时,11(1)22n n n n n n a na a S S --+=-=-整理得11n n a an n -=-,又1=1a ,故n a n =不等式2220n n a ta t --≤可化为:2220n tn t --≤设22()2f n n tn t =--,由于2(0)20f t =-≤,由题意可得22(1)120(2)4220f t t f t t ⎧=--≤⎪⎨=-->⎪⎩,解得21t -<≤-或112t ≤< (17)【解析】(Ⅰ)在BCD ∆中,由正弦定理得:sin 3sin CD BD BCD CBD =⋅∠==∠,…………………2分在ABD ∆中,由余弦定理得:222cos2AD BD AB ADBAD BD+-∠=⋅ ==分所以45ADB ∠=…………………6分(Ⅱ)因为30CBD ∠=,120BCD ∠=,所以30CDB ∠=因为6sin sin(4530)ADC ∠=+=分所以1sin 2SAD CD ADC =⋅⋅∠12=⨯=……12分 (18)【解析】(Ⅰ)设AC BD 、的交点为O ,则O 为BD 的中点,连接OF由BD EF BD EF 21,//=,得OD EF OD EF =,//中国俄罗斯1 2 3 4 56 8 2 814 3 7 6 2所以四边形EFOD 为平行四边形,故OF ED //……3分 又⊄ED 平面ACF ,⊂OF 平面ACF 所以DE //平面ACF …6分(Ⅱ)方法一:因为平面⊥EFBD 平面ABCD ,交线为BD ,AO BD ⊥ 所以AO ⊥平面EFBD ,作BF OM ⊥于M ,连AM AO ⊥平面BDEF ,AO BF ∴⊥,又=OM AO O ⋂ BF ∴⊥平面AOM ,AM BF ⊥∴,故AMO ∠为二面角A BF D --的平面角.……………………8分取EF 中点P ,连接OP ,因为四边形EFBD 为等腰梯形,故OP BD ⊥因为1()2EFBD S EF BD OP =⨯+⨯梯形132OP =⨯⨯= 所以2=OP .由122PF OB ==,得2BF OF ===因为1122FOB S OB OP OM BF ∆=⋅=⋅所以OB OP OM BF ⋅==AM ==…………10分 所以2cos 3OM AMO AM ∠==故二面角A BF D --的余弦值为23………12分方法二:取EF 中点P ,连接OP ,因为四边形EFBD 为等腰梯形,故OP BD ⊥,又平面⊥EFBD 平面ABCD ,交线为BD ,故OP ⊥平面ABCD ,如图,以O 为坐标原点,分别以OA ,OB ,OP 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O xyz -.因为1()2EFBD S EF BD OP=⨯+⨯梯形132OP =⨯⨯=所以2=OP , )2,220(),00,2(),0,20(),00,2(,,,,F C B A -因此(2,20),(0,2AB BF =-=-,…8分 设平面ABF 的法向量为(,,)n x y z =由00n AB n BF ⎧⋅=⎪⎨⋅=⎪⎩,得002y ⎧+=⎪⎨-=⎪⎩,令1z =,则(2,2,1)n = 因为AO BD ⊥,所以AO ⊥平面EFBD ,故平面BFD 的法向量为(2,0,0)OA =………10分于是22cos ,32OA n OAn OA n⋅<>===⋅ 由题意可知,所求的二面角的平面角是锐角,故二面角A BF D --的余弦值为2312分 C(19)【解析】(Ⅰ)两国代表团获得的金牌数的茎叶图如下 …………………3分通过茎叶图可以看出,中国代表团获得的金牌数的平均值高于俄罗斯代表团获得的金牌数的平均值;俄罗斯代表团获得的金牌数比较集中,中国代表团获得的金牌数比较分散。
2015-2016学年安徽省江南十校联考高三(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={y|y=x},B={y|y=()x,x>1},则A∩B=()A.(0,)B.()C.(0,1)D.∅2.已知复数z满足z•(1+i2015)=i2016(i是虚数单位),则复数z在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列命题中,真命题的是()A.∀x>0,2x>x2B.∃x0∈R,e≤0C.“a>b“是“ac2>bc2”的充要条件D.“ab>1”是“a>1,b>1”的必要条件4.截至11月27日,国内某球员在2015﹣2016赛季CBA联赛的前10轮比赛中,各场得分x i(i=1,2,3,…,10)的茎叶图如图①所示,图②是该运动员某项成绩指标分析的程序框图,则输出的结果是()A.8 B.7 C.6 D.55.