八年级数学上册 三角形全等之类比探究(习题及答案)(人教版)
- 格式:doc
- 大小:92.50 KB
- 文档页数:7
2023-2024学年八年级数学上册《第十二章全等三角形》同步练习题附答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知△ABC≌△DEF,∠A=110°,∠F=40°,则∠DEF=()A.30°B.40°C.50°D.110°2.如图,△ABC≌△AEF,AB和AE,AC和AF是对应边,那么∠EAF等于()A.∠ACB B.∠BAC C.∠F D.∠CAF3.如图,△ABD≌△CDB,且AB,CD是对应边.下面四个结论中错误的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC4.如图,AB,CD相交于点E,若△ABC≅△ADE,∠BAC=28°则∠B的度数是()A.28°B.38°C.45°D.48°5.如图,在△ABC中,D,E分别是边AC和BC上的点,且DE⊥BC,若△ADB≌△EDC,则∠C=()A.15°B.20°C.25°D.30°6.在Rt△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,DE⊥AC垂足为点E,若BD=3则DE的长为()C.2 D.6A.3 B.327.如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A.2 B.3 C.4 D.58.已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.下列结论:①∠EAB=∠FAC;②AF=AC;③FA平分∠EFC;④∠BFE=∠FAC中,正确的有()个.A.1 B.2 C.3 D.4二、填空题9.如图,△ABC≌△CDA,则AB与CD的位置关系是,若AD=3cm,AB=2cm,则四边形ABCD的周长= cm.10.如图,点D,E分别为△ABC的边AB,AC上,若△ADE≌△CFE.则下列结论①AD=CF;②AB∥CF;③AC ⊥DF;④点E是AC的中点;不一定正确的是(填写序号).11.如图△ABC≌△DEF,则x+y=.12.如图△ABC≌△ADE,若∠CAE=60°,∠E=70°且AD⊥BC,则∠BAC的度数为度.13.如图,若AB,CD相交于点E,若△ABC≌△ADE,∠BAC=28°,则∠ACD的度数是.三、解答题14.如图所示,已知△ABD≌△ACD,且B,D,C在同一条直线上,那么AD与BC是怎样的位置关系?为什么?15.如图,点A、B,C、D在同一条直线上△ACE≌△DBF,已知AC=5,BC=2求AD的长.16.如图△ABE≌△DCE,点E在线段AD上,点F在CD延长线上∠F=∠A,求证:AD∥BF.17.如图,已知CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=30°和AB=8,AD=4,G 为AB延长线上一点,求∠EBG的度数和CE的长.18.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.19.如图所示,已知△ABC≌△AEF,∠EAB=25°,∠F=57°,BC交AF于点M,EF交AB于点P.(1)试说明:∠EAB=∠FAC;(2)△ABC可以经过某种变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.参考答案1.A2.B3.C4.D5.D6.A7.A8.D9.平行;1010.③11.912.8013.76°14.解:AD⊥BC.证明:∵△ABD≌△ACD∴∠ADB=∠ADC∵B,D,C在同一条直线上∴∠ADB+∠ADC=180°∴∠ADB=∠ADC=90°∴AD⊥BC.15.解:因为△ACE≌△DBF所以AC=BD.因为AC=5BC=2所以CD=BD−BC=AC−BC=3所以AD=AC+CD=5+3=8.16.证明:∵△ABE≌△DCE∴∠A=∠CDE ∵∠F=∠A∴∠F=∠CDE∴AD∥BF.17.解:∵△ABE≌△ACD,∠C=30°,AB=8,AD=4∴∠ABE=∠C=30°∴∠EBG=180°-∠ABE=180°-30°=150°∴AE=AD=4,AC=AB=8∴CE=AC-AE=8-4=4.18.解:∵△ABC≌△ADE(∠EAB﹣∠CAD)= (120∘−10∘)=55∘.∴∠DAE=∠BAC= 12∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°.19.(1)∵△ABC≌△AEF∴∠BAC=∠EAF.∴∠EAF−∠PAF=∠BAC−∠PAF.∴∠EAB=∠FAC.(2)△ABC绕点A顺时针旋转25°可以得到△AEF.(3)由(1)知∠C=∠F=57°∠FAC=∠EAB=25°.∴∠AMB=∠C+∠FAC=57°+25°=82°。
2022-2023学年人教版八年级数学上册《12.2三角形全等的判定》题型分类练习题(附答案)一.全等三角形的判定1.如图三角形纸片被遮住了一部分,小明根据所学知识画出了一个与原三角形完全重合的三角形,他画图的依据是()A.SSS B.AAS C.ASA D.SAS2.如图,已知AE=AC,∠C=∠E,若∠1=∠2可得△ABC≌△ADE,则判定这两个三角形全等的依据是()A.SSS B.ASA C.SAS D.AAS3.如图,点E,F在AC上,AD=BC,DF=BE,下列条件中,能使△ADF≌△CBE的是()A.∠A=∠C B.AF=CE C.AD∥BC D.DF∥BE4.如图AC=AD,∠CAD=∠BAE,不能判断△ABC≌△AED的是()A.DE=CB B.∠C=∠D C.AB=AE D.∠B=∠E5.下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是()A.①②B.②③C.①③D.①②③6.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为秒时,△ABP和△DCE全等.二.直角三角形全等的判定7.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.两条直角边对应相等C.一个锐角和斜边对应相等D.斜边和一条直角边对应相等三.全等三角形的判定与性质8.如图,点D是△ABC内一点,AD=CD,∠ADB=∠CDB,则以下结论①∠DAC=∠DCA;②AB=AC;③BD平分∠ABC;④BD与AC的位置关系是互相垂直,其中正确的有()A.4个B.3个C.2个D.1个9.如图,将正方形OABC放在平面直角坐标系中,O为坐标原点,点A的坐标为(3,4),则点B的坐标为()A.(﹣1,7)B.(﹣1,5)C.(﹣2,6)D.(﹣2,7)10.正方形ABCD在平面直角坐标系中的位置如图所示,已知A点坐标为(0,4),B点坐标为(﹣3,0),则C点的坐标为()A.(1,﹣3)B.(2,﹣3)C.(3,﹣4)D.(1,﹣4)11.如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点E,AD、CE交于点F,已知EF=EB=6,S△AEF=24,则CF的长为()A.1B.2C.D.312.