六年级奥数简算
- 格式:doc
- 大小:35.50 KB
- 文档页数:5
小学六年级奥数 简便运算专题(一)一、考点、热点回顾根据算式的结构和特征,灵活运用运算法则、定律、性质和某些公式,可以把比较复杂的四则混合运算化繁为简,化难为易。
四则混合运算法则:先算括号,再乘除后加减,同级间依次计算 加法交换律:a b b a +=+ 加法结合律:)()(c b a c b a ++=++ 乘法交换律:ba ab = 乘法结合律:)()(bc a c ab =乘法分配律:bc ab c b a +=+)( 乘法结合律:)(c b a bc ab +=+除法分配律:c b c a c b a ÷+÷=÷+)( c b a c b c a ÷+=÷+÷)(※没有)(c b a +÷=c a b a ÷+÷和c a b a ÷+÷=)(c b a +÷减法性质:从一个数里连续减去两个数,可以减去这两个数的和,也可以先减去第二个数,再减去第一个数。
b c a c b a c b a --=+-=--)(二、典型例题例1:计算)37.125.8(63.975.4-+- )38.648.2(17.348.7--+练习1:计算511)9518.3(957-+-例2:计算41666617907921333387⨯+⨯练习2 计算 7.21111.07.09999.0⨯+⨯例3:计算3.672.109.136⨯+⨯练习3:计算8.562.108.148⨯+⨯例4:计算 5269.375225533⨯+⨯练习4:计算2.33.198.168.6⨯+⨯例5:计算5.186.678.515.818.155.81⨯+⨯+⨯练习5:计算3.541352.422351.12235⨯-⨯+⨯例6:计算4123341223411234+++练习6:计算8124668124468122468112468++++例7:计算199419921993119941993⨯+-⨯ 练习7:120122011201020122011-⨯⨯+ 例8:有一串数1, 4, 9, 16,25,36……它们是按一定规律排列的,那么其中第2000个数与第2001个数相差多少?练习8:计算2220112012-※ 2220102012-例9:计算9575)927729(+÷+练习9:计算)9475113()11673198(++÷++ 例10:计算①374544⨯ ②261527⨯ 练习10:计算①20121212010⨯ ②201220112010⨯ 例11:计算8115173⨯ 练习11:计算544151433141⨯+⨯ 三、习题练习 ①75.97643925.0975-⨯+⨯ ②108185581⨯++⨯ ③5.622.1657308373575.3⨯+⨯-⨯④5691335691135699135669135++++ ⑤186548362361548362-⨯⨯+ ⑥1217661734371⨯+⨯+⨯。
简便运算(一)一、知识要点根据算式的结构和数的特征.灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简.化难为易。
二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号.使4.75和8.25相加凑整.再运用减法的性质:a-b-c = a-(b+c).使运算过程简便。
所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。
1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后.利用积的变化规律和乘法分配律使计算简便。
所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法.仔细观察数的特征后可知:36 = 1.2×30。
这样一转化.就可以运用乘法分配律了。
所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10.但是与它们相乘的另一个因数不同.因此.我们不难想到把37.9分成25.4和12.5两部分。
(直打版)小学六年级奥数简便运算(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)小学六年级奥数简便运算(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)小学六年级奥数简便运算(含答案)(word版可编辑修改)的全部内容。
简便运算(一)一、知识要点根据算式的结构和数的特征。
灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简。
化难为易。
二、精讲精练【例题1】计算4。
75-9.63+(8。
25-1.37)【思路导航】先去掉小括号.使4.75和8.25相加凑整。
再运用减法的性质:a -b-c = a-(b+c).使运算过程简便。
所以原式=4。
75+8.25-9.63-1。
37=13-(9.63+1。
37)=13-11=2练习1:计算下面各题。
1. 6.73-2 又8/17+(3。
27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53。
14.15-(7又7/8-6又17/20)-2。
1254。
13又7/13-(4又1/4+3又7/13)-0。
75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后。
利用积的变化规律和乘法分配律使计算简便。
所以:原式=333387。
5×79+790×66661.25=33338.75×790+790×66661.25=(33338。
75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1。
第三周 简便运算(二)专题简析:计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大。
例题1。
计算:1234+2341+3412+4123简析 注意到题中共有4个四位数,每个四位数中都包含有1、2、3、4这几个数字,而且它们都分别在千位、百位、十位、个位上出现了一次,根据位值计数的原则,可作如下解答:原式=1×1111+2×1111+3×1111+4×1111=(1+2+3+4)×1111=10×1111=11110练习11. 23456+34562+45623+56234+62345=2×11111+3×11111+4×11111+5×11111+6×11111=(2+3+4+5+6)×11111=20×11111=2222202. 45678+56784+67845+78456+84567=4×11111+5×11111+6×11111+7×11111+8×11111=(4+5+6+7+8)×11111=30×11111=3333303. 124.68+324.68+524.68+724.68+924.68=(1+3+5+7+9.)÷5×52.68=5×524.8=2623.4例题2。