将函数y=cos2x的图象向右平移φ个单位得到函数y=cos2x﹣sin2x的图象,则φ的一个可能取值为()A.B.C. D.6.某中学高一、高二各有一个文科和一个理科两个实验班,现将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每个班级去一所高校,每所高校至少有一个班级去,则恰好有一个文科班和一个理科班分配到上海交通大学的概率为()A.B.C.D.7.已知实数x,y满足,且目标函数z=y﹣x取得最小值﹣4,则k等于()A.B.C.﹣D.﹣8.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=,且a2=b2+c2﹣bc,则△ABC的面积S的最大值为()A.B.C.D.9.已知△ABC的边BC上一动点D满足=n(n∈N*),=x+y,则数列{(n+1)x}的前n项和为()A. B. C.D.10.若抛物线C1:y=x2的焦点F到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,则双曲线C2的方程为()A.﹣y2=1 B.x2﹣=1 C.﹣=1 D.﹣=111.一个三棱锥的三视图如图所示,则它的体积为()A .B .1C .D .212.函数f (x )=1+x ﹣+﹣+…+﹣在区间[﹣2,2]上的零点个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置13.已知(+)5的展开式中的常数项为80,则65x 的系数为______.14.已知正数x ,y 满足2x +y=1,则4x 2+y 2+的最小值为______.15.若对于任意实数t ,圆C 1:(x +4)2+y 2=1与圆C 2:(x ﹣t )2+(y ﹣at +2)2=1都没有公共点,则实数a 的取值范围是______.16.已知函数f (x )=sin (ωx +φ)(ω>0,﹣≤φ≤)的图象如图所示,若函数g (x )=3[f (x )]3﹣4f (x )+m 在x 上有4个不同的零点,则实数m 的取值范围是______.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡的指定区域17.已知在各项均为正数的等比数列{a n }中,a 1=2,且2a 1,a 3,3a 2成等差数列. (Ⅰ)求等比数列{a n }的通项公式;(Ⅱ)若c n =a n •(),n=1,2,3,…,且数列{c n }为单调递减数列,求λ的取值范围.18.从某企业的一种产品中抽取40件产品,测量其某项质量指标,测量结果的频率分布直方图如图所示.(Ⅰ)求这40件样本该项质量指标的平均数;(Ⅱ)从180(含180)以上的样本中随机抽取2件,记质量指标在[185,190]的件数为X ,求X 的分布列及数学期望.19.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,AB=2,AD=,PA=PD=CD=CB=1,E总是线段PB上的动点.(Ⅰ)当E点在什么位置时,CE∥平面PAD?证明你的结论.(Ⅱ)对于(Ⅰ)中的点E,求AE与底面ABCD所成角的正弦值;(Ⅲ)求二面角A﹣PD﹣C的正弦值.20.已知椭圆C的左、右焦点F1,F2在x轴上,左顶点为A,离心率e=,过原点O的直线(与x轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点,△PF1F2的周长为8+4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求的值;(Ⅲ)求四边形MF1NF2面积的最小值.21.已知函数f(x)=e﹣ax2(其中e是自然对数的底数).(Ⅰ)判断函数f(x)的奇偶性;(Ⅱ)若f(x)≤0在定义域内恒成立,求实数a的取值范围;(Ⅲ)若a=0,当x>0时,求证:对任意的正整数n都有f()<n!x﹣n.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清楚.选修4-1:几何证明选讲22.已知AB是圆O的一条弦,过点A、B分别作AE⊥AB,BF⊥AB,交弧AB上任意一点T的切线于点E、F,OT交AB于点C,求证:(Ⅰ)∠CBT=∠CFT;(Ⅱ)CT2=AE•BF.选修4-4:坐标系与参数方程23.已知曲线C的参数方程为(θ为参数).(Ⅰ)求曲线C的普通方程;(Ⅱ)若倾斜角为45°的直线l经过点P(1,2)且与直线C相交于点A、B,求线段AB的长度.选修4-5:不等式选讲24.