已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF∥BA交AE于点F,DF=AC.求证:AE平分∠BAC.13.如图,CA⊥AB于点A,AB=4,AC=2,射线BM⊥AB于点B,一动点D从点A出发以2个单位/秒的速度沿射线AB运动,E为射线BM上一动点,随着点D的运动而运动,且始终保持ED=BC,若点D运动t秒(t>0),△EDB与△BCA全等,则t的值为.14.如图,△ABC的面积为10cm2,AP垂直∠B的平分线BP于P,则△BCP的面积为cm2.15.△ABC中,∠ACB=90°,AC=BC,AD是中线,过C的直线CG⊥AD于E,交AB 于F,∠FBG=45°.求证:(1)△ACD≌△CBG;(2)∠ADC=∠FDB.16.如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.17.如图,在△ABC和ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.18.两块大小不等的等腰直角三角板如图①所示拼在一起,图②是由它抽象出来的几何图形,点A、C、E在同一直线上,连接AB、BE.(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得出现未标识的字母);(2)求证:AD⊥BE.19.先阅读下面材料,再解答所提出的问题老师在给同学们作已知角的平分线:已知:∠AOB.求作:射线OC,使∠AOC=∠BOC.作法:①以O为圆心,适当长为半径画弧交OA于点M,交OB于点N(如图);②分别以M、N为圆心,都以大于MN长为半径画弧,两弧交于点C;③作射线OC.则射线OC就是∠AOB的平分线.根据老师的作法,想一想,射线OC为什么是∠AOB的平分线,请你运用学过的知识给以证明.20.如图,BD、CE分别是△ABC的边AC和AB的高,点P在BD的延长线上,BP=AC;点Q在CE上,CQ=AB.(1)判断AP与AQ之间的数量与位置关系;(2)证明你的结论.21.如图①,在△ABC中,D、E分别是AB、AC上的点,AB=AC,AD=AE,然后将△ADE绕点A顺时针旋转一定角度,连接BD,CE,得到图②,将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)在图②中,BD与CE的数量关系是;(2)在图③中,猜想AM与AN的数量关系,∠MAN与∠BAC的数量关系,并证明你的猜想.22.如图,点G.H分别是正六边形ABCDEF的边BC.CD上的点,且BG=CH,AG交BH于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.23.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,AB+CD=AC.(1)求证:CO平分∠ACD;(2)求证:AO平分∠BAC,OA⊥OC.24.如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.25.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.26.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.四.全等三角形的应用27.如图,把一个三角板(AB=BC,∠ABC=90°)放入一个“U”形槽中,使三角板的三个顶点A、B、C分别槽的两壁及底边上滑动,已知∠D=∠E=90°,在滑动过程中你发现线段AD与BE有什么关系?试说明你的结论.参考答案一.全等三角形的判定1.解:他画图的依据是ASA,即有两角和它们的夹边对应相等的两个三角形全等,故选:C.2.解:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,∵AE=AC,∠C=∠E,∴△ABC≌△ADE(ASA),故选:B.3.解:A、∵AD=BC,DF=BE,∠A=∠C,∴△ADF与△CBE不一定全等,故A不符合题意;B、∵AD=BC,DF=BE,AF=CE,∴△ADF≌△CBE(SSS),故B符合题意;C、∵AD∥BC,∴∠A=∠C,∵AD=BC,DF=BE,∴△ADF与△CBE不一定全等,故C不符合题意;D、∵DF∥EB,∴∠DF A=∠BEC,∵AD=BC,DF=BE,∴△ADF与△CBE不一定全等,故D不符合题意;故选:B.4.解:∵∠CAD=∠BAE,∴∠CAD+∠DAB=∠BAE+∠DAB,∴∠CAB=∠DAE,又∵AC=AD,∴当DE=CB时,不能判断△ABC≌△AED,故选项A符合题意;当∠C=∠D时,△ABC≌△AED(ASA),故选项B不符合题意;当AB=AE时,△ABC≌△AED(SAS),故选项C不符合题意;当∠B=∠E时,△ABC≌△AED(AAS),故选项D不符合题意;故选:A.5.解:①正确.可以用AAS或者ASA判定两个三角形全等;②正确.可以用“倍长中线法”,用SAS定理,判断两个三角形全等;如图,分别延长AD,A′D′到E,E′,使得AD=DE,A′D′=D′E′,∴△ADC≌△EDB,∴BE=AC,同理:B′E′=A′C′,∴BE=B′E′,AE=A′E′,∴△ABE≌△A′B′E′,∴∠BAE=∠B′A′E′,∠E=∠E′,∴∠CAD=∠C′A′D′,∴∠BAC=∠B′A′C′,∴△BAC≌△B′A′C′.③不正确.因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等了.故选:A.6.解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故答案为:1或7.二.直角三角形全等的判定7.解:A、两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;B、可以利用边角边判定两三角形全等,不符合题意;C、可以利用角角边判定两三角形全等,不符合题意;D、可以利用边角边或HL判定两三角形全等,不符合题意.故选:A.三.全等三角形的判定与性质8.解:∵AD=CD,∴∠DAC=∠DCA,故①正确;在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠BAD=∠BCD,∴∠BAD+∠DAC=∠BCD+∠DCA,即∠BAC=∠BCA,∴AB=BC,故②错误;∵△ABD≌△CBD,∴∠ABD=∠CBD,∴BD平分∠ABC,故③正确;∵AB=BC,AD=DC,∴BD垂直平分AC,故④正确;故其中正确的有①③④,故选:B.9.解:如图,过点A作AE⊥x轴于E,过点B作BF⊥AE于F,∵点A的坐标为(3,4),∴AE=4,OE=3,∵四边形OABC是正方形,∴BA=OA,∠BAO=90°,∵AE⊥OE,BF⊥AE,∴∠BF A=∠AEO=90°,∴∠OAE+∠AOE=90°=∠OAE+∠BAF,∴∠BAF=∠AOE,在△AOE和△BAF中,,∴△AOE≌△BAF(AAS),∴OE=AF=3,BF=AE=4,∴EF=7,∴点B的坐标为(﹣1,7),故选:A.10.