计算:245×23.4+11.1×57.6+6.54×28 原式=2.8×23.4+2.8×65.4+11.1×8×7.2=2.8×(23.4+65.4)+88.8× 7.2=2.8×88.8+88.8×7.2=88.8×(2.8+7.2)=88.8×10=888练习2计算下面各题:1. 99999×77778+33333×66666=99999×77778+33333×3×22222=99999×77778+99999×22222=99999×(77778+22222)=99999×100000=99999000002. 34.5×76.5-345×6.42-123×1.45=345×7.65-345×6.42-123×1.45=345×(7.65-6.42)-123×1.45=345×1.23-123×1.45=3.45×123-123×1.45=123×(3.45-1.45)=2463. 77×13+255×999+510=1001+255×999+255×2=1001+255×(999+2)=1001+255×1001×1=1001×(255+1)=1001×256=256256例题3。
第3讲简便运算(1)一、夯实基础所谓简算,就是利用我们学过的运算法则和运算性质以及运算技巧,来解决一些用常规方法在短时间内无法实现的运算问题。
简便运算中常用的技巧有拆”与凑”拆是指把一个数拆成的两部分中含有一个整十、整百、整千或者有利于简算的数,凑是指把几个数凑成整十、整百、整千……的数,或者把题目中的数进行适当的变化,运用运算定律或性质再进行简算。
让我们先回忆一下基本的运算法则和性质:乘法结合律: a>b>c=a x (bxc) = (a>c) 旳乘法分配律: a x(b+ c) =axb+ a>c a x(b — c) =axb — a>c二、典型例题例 1. (1) 9999X7778+ 3333X6666 (2) 76504X0.5 >2.5 >0.125例 2. 399.6 >9— 1998X0.8例 3. 654321X123456—654322X123455三、熟能生巧1. (1) 888 X567 + 444 X566 (2) 9999 X1222 —3333 X6662. (1) 400.6 X—2003 X).4 (2) 239 X7.2 + 956 X8.23. (1) 1989 X1999 —1988 X2000 (2) 8642 X2468 —8644 X2466四、拓展演练1. 1234 X4326+ 2468 X8372. 275 X2+ 1650 X3—3300 冷.53. 7654321 X234567 —7654322 X234566六、星级挑战★ 1 . 31 ^5+ 32 弋 + 33 越 + 34 为★★★2. 3333>4+ 5555X5 + 7777X7★★★3. 99 + 99X99+ 99X99X99★★★4. 48.67 6X+ 3.2 X86.7 + 973.4 X.05第4讲简便运算(2)一、夯实基础在进行分数的运算时,可以利用约分法将分数形式中分子与分母同时扩大或缩小若干倍,从而简化计算过程;还可以运用分数拆分的方法使一些复杂的分数数列计算简便。
六年级上册奥数简便计算题及答案6年级上学期的奥数课程是学生学习数学概念和知识的一条重要途径,以消除学生对数学的恐惧,增强学生的数学信心。
下面咱们来看一些容易算出答案的计算题,为学生提供更多帮助。
1、有3根竹竿,其中最长的是最短的的3倍,同时用混凝土将它们固定在地上,现在需要用4根铁丝将它们连接起来,问最短的竹竿将需要多少根铁丝?答案:需要2根铁丝。
2、如果一个素数是表示成一个三位数,即为pqr,要求2q=3,则pqr的值是多少?答案:393。
3、一个正方形的边长是5米,如果要在这个正方形的周边安装栅栏,每一节栅栏的长度是2米,那么剩余多少节栅栏可以安装?答案:剩余24节栅栏可以安装。
4、Fred每天从家里到学校用时20分钟,如果他从家里出发,到达学校后,他正好是10点钟,那么Fred出发时间是什么时候?答案:9:40。
5、Alice买了一双鞋,原价38元,现在打折后价格是30元,Alice又购买了另外一件衣服,原价60元,现在打折后价格是50元,问Alice总共花了多少钱?答案:Alice总共花了80元钱。
6、小明正在计算231÷7的结果,小明计算出结果33,但是他不确定自己计算是否正确,他又计算了7×33=231,问他计算是否正确?答案:小明计算结果正确。
7、有一种花,每棵花长4厘米,如果一盆花有45棵,那么这盆花一共有多少厘米长?答案:一共180厘米长。
8、一条曲线经过点A(2,-3),点B(8,-7),两点之间距离是多少?答案:两点之间距离是6。
以上是6年级上学期奥数课程的一些简单的计算题,随着学生逐渐熟悉数学相关知识,以及掌握计算题中的技巧,学生能够熟练解决更加复杂的计算题。
X小学在此提醒大家,学习奥数课程时,不妨尝试着去解决计算题,在解决计算题的过程中,不仅能够提高学生的思维能力,而且还可以帮助学生掌握更多数学知识,在数学方面有着更深的理解,最后祝大家学习进步,解决课外的数学问题也会变得越来越轻松。
小学六年级奥数简便运算(含答案),推荐文档(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(小学六年级奥数简便运算(含答案),推荐文档(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为小学六年级奥数简便运算(含答案),推荐文档(word版可编辑修改)的全部内容。
简便运算(一)一、知识要点根据算式的结构和数的特征。
灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简.化难为易.二、精讲精练【例题1】计算4。
75—9。
63+(8。
25-1。
37)【思路导航】先去掉小括号.使4.75和8.25相加凑整。
再运用减法的性质:a -b-c = a-(b+c).使运算过程简便。
所以原式=4。
75+8。
25-9。
63-1.37=13-(9.63+1。