设f(x)=|x+3|﹣a|2x﹣1|(Ⅰ)当a=1时,求f(x)>3的解集;(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,求实数a的取值范围.2015-2016学年安徽省江南十校联考高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={y |y=x },B={y |y=()x ,x >1},则A ∩B=( )A .(0,)B .() C .(0,1) D .∅【考点】指数函数的定义、解析式、定义域和值域;交集及其运算.【分析】利用函数的单调性可得:A=[0,+∞),B=,即可得出A ∩B .【解答】解:A={y |y=x }=[0,+∞),B={y |y=()x ,x >1}=,则A ∩B=,故选:A .2.已知复数z 满足z •(1+i 2015)=i 2016(i 是虚数单位),则复数z 在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【考点】复数代数形式的混合运算;复数的代数表示法及其几何意义.【分析】利用复数单位的幂运算,然后利用复数的乘法的运算法则化简求解即可. 【解答】解:复数z 满足z •(1+i 2015)=i 2016,可得z (1﹣i )=1,可得z===.对应点的坐标().故选:A .3.下列命题中,真命题的是( ) A .∀x >0,2x >x 2B .∃x 0∈R ,e≤0C .“a >b “是“ac 2>bc 2”的充要条件D .“ab >1”是“a >1,b >1”的必要条件 【考点】特称命题;全称命题.【分析】根据含有量词的命题的定义进行判断即可.【解答】解:A .若x=3,则23=8,32=9,此时2x >x 2不成立,故A 错误, B .∵∀x ∈R ,e x >0,∴∃x 0∈R ,e≤0不成立,故B 错误,C.当c=0,当a>b时,“ac2>bc2”不成立,即“a>b“是“ac2>bc2”的充要条件错误,故C错误,D.当a>1,b>1时,ab>1成立,即“ab>1”是“a>1,b>1”的必要条件成立,故D正确,故选:D4.截至11月27日,国内某球员在2015﹣2016赛季CBA联赛的前10轮比赛中,各场得分x i(i=1,2,3,…,10)的茎叶图如图①所示,图②是该运动员某项成绩指标分析的程序框图,则输出的结果是()A.8 B.7 C.6 D.5【考点】程序框图.【分析】模拟执行程序框图,得到程序的功能,由茎叶图写出所有的数据,计算得分超过20分(不包括20分)的场数即可得解.【解答】解:模拟执行程序框图,可得其功能是计算得分超过20分(不包括20分)的场数,有茎叶图知,各场得分的数据为:14,17,27,21,28,20,26,26,31,44,∴根据茎叶图可知得分超过20分(不包括20分)的场数有7场.故选:B.5.将函数y=cos2x的图象向右平移φ个单位得到函数y=cos2x﹣sin2x的图象,则φ的一个可能取值为()A.B.C. D.【考点】函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由和差角的公式化简可得y=2cos2(x﹣),由三角函数图象变换的规则可得.【解答】解:∵y=cos2x﹣sin2x=2cos(2x+)=2cos(2x﹣)=2cos2(x﹣),∴φ的一个可能取值为.故选:D.6.某中学高一、高二各有一个文科和一个理科两个实验班,现将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每个班级去一所高校,每所高校至少有一个班级去,则恰好有一个文科班和一个理科班分配到上海交通大学的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】求出所有的分配方案和符合条件的分配方案,代入概率计算公式计算.【解答】解:将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每所高校至少有一个班级去,则共有24﹣2=14种分配方案.恰有一个文科班和一个理科班分配到上海交通大学的方案共有2×2=4种,∴P==.故选:B.7.已知实数x,y满足,且目标函数z=y﹣x取得最小值﹣4,则k等于()A.B.C.﹣D.﹣【考点】简单线性规划.【分析】由约束条件作出可行域,由题意可知,直线y=x+z经过可行域,且在y轴上的截距的最小值为﹣4时,直线kx﹣y+2过点(4,0),由此求得k的值.【解答】解:如图,由题意可知,直线y=x+z经过可行域,且在y轴上的截距的最小值为﹣4.∴直线kx﹣y+2过点(4,0),从而可得k=.故选:D.8.