解:过C点作CE⊥x轴于E,∵A点坐标为(0,4),B点坐标为(﹣3,0),∴OA=4,OB=3,∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,又∠ABO+∠BAO=90°,∴∠BAO=∠CBE,在△ABO和△BCE中,,∴△ABO≌△BCE(AAS),∴CE=OB=3,BE=O4,∴C点坐标为(4﹣3,﹣3),即C(1,﹣3).故选:A.11.解:∵CE⊥AB,∴∠AEC=90°,∴S△AEF=×AE×EF=3AE=24,∴AE=8,∵AD⊥BC,∴∠ADC=90°,又∵∠AFE=∠CFD,∴∠EAF=∠ECB,∴△BEC≌△FEA(AAS),∴AE=CE=8,∴CF=CE﹣EF=8﹣6=2,故选:B.12.证明:如图,延长FE到G,使EG=EF,连接CG.在△DEF和△CEG中,∵,∴△DEF≌△CEG.∴DF=GC,∠DFE=∠G.∵DF∥AB,∴∠DFE=∠BAE.∵DF=AC,∴GC=AC.∴∠G=∠CAE.∴∠BAE=∠CAE.即AE平分∠BAC.13.解:∵CA⊥AB,BM⊥AB,∴∠CAB=∠DBE=90°,又∵ED=BC,∴△EDB与△BCA全等,分情况讨论:∵点D运动t秒(t>0),当点D运动到点B时,可得2t=4,解得t=2,此时不能构成△BDE,故t≠2,①△ABC≌△BED,则BD=AC,∵AB=4,AC=2,当0<t<2时,BD=4﹣2t,∴4﹣2t=2,解得t=1,当t>2时,BD=2t﹣4,∴2t﹣4=2,解得t=3;②△ABC≌△BDE,则BD=AB,当0<t<2时,4﹣2t=4,解得t=0(舍),当t>2时,2t﹣4=4,解得t=4,综上,满足条件的t=1或3或4,故答案为:1或3或4.14.解:延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,又∵BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP(ASA),∴S△ABP=S△BEP,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=S△ABC=5cm2,故答案为:5.15.证明:(1)∵△ABC中,∠ACB=90°,AC=BC,∴∠CAB=∠CBA=45°,又∠FBG=45°,∴∠CBG=∠CBA+∠FBG=90°,∵CG⊥AD,∴∠GCB+∠CDA=90°,又∠CAD+∠CDA=90°,∴∠GCB=∠CAD,在△ACD和△CBG中,,∴△ACD≌△CBG(ASA);(2)∵△ACD≌△CBG,∴CD=BG,∠ADC=∠CGB,又D为BC的中点,∴BD=CD,∴BG=BD,在△BGF和△BDF中,,∴△BGF≌△BDF(SAS),∴∠CGB=∠BDF,∴∠ADC=∠BDF.16.证明:(1)在AB上取一点M,使得AM=AH,连接DM,∵,∴△AHD≌△AMD,∴HD=MD,∠AHD=∠AMD,∵HD=DB,∴DB=MD,∴∠DMB=∠B,∵∠AMD+∠DMB=180°,∴∠AHD+∠B=180°,即∠B与∠AHD互补.(2)由(1)∠AHD=∠AMD,HD=MD,∠AHD+∠B=180°,∵∠B+2∠DGA=180°,∠AHD=2∠DGA,∴∠AMD=2∠DGM,又∵∠AMD=∠DGM+∠GDM,∴2∠DGM=∠DGM+∠GDM,即∠DGM=∠GDM,∴MD=MG,∴HD=MG,∵AG=AM+MG,∴AG=AH+HD.17.(1)证明:∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠BAD=∠EAC,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS);(2)证明:∵△BAD≌△CAE,∴∠DBA=∠C,∵AB=AC,∴∠C=∠ABC,∵DF∥BC,∴∠DFB=∠ABC=∠C=∠DBA,即∠DFB=∠DBF,∴DF=CE.18.(1)△ADC≌△BCE,证明:∵等腰直角三角形ACB和△DCE,∴∠ACB=∠DCE=90°,AC=BC,CD=CE,在△ADC和△BEC中,∴△ADC≌△BEC.(2)证明:延长AD交BE于F,由(1)知:△ADC≌△BEC,∴∠DAC=∠EBC,∵∠ACD=90°,∴∠DAC+∠ADC=90°,∵∠BDF=∠ADC,∴∠EBC+∠BDF=90°,∴∠BFD=180°﹣(∠EBC+∠BDF)=90°,∴AD⊥BE.19.解:连接MC,连接NC有作图可知:OM=ON,MC=NC.…(4分)于是在△MOC和△NOC中∵∴△MOC≌△NOC∴∠AOC=∠BOC即射线OC平分∠AOB…(12分)20.(1)猜想:AP⊥AQ且AP=AQ;(2)证明:∵BD,CE是△ABC的高,∴∠AEC=∠ADB=90°,∴∠1+∠BAC=90°,∠2+∠BAC=90°,∴∠1=∠2.在△ABP与△QCA中,,∴△ABP≌△QCA(SAS),∴AP=AQ,∠P=∠QAC,又∵∠P+∠P AD=90°,∴∠QAC+∠P AD=90°,即AP⊥AQ,∴AP⊥AQ且AP=AQ.21.解:(1)BD=CE,故答案为:BD=CE;(2)AM=AN,∠MAN=∠BAC,∵∠DAE=∠BAC,∴∠CAE=∠BAD,在△BAD和△CAE中,,∴△CAE≌△BAD(SAS),∴∠ACE=∠ABD,∵DM=BD,EN=CE,∴BM=CN,在△ABM和△ACN中,,∴△ABM≌△ACN(SAS),∴AM=AN,∴∠BAM=∠CAN,即∠MAN=∠BAC.22.(1)证明:∵在正六边形ABCDEF中,AB=BC,∠ABC=∠C=120°,在△ABG与△BCH中,∴△ABG≌△BCH(SAS);(2)由(1)知:△ABG≌△BCH,∴∠BAG=∠HBC,∴∠BPG=∠ABG=120°,∴∠APH=∠BPG=120°.23.证明:(1)延长AO交CD的延长线于E.∵∠D=∠ABD=90°,∴∠CDB+∠ABD=90°,∴AB∥CE,∴∠BAO=∠E,在△ABO和△EDO中,,∴△ABO≌△EDO,∴AO=OE,AB=DE,∵AC=AB+CD,CE=CD+DE=CD+AB,∴CA=CE,∵OA=OE,∴OC平分∠ACD.(2)∵CA=CE,∴∠CAE=∠E,∵∠E=∠BAE,∴∠CAO=∠OAB,∴OA平分∠CAB,∵CA=CE,OA=OE,∴CO⊥AO.24.解:∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠EAC+∠F AB=90°,∵∠ABF=90°,∴∠AFB+∠F AB=90°,∴∠EAC=∠AFB,在△CAE和△AFB中,,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=×AB×CE=8,故答案为:8.25.解:(1)①∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;26.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CF A=90°,∴∠CAF=45°,∴∠F AE=∠F AC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.四.全等三角形的应用27.解:AD=BE,AD⊥BE.理由如下:∵∠D=90°,∴∠ABD+∠BAD=90°又∵∠ABC=90°,∴∠ABD+∠EBC=90°∴∠BAD=∠EBC;又∵AB=BC,∠D=∠E;∴△ABD≌△BCE(AAS);∴AD=BE,AD⊥BE.。