37)=13-11=2练习1:计算下面各题.1. 6.73-2 又8/17+(3.27-1又9/17)2。
7又5/9-(3.8+1又5/9)-1又1/53。
14。
15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0。
75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后。
利用积的变化规律和乘法分配律使计算简便.所以:原式=333387.5×79+790×66661。
25=33338。
75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1。
=简便运算〔一〕一、知识要点根据算式的结构和数的特征 .灵活运用运算法那么、定律、性质和某些公式.可以把一些较复杂的四那么混合运算化繁为简.化难为易。
二、精讲精练【例题1】计算4.75-9.63+〔〕【思路导航】先去掉小括号.使和相加凑整.再运用减法的性质:a-b-c=a-〔b+c〕.使运算过程简便。
所以原式=--=13-〔〕=13-11=2练习1:计算下面各题。
1.-2又8/17+〔-1又9/17〕7又5/9-〔3.8+1又5/9〕-1又1/5-〔7又7/8-6又17/20〕-13又7/13-〔4又1/4+3又7/13〕-【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后.利用积的变化规律和乘法分配律使计算简便。
所以:原式=×79+790××790+790×=〔〕×790=100000×790=79000000练习2:计算下面各题:×1又1/4+125%+1又1/2÷4/5975×0.25+9又3/4×76-9又2/5×÷1/60××【例题3】计算:36××【思路导航】此题外表看没有什么简便算法.仔细观察数的特征后可知:36×30。
这样一转化.就可以运用乘法分配律了。
所以. .原式=×30×××〔30××〕×〔〕×100=120练习3:计算:45××52××77848××72×-×【例题4】计算:3又3/5×25又2/5+×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10.但是与它们相乘的另一个因数不同.因此.我们不难想到把分成和两局部。
简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c = a-(b+c),使运算过程简便。
所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。
1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。
所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = 1.2×30。
这样一转化,就可以运用乘法分配律了。
所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把37.9分成25.4和12.5两部分。
专题简析:
根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
例题1答
计算4.75-9.63+(8.25-1.37)
【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质: a -b -c =a -(b +c ),使运算过程简便。
所以
原式=4.75+8.25-9.63-1.37
=13-(9.63+1.37)
=13-11
=2
. 练习1
计算下面各题。
1. 6.73-2817+(3.27-1917) 答2. 759-(3.8+159)-115答
3. 1
4.15-(778-61720)-2.125答 4. 13713-(414+3713
)-0.75答
.
例题2答
计算33338712×79+790×6666114
【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。
所以
原式=333387.5×79+790×66661.25
=33338.75×790+790×66661.25
=(33338.75+66661.25)×790
=100000×790
=79000000
. 练习2
计算下面各题:
1. 3.5×114+125%+112÷45答
2. 975×0.25+934
×76-9.75
3. 925×425+
4.25÷160
4. 0.9999×0.7+0.1111×2.7答例题3答
计算:36×1.09+1.2×67.3
【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36 =
1.2×30。
这样一转化,就可以运用乘法分配律了。
所以
原式=1.2×30×1.09+1.2×67.3
=1.2×(30×1.09+1.2×67.3)
=1.2×(32.7+67.3)
=1.2×100
=120
.练习3
计算:答
1. 45×
2.08+1.5×37.6 2. 52×11.1+2.6×778
3. 48×1.08+1.2×56.8
4. 72×2.09-1.8×73.6例题4答
计算:33
5
×25
2
5
+37.9×6
2
5
【思路导航】虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把37.9分成25.4和12.5两部分。
当出现12.5×6.4时,我们又可以将6.4看成8×0.8,这样计算就简便多了。
所以
原式=33
5
×25
2
5
+(25.4+12.5)×6.4
=33
5
×25
2
5
+25.4×6.4+12.5×6.4
=(3.6+6.4)×25.4+12.5×8×0.8
=254+80
=334
. 练习4
计算下面各题:答
1.6.8×16.8+19.3×3.2 2.139×137138+137×1138
3.4.4×57.8+45.3×5.6
.
例题5答
计算81.5×15.8+81.5×51.8+67.6×18.5
【思路导航】先分组提取公因数,再第二次提取公因数,使计算简便。
所以 原式=81.5×(15.8+51.8)+67.6×18.5
=81.5×67.6+67.6×18.5
=(81.5+18.5)×67.6
=100×67.6
=6760
. 练习5答
1.53.5×35.3+53.5×43.2+78.5×46.5
2.235×12.1++235×42.2-135×54.3
3.3.75×735-38
×5730+16.2×62.5。