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=,且a2=b2+c2﹣bc,则△ABC的面积S的最大值为()A.B.C.D.【考点】余弦定理.【分析】由已知及余弦定理可得cosA=,解得A=,由余弦定理可得:b2+c2=3+bc,利用基本不等式可求bc≤3,根据三角形面积公式即可得解.【解答】解:∵a2=b2+c2﹣bc,∴由余弦定理可得:cosA==,A为三角形内角,解得A=,∵a=,∴3=b2+c2﹣bc,可得:b2+c2=3+bc,∵b2+c2≥2bc(当且仅当b=c时,等号成立),∴2bc≤3+bc,解得bc≤3,∴S△ABC=bcsinA=bc≤.故选:C.9.已知△ABC的边BC上一动点D满足=n(n∈N*),=x+y,则数列{(n+1)x}的前n项和为()A. B. C.D.【考点】数列的求和;向量的共线定理.【分析】通过=n(n∈N*)可知=+,与=x+y比较可得x=,进而计算可得结论.【解答】解:∵=n(n∈N*),∴=+,又∵=x+y,∴x=,∴数列{(n+1)x}是首项、公差均为1的等差数列,∴则数列{(n+1)x}的前n项和为,故选:C.10.若抛物线C1:y=x2的焦点F到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,则双曲线C2的方程为()A.﹣y2=1 B.x2﹣=1 C.﹣=1 D.﹣=1【考点】圆锥曲线的综合.【分析】确定抛物线的焦点坐标,双曲线的渐近线方程,利用抛物线C1:y=x2的焦点F到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,可得=,再利用抛物线的定义,结合抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,可得c2+1=5,从而可求双曲线的几何量,可得结论.【解答】解:抛物线C1:y=x2的焦点F(0,1),双曲线C2:﹣=1(a>0,b>0)的一条渐近线方程为bx﹣ay=0,∵抛物线C1:y=x2的焦点F到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,∴=,∵直线y=﹣1是抛物线的准线,抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,∴根据抛物线的定义可知,当P,F及双曲线C2的一个焦点三点共线时最小,∴c2+1=5,∴c=2,∵c2=a2+b2,∴b=,a=1,∴双曲线的方程为x2﹣=1.故选:B.11.一个三棱锥的三视图如图所示,则它的体积为()A.B.1 C.D.2【考点】由三视图求面积、体积.【分析】由三视图可知该三棱锥为棱长为2的正方体切割得到的,作出图形,结合图形代入体积公式计算.【解答】解:由三视图可知该三棱锥为棱长为2的正方体切割得到的.即三棱锥A1﹣MCD.∴V=××2×2×2=.故选C.12.函数f(x)=1+x﹣+﹣+…+﹣在区间[﹣2,2]上的零点个数为()A.1 B.2 C.3 D.4【考点】根的存在性及根的个数判断.【分析】求导f′(x)=1﹣x+x2﹣x3+…+x2014﹣x2015,分类讨论以确定f(x)的单调性,从而确定函数的极值的正负,从而利用函数的零点判定定理判断即可.【解答】解:∵f(x)=1+x﹣+﹣+…+﹣,∴f′(x)=1﹣x+x2﹣x3+…+x2014﹣x2015,当x=﹣1时,f′(x)=2016>0,当x≠﹣1时,f′(x)=,故当﹣2<x<﹣1或﹣1<x<1时,f′(x)>0;当1<x<2时,f′(x)<0;故f (x )在[﹣2,1]上单调递增,在(1,2]上单调递减, 又∵f (﹣2)<0,f (1)>0,f (2)<0,∴f (x )在(﹣2,1)和(1,2)内各有一个零点, 故选:B .二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置13.已知(+)5的展开式中的常数项为80,则65x 的系数为 40 .【考点】二项式定理.【分析】在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得常数项,再根据常数项等于80求得实数a 的值,从而求得65x 的系数.【解答】解:∵(+)5的展开式中的通项公式为 T r+1=•a r •,令=0,求得r=3,即常数项为•a 3=80,求得a=2.故展开式中的通项公式为 T r+1=•2r•,令r=2,可得则65x 的系数为40,故答案为:40.14.已知正数x ,y 满足2x +y=1,则4x 2+y 2+的最小值为 .【考点】基本不等式在最值问题中的应用.