12. 2第1课时〃边边边” 一.选择题 1 .如图,ZVIBC中,AB = AC , EB = EC ,则由“SSS”可以判定( ) A . /\ABD ^/\ACD r B . ZXABE ^/\ACE C . ABDE^ACDE D .以上答案都不对
2 .如图z在△ABC和△OC3中,AB = DC t AC与BD相交于点 E ,若不再添加彳壬I可字母与辅助线,要使△相€:且△£>(% , 则还需增加的一个条件是( )
3 .如图z已知AB二AC , BD=DC ,那么下列结论中不正确的是( ) A . ^ABD^^ACD C . ZBAD是NB的一半 4 .如图,AB=AD z CB=CD , zB=30° f zBAD=46° z 则NACD 的度数是( )
A. AC=BD B. AC=BC C. BE=CE 第1题图 第2题图 第3题图 B . NADB=90。 D.AD平分NBAC 5 .如图,线段AD与BC交于点。z且AC=BD , AD=BC ,则下面的结论中不正确的是(
第7题图
A. 120 B. 125° C. 127 D. 104 A. ^ABC^^BAD B. NCAB=/DBA C. OB=OC D. NC=ND
6 .如图 z AB=CD, BC=DA, E、F 是 AC 上的两点,且 AE=CF, DE=BF, ,那么图中全等三角形共有
7 .如图z AB=CD , BC=AD ,则下列结论不一定正确的是( )・
A.AB II DC B.ZB = ZD C. zA = zC D. AB=BC 8.如果&ABC的三边长分别为3 , 5 , 7「DEF的三边长分别为3 , 3* - 2 , 2.Y-1,若这两个三角形全等,则X等于( )
rA . - B . 3 C . 4 D . 5 3
题 湖北十堰)工人师傅常用角尺平分一个任意角。做法 下:如图,
ZA0B是一个任意角,在边0A , 0B上分别取0M=0N ,移动角尺,使角尺 两边相同的刻度分别与M , N重合一过角尺顶点C作射线0Co由做法得 AM0CaN0C的依据是一 「「.
一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒2.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4 3.如图,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;②AB=DE ,∠B=∠E ,BC=EF ;③∠B=∠E ,BC=EF ,∠C=∠F ;④A B=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组4.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒ 5.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,E 是边AB 上一点,若6CD =,则DE 的长可以是( )A.1 B.3 C.5 D.76.如图,AB与CD相交于点E,AD=CB,要使△ADE≌△CBE,需添加一个条件,则添加的条件以及相应的判定定理正确的是()A.AE=CE;SAS B.DE=BE;SASC.∠D=∠B;AAS D.∠A=∠C;ASA7.如图,AD平分∠BAC,AB=AC,连接BD,CD并延长,分别交AC,AB于点F,E,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.2.5 B.3 C.3.5 D.49.下列命题,真命题是()A.全等三角形的面积相等B.面积相等的两个三角形全等C.两个角对应相等的两个三角形全等D.两边和其中一边的对角对应相等的两个三角形全等10.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=34°,那么∠BED=()A .134°B .124°C .114°D .104°11.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两个等腰直角三角形全等 12.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠二、填空题13.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.14.如图,D ,E 分别是AB ,AC 上的点,AD=AE ,请添加一个条件,使得ABE ≌ACD .这个条件可以为_____(只填一个条件即可).15.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =8cm ,BD =5cm ,AB=10cm,则S △ABD =______.16.如图,在ABC 中,C 90∠=,A ∠、B ∠的平分线交于O ,OD AB ⊥于D .若AC 3=,BC 4=,AB 5=,则AD =________.17.如图,在Rt ABC 中,90C ∠=︒,AD AC =,DE AB ⊥,交BC 于点E .若26B ∠=︒,则AEC ∠=______︒.18.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.19.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).20.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题21.如图,点B 、E 、C 、F 在同一条直线上,A D ∠=∠,//AB DE ,BE CF =.求证://AC DF .22.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =80°,试求: (1)∠EDC 的度数.(2)若∠BCD =n °,试求∠BED 的度数.(用含n 的式子表示)(3)类比探究:已知AB ∥CD ,BE 、DE 分别是∠ABC 、∠ADC 的n 等分线,ABE ∠=1ABC n ∠,1CDE ADC n∠=∠,∠BAD =α,∠BCD =β,请猜想∠BED = .23.已知矩形ABCD 中,点E 是AD 中点,连接CE ,经过点A ,B ,E 三点作O ,交BC 于点F ,过点F 作FH CE ⊥于H .(1)求证:直线FH 是O 的切线;(2)若42AD =,且点H 恰好为CE 中点时,判断此时CE 与O 的位置关系?说明理由,并求出弧EF ,线段EH ,FH 围成的图形的面积.24.按要求作图(1)如图,已知线段,a b ,用尺规做一条线段,使它等于+a b (不要求写作法,只保留作图痕迹) (2)已知:∠α,求作∠AOB=∠α(要求:直尺和圆规作图,不写作法,保留作图痕迹)25.如图,BC ⊥AD 于C ,EF ⊥AD 于F ,AB ∥DE ,分别交BC 于B ,交EF 于E ,且BC =EF .求证:AF =CD .26.如图,点E ,F 在BC 上,A D ∠=∠,AF DE =,AFC DEB ∠=∠.求证:BE CF =.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB 即可得出∠BAD 的度数.【详解】解:∵△ABC ≌△ADE ,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°-28°-95°=57°,∵∠EAB=20°,∴∠BAD=∠DAE+∠EAB=77°.故选:D .【点睛】本题考查了全等三角形的性质,三角形内角和定理,比较简单.由全等三角形的对应角相等得出∠B=∠D=28°是解题的关键.2.B解析:B【分析】先延长AD 到E ,且AD DE =,并连接BE ,由于ADC BDE ∠=∠,BD DC =,利用SAS 易证ADC EDB ≌,从而可得AC BE =,在ABE △中,再利用三角形三边的关系,可得28AE <<,从而易求14AD <<.【详解】解:延长AD 到E ,使AD DE =,连接BE ,则AE=2AD ,∵AD DE =,ADC BDE ∠=∠,BD DC =,∴ADC EDB ≌()SAS ,3BE AC ∴==,在AEB △中,AB BE AE AB BE -<<+,即53253AD -<<+,∴14AD <<.故选:B .【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边.3.C解析:C【分析】要使△ABC ≌△DEF 的条件必须满足SSS 、SAS 、ASA 、AAS ,可据此进行判断.【详解】解:第①组满足SSS ,能证明△ABC ≌△DEF .第②组满足SAS ,能证明△ABC ≌△DEF .第③组满足ASA ,能证明△ABC ≌△DEF .第④组只是SSA ,不能证明△ABC ≌△DEF .所以有3组能证明△ABC ≌△DEF .故符合条件的有3组.故选:C .【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.4.C解析:C【分析】先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.5.D解析:D【分析】过点D 作DF AB ⊥于点F ,根据角平分线的性质定理得6CD DF ==,而DE 的长一定是大于等于点D 到AB 的距离也就是DF 的长,即可得出结果.【详解】解:如图,过点D 作DF AB ⊥于点F ,∵AD 平分BAC ∠,DF AB ⊥,90C ∠=︒,∴6CD DF ==,∵DE DF ≥,∴6DE ≥,则只有D 选项符合.故选:D .【点睛】本题考查角平分线的性质,解题的关键是掌握角平分线的性质定理.6.C解析:C【分析】根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B ,根据AAS 可证明△ADE ≌△CBE ,故此选项符合题意;D.添加∠A=∠C ,根据AAS 可证明△ADE ≌△CBE ,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA .关键在于应根据所给的条件判断应证明哪两个三角形全等.7.C解析:C【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,由易到难,仔细寻找.【详解】解:AD 平分BAC ∠,BAD CAD ∴∠=∠, 在ABD ∆与ACD ∆中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,()ABD ACD SAS ∴∆≅∆,BD CD ∴=,B C ∠=∠,ADB ADC ∠=∠,又EDB FDC ∠=∠,ADE ADF ∴∠=∠,AED AFD ,BDE CDF ∆≅∆,∆≅∆ABF ACE .AED AFD ,ABD ACD ∆≅∆,BDE CDF ∆≅∆,∆≅∆ABF ACE ,共4对. 故选:C .【点睛】本题考查三角形全等的判定方法和全等三角形的性质,熟悉相关判定定理是解题的关键. 8.B解析:B【分析】作DH ⊥AC 于H ,如图,利用角平分线的性质得DH=DE=2,根据三角形的面积公式得12×2×AC+12×2×4=7,于是可求出AC 的值. 【详解】解:作DH ⊥AC 于H ,如图,∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,DH ⊥AC ,∴DH=DE=2,∵S △ABC =S △ADC +S △ABD , ∴12×2×AC+12×2×4=7, ∴AC=3.故选:B .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.这里的距离是指点到角的两边垂线段的长.9.A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A 、全等三角形的面积相等,本选项说法是真命题;B 、面积相等的两个三角形不一定全等,本选项说法是假命题;C 、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D 、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题; 故选:A .【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键. 10.B解析:B【分析】根据角平分线的性质和平行线的性质计算即可;【详解】∵AE 平分∠BAC ,∠BAE =34°,∴34EAC ∠=︒,∵ED ∥AC ,∴18034146AED ∠=︒-︒=︒,∵BE ⊥AE ,∴90AEB =︒∠,∴36090146124BED ∠=︒-︒-︒=︒;故答案选B .【点睛】本题主要考查了角平分线的性质和平行线的性质,结合周角的定理计算是解题的关键 。
八年级上册人教版数学全等三角形练习题及答案八年级上册人教版数学全等三角形练习题及答案第1课时全等三角形一、选择题1.如图,已知△ABC≌△DCB,且AB=DC,则∠DBC等于A.∠A B.∠DCB C.∠ABC D.∠ACB2.已知△ABC≌△DEF,AB=2,AC=4,△DEF的周长为偶数,则EF的长为A.3B.4C.D .6A D D EC B C二、填空题3.已知△ABC≌△DE F,∠A=50°,∠B=65°,DE=18㎝,则∠F=___°,AB=____㎝.4.如图,△ABC绕点A旋转180°得到△AED,则DE 与BC的位置关系是___________,数量关系是___________.三、解答题5.把△ABC绕点A逆时针旋转,边AB旋转到AD,得到△ADE,用符号“≌”表示图中与△ABC全等的三角形,并写出它们的对应边和对应角.EB C6.如图,把△ABC沿BC方向平移,得到△DEF.D求证:AC∥DF。