【分析】由基本不等式可得0<xy ≤,令t=xy ,0<t ≤,由4t ﹣在0<t ≤递增,可得最小值.【解答】解:正数x ,y 满足2x +y=1, 可得2x +y ≥2, 即有0<xy ≤,则4x 2+y 2+=(2x +y )2﹣4xy +=1﹣(4xy ﹣),令t=xy ,0<t ≤,由4t ﹣在0<t ≤递增,可得t=时,4t ﹣取得最大值,且为﹣,则4x2+y2+在xy=时,取得最小值,且为1+=.故答案为:.15.若对于任意实数t,圆C1:(x+4)2+y2=1与圆C2:(x﹣t)2+(y﹣at+2)2=1都没有公共点,则实数a的取值范围是a<﹣或a>0.【考点】圆与圆的位置关系及其判定.【分析】通过两个圆的方程求出两个圆的圆心与半径,利用圆心距与半径和与差的关系即可求解.【解答】解:圆C2:(x﹣t)2+(y﹣at+2)2=1的圆心在直线y=ax﹣2上,∴要使圆C1:(x+4)2+y2=1与圆C2:(x﹣t)2+(y﹣at+2)2=1没有公共点,必须使圆心C1(﹣4,0)到直线y=ax﹣2的距离大于两圆半径之和,即d=>2,∴a<﹣或a>0.故答案为:a<﹣或a>0.16.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ≤)的图象如图所示,若函数g(x)=3[f(x)]3﹣4f(x)+m在x上有4个不同的零点,则实数m的取值范围是[,).【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数的零点与方程根的关系.【分析】利用由y=Asin(ωx+φ)的部分图象可求得A,T,从而可得ω,又曲线经过(,0),|φ|<,可得φ的值,从而可求函数f(x)的解析式,将函数进行换元,转化为一元二次函数问题,由导数求出单调区间,结合函数f(x)的图象,即可确定m的取值范围.【解答】解:由图知T=4(﹣)=2π,∴ω=1,∴f(x)=sin(x+φ),∵f()=0,∴+φ=kπ,k∈Z.∴φ=kπ﹣,k∈Z.又|φ|≤,∴φ=,∴函数f(x)的解析式为:f(x)=sin(x+).由f(x)的图象可知,对于f(x)∈[,1)上的每一个值,对应着[﹣,]上的两个x值,又g(x)=3[f(x)]3﹣4f(x)+m=0,⇔m=﹣3[f(x)]3+4f(x)有4个不同的零点,令f(x)=t,则m=﹣3t3+4t.∵m′=﹣9t2+4=﹣9(t+)(t﹣),∴m=﹣3t3+4t在[,]上单调递增,在[,1]上单调递减,而当t=时,m=;当t=时,m=;当t=1时,m=1,结合图象可知,对于m∈[,)上的每一个值,对应着t=f(x)∈[,1)上的两个值,进而对应着[﹣,]上的4个x值.故答案为:[,).三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡的指定区域17.已知在各项均为正数的等比数列{a n}中,a1=2,且2a1,a3,3a2成等差数列.(Ⅰ)求等比数列{a n}的通项公式;(Ⅱ)若c n=a n•(),n=1,2,3,…,且数列{c n}为单调递减数列,求λ的取值范围.【考点】等差数列与等比数列的综合.【分析】(Ⅰ)设等比数列的公比为q(q>0),由等差数列的中项性质和等比数列的通项公式,解方程可得q=2,进而得到所求通项;(Ⅱ)把数列{a n}的通项公式a n代入c n=2n•(﹣λ),由c n+1﹣c n分离λ后,求出﹣的最大值得答案.【解答】解:(Ⅰ)设等比数列的公比为q(q>0),由2a1,a3,3a2成等差数列,可得2a3=2a1+3a2,即为2a1q2=2a1+3a1q,可得2q2﹣3q﹣2=0,解得q=2(﹣舍去),则a n=a1q n﹣1=2n;(Ⅱ)c n=a n•()=2n•(),由数列{c n}为单调递减数列,可得则c n+1﹣c n=2n+1•(﹣λ)﹣2n•()=2n•(﹣﹣λ)<0对一切n∈N*恒成立,即﹣﹣λ<0,即λ>﹣==,当n=1或2时,n+取得最小值,且为3,则﹣的最大值为=,即有λ>.即λ的取值范围是(,+∞).18.从某企业的一种产品中抽取40件产品,测量其某项质量指标,测量结果的频率分布直方图如图所示.(Ⅰ)求这40件样本该项质量指标的平均数;(Ⅱ)从180(含180)以上的样本中随机抽取2件,记质量指标在[185,190]的件数为X,求X的分布列及数学期望.【考点】离散型随机变量的期望与方差.【分析】(Ⅰ)根据频率分布直方图,计算数据的平均值是各小矩形底边中点与对应的频率乘积的和;(Ⅱ)首先分别求质量指标在[180,185]的件数:0.020×5×40=4,质量指标在[185,190]的件数有:0.010×5×40=2,然后求出X=0、1、2时的概率,进而求出X的分布列及数学期望即可.【解答】解:(Ⅰ)由频率分布直方图可知,这40件样本该项质量指标的平均数=162.5×0.05+167.5×0.125+172.5×0.35+177.5×0.325+182.5×0.1+187.5×0.05=174.75cm;(Ⅱ)由频率分布直方图可知,质量指标在[180,185]的件数:0.020×5×40=4,质量指标在[185,190]的件数有:0.010×5×40=2,∴X的可能值为:0,1,2;P(X=0)==,P(X=1)==,P(X=2)==,数学期望E(X)=0×+1×+2×=.19.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,AB=2,AD=,PA=PD=CD=CB=1,E总是线段PB上的动点.(Ⅰ)当E点在什么位置时,CE∥平面PAD?证明你的结论.(Ⅱ)对于(Ⅰ)中的点E,求AE与底面ABCD所成角的正弦值;(Ⅲ)求二面角A﹣PD﹣C的正弦值.【考点】用空间向量求平面间的夹角;平面与平面垂直的性质;二面角的平面角及求法.【分析】(Ⅰ)取PA的中点F,连接DF,EF,由已知结合三角形中位线定理可得四边形DFEC是平行四边形,从而得到CE∥DF.再由线面平行的判定得答案;(Ⅱ)由题意证明OA,OG,OP两两互相垂直,故以OA,OG,OP所在直线分别为x,y,z轴建立如图所示空间直角坐标系Oxyz.求出所用点的坐标,求得的坐标,再求出底面ABCD的一个法向量,则AE与底面ABCD所成角的正弦值可求;(Ⅲ)分别求出平面APD与平面PCD的一个法向量,求出两法向量所成角的余弦值,则二面角A﹣PD﹣C的正弦值可求.【解答】解:(Ⅰ)当E为PB的中点时,CE∥平面PAD.证明如下:取PA的中点F,连接DF,EF,则EF∥,.由已知CD,CD=,则EF∥CD,EF=CD.∴四边形DFEC是平行四边形,∴CE∥DF.又CE⊄平面PAD,DF⊂平面PAD,∴CE∥平面PAD;(Ⅱ)取AD中点O,AB的中点G,连接OP,OG,∵PA=PD,∴PO⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PO⊥平面ABCD.由已知可得AD2+BD2=AB2,∴BD⊥AD,又OG∥BD,∴OG⊥AD,∴OA,OG,OP两两互相垂直,故以OA,OG,OP所在直线分别为x,y,z轴建立如图所示空间直角坐标系Oxyz.A(),P(0,0,),B(),E(),D(),C(,,0).∴,是平面ABCD的一个法向量,设AE与底面ABCD所成角为θ,则sinθ=|cos|==;(Ⅲ)平面APD的一个法向量为,,=(,,﹣).再设平面PCD的一个法向量为,由,得,取z=1,则x=﹣1,y=﹣1,∴.∴二面角A﹣PD﹣C的余弦值的绝对值为=.∴二面角A﹣PD﹣C的正弦值为.20.已知椭圆C的左、右焦点F1,F2在x轴上,左顶点为A,离心率e=,过原点O的直线(与x轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点,△PF1F2的周长为8+4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求的值;(Ⅲ)求四边形MF1NF2面积的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)根据e=,2a+2c=8+4,求解即可;(Ⅱ)设P(x0,y0),则Q(﹣x0,﹣y0),求出的坐标,然后求的值即可;(Ⅲ)先把四边形MF1NF2面积表示出来,然后求其最小值即可.【解答】解:(Ⅰ)∵e=,2a+2c=8+4,∴a=4,c=2,∴b=2,故椭圆的方程为:(Ⅱ)设P(x0,y0),则Q(﹣x0,﹣y0),且,即,∵A(﹣4,0),∴直线PA的方程为y=,∴M(0,).同理,直线QA的方程为,∴N(0,),又F 1(﹣2,0),∴,,∴=12+(Ⅲ)|MN |=||=||=||=|,∴四边形MF 1NF 2的面积S==,∵|y 0|∈(0,2],∴当y 0=±2时,S 有最小值8.21.已知函数f (x )=e﹣ax 2(其中e 是自然对数的底数).(Ⅰ)判断函数f (x )的奇偶性;(Ⅱ)若f (x )≤0在定义域内恒成立,求实数a 的取值范围;(Ⅲ)若a=0,当x >0时,求证:对任意的正整数n 都有f ()<n!x ﹣n .【考点】函数恒成立问题. 【分析】(Ⅰ)利用定义判断,先判断定义域关于原点对称,再判断f (﹣x )=f (x );(Ⅱ)不等式可整理为a ≥恒成立,只需求出右式的最大值即可,利用构造函数令g(x )=,求出导函数g'(x )=﹣(2x +1),得出函数的单调性,求出最大值;(Ⅲ)若a=0,f (x )=,得出x n <n!e x ,利用数学归纳法证明不等式对一切n ∈N *都成立即可. 