7.如图,△ACF≌△ADE,AD=9,AE=4,求DF的长. F C EF ECD1一、选择题1.如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x等于A.7B.3C. D.5二、填空题2.如图,已知AC=DB,要使△ABC≌△DCB,还需知道的一个条件是________.A A D BD C B F BE C3.已知AC=FD,BC=ED,点B,D,C,E在一条直线上,要利用“SSS”,还需添加条件___,得△ACB≌△FDE..如图△ABC中,AB=AC,现想利用证三角形全等证明∠B=∠C,若证三角形全等所用的公理是SSS公理,则图中所添加的辅助线应是_____________________.二、解答题5.如图,A,E,C,F在同一条直线上,AB=FD,BC=DE,AE=FC.求证:△ABC≌△FDE. DA F C6.如图,AB=AC,BD=CD,那么∠B与∠C是否相等?为什么?D7.如图,AB=AC,AD = AE,CD=BE.求证:∠DAB=∠EAC. DBCE2一、填空题 1.如图,AB=AC,如果根据“SAS”使△ABE≌△ACD,那么需添加条件__________.2.如图,AB∥CD,BC∥AD,AB=CD,BE=DF, D E 图中全等三角形有_____________对.A C ③有两边和一角对应相等的两个三角形全等;④等腰三角形顶角平分线把这个等腰三角形分成两个全等的三角形.其中正确的命题有_____________.二、解答题.已知:如图,C是AB的中点,AD∥CE,AD=CE.E 求证:△ADC≌△CEB.DA.如图,A,C,D,B在同一条直线上,AE=BF,AD=BC,AE∥BF.求证:FD∥EC. CFB6.已知:如图,AC⊥BD,BC=CE,AC=DC.求证:∠B+∠D=90°;BCDCD3一、选择题1.下列说法正确的是A.有三个角对应相等的两个三角形全等B.有一个角和两条边对应相等的两个三角形全等C.有两个角和它们夹边对应相等的两个三角形全等D.面积相等的两个三角形全等二、填空题2.如图,∠B=∠DEF,BC=EF, 要证△ABC≌△DEF,ABDECF若以“SAS”为依据,还要添加的条件为______________;若以“ASA”为依据,还要添加的条件为______________;若以“AAS”为依据,还要添加的条件为______________;MDNBCECF3.如图3所示:要测量河岸相对的两点A、B之间的距离,先从B处出发与AB成90°角方向,向前走50米到C 处立一根标杆,然后方向为变继续朝前走50米到D处,在D 处转90°沿DE方向再走17米,到达E处,使A、C与E在同一直线上,那么测得A、B的距离为_____米。
一、八年级数学全等三角形解答题压轴题(难)1.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:()1当a 为多少时,能使得图()2中//AB CD ?说出理由,()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.【解析】【分析】(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.【详解】 ()1当a 为15时,//AB CD ,理由:由图()2,若//AB CD ,则30BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒,所以,当a 为15时,//AB CD .注意:学生可能会出现两种解法:第一种:把//AB CD 当做条件求出a 为15,第二种:把a 为15当做条件证出//AB CD ,这两种解法都是正确的.()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒证明: ,30FEM CAM C C ∠=∠+∠∠=︒,30FEM CAM ∴∠=∠+︒,EFM BDC DBM ∠=∠+∠,DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,180,45EFM FEM M M ∠+∠+∠=∠=︒,3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,1803045105DBM CAM BDC ∴∠+∠+∠=︒--=︒,所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.【点睛】此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.2.如图,已知△ABC 中,AB =AC =20cm ,BC =16cm ,点D 为AB 的中点.(1)如果点P 在线段BC 上以6cm /s 的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?【答案】(1)①△BPD ≌△CQP ,理由见解析;②V 7.5Q =(厘米/秒);(2)点P 、Q 在AB 边上相遇,即经过了803秒,点P 与点Q 第一次在AB 边上相遇. 【解析】【分析】(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD ,再根据∠B =∠C 证得△BPD ≌△CQP ;②根据V P ≠V Q ,使△BPD 与△CQP 全等,所以CQ =BD =10,再利用点P 的时间即可得到点Q 的运动速度;(2)根据V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程,设运动x 秒,即可列出方程1562202x x ,解方程即可得到结果. 【详解】(1)①因为t =1(秒),所以BP =CQ =6(厘米)∵AB =20,D 为AB 中点,∴BD =10(厘米)又∵PC =BC ﹣BP =16﹣6=10(厘米)∴PC =BD∵AB =AC ,∴∠B =∠C ,在△BPD 与△CQP 中, BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BPD ≌△CQP (SAS ),②因为V P ≠V Q ,所以BP ≠CQ ,又因为∠B =∠C ,要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ ,故CQ =BD =10.所以点P 、Q 的运动时间84663BP t (秒), 此时107.543Q CQ V t (厘米/秒).(2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程设经过x 秒后P 与Q 第一次相遇,依题意得1562202x x ,解得x=803(秒) 此时P 运动了8061603(厘米) 又因为△ABC 的周长为56厘米,160=56×2+48,所以点P 、Q 在AB 边上相遇,即经过了803秒,点P 与点Q 第一次在AB 边上相遇. 【点睛】此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.3.如图1所示,已知点D 在AC 上,ADE ∆和ABC ∆都是等腰直角三角形,点M 为EC 的中点.(1)求证:BMD ∆为等腰直角三角形; (2)将ADE ∆绕点A 逆时针旋转45︒,如图2所示,(1)中的“BMD ∆为等腰直角三角形”是否仍然成立?请说明理由;(3)将ADE ∆绕点A 逆时针旋转一定的角度,如图3所示,(1)中的“BMD ∆为等腰直角三角形”成立吗?请说明理由.【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析.