【解答】解:(Ⅰ)函数定义域为(﹣∞,0)∪(0,+∞)关于原点对称, ∵f (﹣x )=f (x ),∴函数f (x )为偶函数;(Ⅱ)由偶函数性质可知,只需求当x ∈(﹣∞,0)时, f (x )=﹣ax 2≤0恒成立,∴a ≥恒成立,令g (x )=,g'(x )=﹣(2x +1),当x ∈(﹣∞,)时,g'(x )>0,g (x )递增,当x ∈(,0)时,g'(x )<0,g (x )递减,∴g(x)的最大值为g(﹣)=4e﹣2,∴a≥4e﹣2,(Ⅲ)若a=0,f(x)=e,当x>0时,f(x)=,f()=e﹣x<n!x﹣n.∴x n<n!e x,(i)当n=1时,设g(x)=e x﹣x,(x>0),∵x>0时,g'(x)=e x﹣1>0,∴g(x)是增函数,故g(x)>g(0)=1>0,即e x>x,(x>0)所以,当n=1时,不等式成立(ii)假设n=k(k∈N*)时,不等式成立,即x k<k!•e x当n=k+1时设h(x)=(k+1)!•e x﹣x k+1,(x>0)有h'(x)=(k+1)!•e x﹣(k+1)x k=(k+1)(k!•e x﹣x k)>0故h(x)=(k+1)!•e x﹣x k+1,(x>0)为增函数,所以,h(x)>h(0)=(k+1)!>0,即x k+1<(k+1)!•e x,这说明当n=k+1时不等式也成立,根据(i)(ii)可知不等式对一切n∈N*都成立,故原不等式对一切n∈N*都成立.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清楚.选修4-1:几何证明选讲22.已知AB是圆O的一条弦,过点A、B分别作AE⊥AB,BF⊥AB,交弧AB上任意一点T的切线于点E、F,OT交AB于点C,求证:(Ⅰ)∠CBT=∠CFT;(Ⅱ)CT2=AE•BF.【考点】与圆有关的比例线段.【分析】(Ⅰ)证明B,C,T,F四点共圆,可得∠CBT=∠CFT;(Ⅱ)延长EF与ABM交于P,利用△PBF∽△PTC,△PAE∽△PTC,结合切割线定理,即可证明CT2=AE•BF.【解答】证明:(Ⅰ)∵OT⊥EF,BF⊥AB,∠CTF=∠CBF=90°,∴∠CTF+∠CBF=180°,∴B,C,T,F四点共圆,∴∠CBT=∠CFT;(Ⅱ)延长EF与ABM交于P,则△PBF∽△PTC,∴=①,△PAE∽△PTC,∴=②①×②=由切割线定理可得PT2=PA•PB,∴CT2=AE•BF.选修4-4:坐标系与参数方程23.已知曲线C的参数方程为(θ为参数).(Ⅰ)求曲线C的普通方程;(Ⅱ)若倾斜角为45°的直线l经过点P(1,2)且与直线C相交于点A、B,求线段AB的长度.【考点】参数方程化成普通方程.【分析】(I)用x,y表示出cosθ,sinθ,根据正余弦的平方和等于1消参数得到普通方程;(II)写出直线l的参数方程,代入曲线的普通方程得到关于参数t的一元二次方程,根据参数的几何意义解出AB.【解答】解:(1)∵(θ为参数),∴cosθ=,sinθ=,∴.∴曲线C的普通方程为.(II)直线l的参数方程为(t为参数).将l的参数方程代入得7t2+22t+14=0,设A,B两点对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=2.∴t1,t2符号相同.∴|AB|=|t1﹣t2|===.选修4-5:不等式选讲24.设f(x)=|x+3|﹣a|2x﹣1|(Ⅰ)当a=1时,求f(x)>3的解集;(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,求实数a的取值范围.【考点】函数恒成立问题;绝对值不等式的解法.【分析】(Ⅰ)当a=1时,对x分类讨论,去绝对值,分别求出f(x)>3,得解集为(,1);(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,对x分类讨论:当x=时,a∈R;当x≠时,||≥a对[﹣1,)∪(,1]恒成立,只需求出左式的最小值即可.利用分离常数法得出=+∈(﹣∞,﹣)∪(4,+∞),进而求出最小值.【解答】解:(Ⅰ)当a=1时,当x<﹣3时,f(x)=x﹣4,f(x)>3,∴无解当﹣3≤x≤时,f(x)=3x+2,f(x)>3,∴<x,当x>时,f(x)=4﹣x,f(x)>3,∴x<1,∴解集为(,1);(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,∴|x+3|≥a|2x﹣1|恒成立,当x=时,a∈R,当x≠时,∴||≥a对[﹣1,)∪(,1]恒成立,∵=+∈(﹣∞,﹣)∪(4,+∞),∴||的最小值为,∴a≤.2016年9月14日。
2013年安徽省江南十校开年第一考数学试卷(文科)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是最符合题目要求的)2.(5分)复数的实部和虚部分别为().和和﹣C﹣和和﹣解:=所以复数的实部和虚部分别为和3.(5分)已知实数x、y满足,则z=x﹣3y的最大值为()画出满足条件解:满足条件4.(5分)执行如图的框图,若输出结果为,则输入的实数x的值是()B.或的函数值,,y=,则,则1=,.5.(5分)直线被圆C:x2+y2﹣2x﹣4y﹣4=0截得的弦长为()解:直线,由此可得直线被圆截得的弦长为2....①②①②,由∈,7.(5分)双曲线的右焦点和抛物线y2=2px的焦点相同,则p=().由双曲线的方程解:∵双曲线的方程﹣a==2本题考查双曲线与抛物线的简单性质,求得8.(5分)(2013•金华模拟)已知a>0,b>0,a、b的等比中项是1,且,则m+n的最,,又=49.(5分)如图是甲、乙两名运动员某赛季6个场次得分的茎叶图,用,、分别表示甲乙得分的平均数,则下列说法正确的是()>且甲得分比乙稳定=且乙得分比甲稳定=且甲得分比乙稳定<且乙得分比甲稳定==25==25,故=10.(5分)(2010•徐汇区模拟)已知函数f(x)=ax2﹣x﹣c,且f(x)>0的解集为(﹣2,1),则函数B.∴二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卷的相应位置)11.(5分)命题“∃x o∈R,1gx o<1”的否定是∀x∈R,lgx≥1.12.(5分)某几何体的三视图如图所示,则该几何体的体积是3.∴四棱柱的体积是=313.(5分)若函数f(x)满足f(x+1)=﹣f(x),且x∈[﹣1,1]时,有f(x)=|x|,则函数y=f(x)﹣1og5|x|零点的个数为8.14.(5分)已知直线m,n平面a,β,且m∥a,n⊥β,给出下列四个命题:①a∥β,则m⊥n;②若m⊥n,则a∥β;③若a⊥β,则m⊥n;④m∥n,则a⊥β.其中正确命题的序号为①④.15.(5分)已知O是直线AB外一点,平面OAB上一点C满足是线段AB和OC的交点,则=3:2.由三点共线可得=,进而可得答案.三点共线,所以=,又因为所以,故==,所以三、解答题(本大题共6小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤)16.(12分)已知△ABC的面积为1,BC=2.设∠A=θ.(Ⅰ)求θ的取值范围;(Ⅱ)求函数的值域.),bcsin,,]()﹣﹣﹣]﹣(﹣,,17.(12分)一个社会会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样的方法抽出100人作进一步调查.(Ⅰ)在[2500,3000](元)段应轴出多少人?(Ⅱ)若月收入为4500元的人中有两名高级工程师,从这5人中任取两人进行“幸福指数”问卷调查,求抽取的两人中至少有一名工程师的概率.×人中任取两人共有=10共有18.(12分)如图,△CDE中∠CDE=90°,平面CDE外一条线段AB满足AB∥DE,AB=DE,AB⊥AC,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)若AC=AD,证明:AF⊥平面CDE.DEDE⇒19.(13分)已知椭圆C:的离心率为,左、右端点分别为A1(﹣2,0),A2(2,0)(Ⅰ)求椭圆C的方程;(Ⅱ)若在椭圆上存在两点A和B关于直线y=2x+m对称,求实数m的范围.=x+b,,∴椭圆的方程为x+bx=﹣y=上,得②解得﹣的取值范围为:﹣<20.(13分)已知等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的前n项和为T n,且{a n}、{b n}满足条件:S4=4a3﹣2,T n=2b n﹣2.(Ⅰ)求公差d的值;(Ⅱ)若对任意的n∈N*,都有S n≥S5成立,求a1的取直范围;(Ⅲ)若a1=﹣4,令c n=a n b n,求数列{c n}的前n项和V n.可得且,解出即可.成立,得到成立,∴且解得.+0+2﹣25+27+28+…+(n﹣6)•2n+(n﹣5)•2n+1.,化为21.(13分)已知函数f(x)=1nx﹣ax.(Ⅰ)若f(x)的最大值为1,求a的值;(Ⅱ)设l是函数f(x)=1nx﹣ax图象上任意一点的切线,证明:函数f(x)=1nx﹣ax的图象除该点外恒在直线l的下方.时,.时,)单调递增;当∴当=1,解得.,∴切线为,﹣(=。