【解析】 【分析】()1根据等腰直角三角形的性质得出45ACB BAC ∠∠==,90ADE EBC EDC ∠∠∠===,推出BM DM =,BM CM =,DM CM =,推出BCM MBC ∠∠=,ACM MDC ∠∠=,求出22290BMD BCM ACM BCA ∠∠∠∠=+==即可.()2延长ED 交AC 于F ,求出12DM FC =,//DM FC ,DEM NCM ∠=,根据ASA 推出EDM ≌CNM ,推出DM BM =即可.()3过点C 作//CF ED ,与DM 的延长线交于点F ,连接BF ,推出MDE ≌MFC ,求出DM FM =,DE FC =,作AN EC ⊥于点N ,证BCF ≌BAD ,推出BF BD =,DBA CBF ∠∠=,求出90DBF ∠=,即可得出答案.【详解】()1证明:ABC 和ADE 都是等腰直角三角形, 45ACB BAC ∠∠∴==,90ADE EBC EDC ∠∠∠===点M 为EC 的中点,12BM EC ∴=,12DM EC =, BM DM ∴=,BM CM =,DM CM =,BCM MBC ∠∠∴=,DCM MDC ∠∠=,2BME BCM MBC BCE ∠∠∠∠∴=+=,同理2DME ACM ∠∠=,22224590BMD BCM ACM BCA ∠∠∠∠∴=+==⨯=BMD ∴是等腰直角三角形.()2解:如图2,BDM 是等腰直角三角形,理由是:延长ED 交AC 于F ,ADE 和ABC △是等腰直角三角形,45BAC EAD ∠∠∴==,AD ED ⊥,ED DF ∴=,M 为EC 中点,EM MC ∴=,12DM FC ∴=,//DM FC , 45BDN BND BAC ∠∠∠∴===,ED AB ⊥,BC AB ⊥,//ED BC ∴,DEM NCM ∠∴=,在EDM 和CNM 中DEM NCM EM CMEMD CMN ∠=∠⎧⎪=⎨⎪∠=∠⎩EDM ∴≌()CNM ASA ,DM MN ∴=,BM DN ∴⊥,BMD ∴是等腰直角三角形.()3BDM 是等腰直角三角形,理由是:过点C 作//CF ED ,与DM 的延长线交于点F ,连接BF ,可证得MDE ≌MFC ,DM FM ∴=,DE FC =,AD ED FC ∴==,作AN EC ⊥于点N ,由已知90ADE ∠=,90ABC ∠=,可证得DEN DAN ∠∠=,NAB BCM ∠∠=,//CF ED ,DEN FCM ∠∠∴=,BCF BCM FCM NAB DEN NAB DAN BAD ∠∠∠∠∠∠∠∠∴=+=+=+=, BCF ∴≌BAD ,BF BD ∴=,DBA CBF ∠∠=,90DBF DBA ABF CBF ABF ABC ∠∠∠∠∠∠∴=+=+==,DBF ∴是等腰直角三角形,点M 是DF 的中点,则BMD 是等腰直角三角形,【点睛】本题考查了等腰直角三角形的性质,全等三角形的性质和判定,直角三角形斜边上中线性质的应用,在本题中需要作辅助线来证明,难度较大.4.在四边形 ABCD 中,E 为 BC 边中点.(Ⅰ)已知:如图,若 AE 平分∠BAD ,∠AED =90°,点 F 为 AD 上一点,AF =AB .求证:(1)△ABE ≌AFE ;(2)AD =AB +CD(Ⅱ)已知:如图,若AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,点F,G 均为AD上的点,AF=AB,GD=CD.求证:(1)△GEF 为等边三角形;(2)AD=AB+12BC+CD.【答案】(Ⅰ)(1)证明见解析;(2)证明见解析;(Ⅱ)(1)证明见解析;(2)证明见解析.【解析】【分析】(Ⅰ)(1)运用SAS证明△ABE≌AFE即可;(2)由(1)得出∠AEB=∠AEF,BE=EF,再证明△DEF≌△DEC(SAS),得出DF=DC,即可得出结论;(Ⅱ)(1)同(Ⅰ)(1)得△ABE≌△AFE(SAS),△DGE≌△DCE(SAS),由全等三角形的性质得出BE=FE,∠AEB=∠AEF,CE=GE,∠CED=∠GED,进而证明△EFG是等边三角形;(2)由△EFG是等边三角形得出GF=EE=BE=12BC,即可得出结论.【详解】(Ⅰ)(1)∵AE平分∠BAD,∴∠BAE=∠FAE,在△ABE和△AFE中,AB AF BAE FAE AE AE ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△AFE (SAS ),(2)∵△ABE ≌△AFE ,∴∠AEB=∠AEF ,BE=EF ,∵E 为BC 的中点,∴BE=CE ,∴FE=CE ,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC ,在△DEF 和△DEC 中,FE CE DEF DEC DE DE ⎪∠⎪⎩∠⎧⎨===,∴△DEF ≌△DEC (SAS ),∴DF=DC ,∵AD=AF+DF ,∴AD=AB+CD ;(Ⅱ)(1)∵E 为BC 的中点,∴BE=CE=12BC , 同(Ⅰ)(1)得:△ABE ≌△AFE (SAS ),△DEG ≌△DEC (SAS ),∴BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,∵BE=CE ,∴FE=GE ,∵∠AED=120°,∠AEB+∠CED=180°-120°=60°,∴∠AEF+∠GED=60°,∴∠GEF=60°,∴△EFG 是等边三角形,(2)∵△EFG 是等边三角形,∴GF=EF=BE=12BC , ∵AD=AF+FG+GD , ∴AD=AB+CD+12BC .【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.5.如图1,在ABC ∆中,ACB ∠是直角,60B ∠=︒,AD 、CE 分别是BAC ∠、BCA ∠的平分线,AD 、CE 相交于点F .(1)求出AFC ∠的度数;(2)判断FE 与FD 之间的数量关系并说明理由.(提示:在AC 上截取CG CD =,连接FG .)(3)如图2,在△ABC ∆中,如果ACB ∠不是直角,而(1)中的其它条件不变,试判断线段AE 、CD 与AC 之间的数量关系并说明理由.【答案】(1)∠AFC =120°;(2)FE 与FD 之间的数量关系为:DF =EF .理由见解析;(3)AC =AE+CD .理由见解析.【解析】【分析】(1)根据三角形的内角和性质只要求出∠FAC ,∠ACF 即可解决问题;(2)根据在图2的 AC 上截取CG=CD ,证得△CFG ≌△CFD (SAS),得出DF= GF ;再根据ASA 证明△AFG ≌△AFE ,得EF=FG ,故得出EF=FD ;(3)根据(2) 的证明方法,在图3的AC 上截取AG=AE ,证得△EAF ≌△GAF (SAS)得出∠EFA=∠GFA ;再根据ASA 证明△FDC ≌△FGC ,得CD=CG 即可解决问题.【详解】(1)解:∵∠ACB =90°,∠B =60°,∴∠BAC =90°﹣60°=30°,∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,∴∠FAC =15°,∠FCA =45°,∴∠AFC =180°﹣(∠FAC+∠ACF )=120°(2)解:FE 与FD 之间的数量关系为:DF =EF .理由:如图2,在AC 上截取CG =CD ,∵CE 是∠BCA 的平分线,∴∠DCF =∠GCF ,在△CFG 和△CFD 中,CG CD DCF GCF CF CF =⎧⎪∠=∠⎨⎪=⎩,∴△CFG ≌△CFD (SAS ),∴DF =GF .∠CFD =∠CFG由(1)∠AFC =120°得,∴∠CFD =∠CFG =∠AFE =60°, ∴∠AFG =60°,又∵∠AFE =∠CFD =60°,∴∠AFE =∠AFG ,在△AFG 和△AFE 中,AFE AFG AF AFEAF GAF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AFG ≌△AFE (ASA ),∴EF =GF ,∴DF =EF ;(3)结论:AC =AE+CD .理由:如图3,在AC 上截取AG =AE ,同(2)可得,△EAF ≌△GAF (SAS ), ∴∠EFA =∠GFA ,AG =AE∵∠BAC+∠BCA=180°-∠B=180°-60°=120°∴∠AFC =180°﹣(∠FAC+∠FCA)=180°-12(∠BAC+∠BCA)=180°-12×120°=120°, ∴∠EFA =∠GFA =180°﹣120°=60°=∠DFC ,∴∠CFG =∠CFD =60°,同(2)可得,△FDC ≌△FGC (ASA ),∴CD =CG ,∴AC =AG+CG =AE+CD . 【点睛】 本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.6.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )【答案】(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】 (1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°, 在BCE 和CAD 中,60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩,∴ BCE CAD ≌(SAS ),∴∠BCE =∠DAC ,∵∠BCE +∠ACE =60°,∴∠DAC +∠ACE =60°,∴∠AFE =60°.(2)证明:如图1中,∵AH ⊥EC ,∴∠AHF =90°,在Rt △AFH 中,∵∠AFH =60°,∴∠FAH =30°,∴AF =2FH ,∵ EBC DCA ≌,∴EC =AD ,∵AD =AF +DF =2FH +DF ,∴2FH +DF =EC .(3)解:在PF 上取一点K 使得KF =AF ,连接AK 、BK ,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB =∠FAC ,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99AF KF CP CF PK CP CP CP==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.7.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t=⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.8.如图,在平面直角坐标系中,A、B坐标为()6,0、()0,6,P为线段AB上的一点.(1)如图1,若P为AB的中点,点M、N分别是OA、OB边上的动点,且保持AM ON=,则在点M、N运动的过程中,探究线段PM、PN之间的位置关系与数量关系,并说明理由.(2)如图2,若P为线段AB上异于A、B的任意一点,过B点作BD OP⊥,交OP、OA分别于F、D两点,E为OA上一点,且PEA BDO=∠∠,试判断线段OD与AE的数量关系,并说明理由.【答案】(1)PM=PN,PM⊥PN,理由见解析;(2)OD=AE,理由见解析【解析】【分析】(1)连接OP.只要证明△PON≌△PAM即可解决问题;(2)作AG⊥x轴交OP的延长线于G.由△DBO≌△GOA,推出OD=AG,∠BDO=∠G,再证明△PAE≌△PAG即可解决问题;【详解】(1)结论:PM=PN,PM⊥PN.理由如下:如图1中,连接OP.∵A、B坐标为(6,0)、(0,6),∴OB=OA=6,∠AOB=90°,∵P为AB的中点,∴OP=12AB=PB=PA,OP⊥AB,∠PON=∠PAM=45°,∴∠OPA=90°,在△PON和△PAM中,ON AMPON PAMOP AP=⎧⎪∠=∠⎨⎪=⎩,∴△PON≌△PAM(SAS),∴PN=PM,∠OPN=∠APM,∴∠NPM=∠OPA=90°,∴PM ⊥PN ,PM=PN .(2)结论:OD=AE .理由如下:如图2中,作AG ⊥x 轴交OP 的延长线于G .∵BD ⊥OP ,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO ,∵OB=OA ,∴△DBO ≌△GOA ,∴OD=AG ,∠BDO=∠G ,∵∠BDO=∠PEA ,∴∠G=∠AEP ,在△PAE 和△PAG 中,AEP G PAE PAG AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PAE ≌△PAG (AAS ),∴AE=AG ,∴OD=AE .【点睛】考查了等腰直角三角形的性质、全等三角形的判定和性质、坐标与图形性质、直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.9.操作发现:如图,已知△ABC 和△ADE 均为等腰三角形,AB =AC ,AD =AE ,将这两个三角形放置在一起,使点B ,D ,E 在同一直线上,连接CE .(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【答案】(1)见解析;(2)70°;(3)2【解析】【分析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同理可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=12EC=2.【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.10.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,如图1,求t的值;(2)设点A关于x轴的对称点为A′,连接A′B,在点P运动的过程中,∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.(3)如图2,当t=3时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.【答案】(1)4;(2)∠OA′B的度数不变,∠OA′B=45 ,理由见解析;(3)点M的坐标为(6,﹣4),(4,7),(10,﹣1)【解析】【分析】(1)利用等腰直角三角形的性质以及平行线的性质,可证明△AOP 为等腰直角三角形,从而求得答案;(2)根据对称的性质得:PA =PA '=PB ,由∠PAB +∠PBA =90°,结合三角形内角和定理即可求得∠OA 'B =45°;(3)分类讨论:分别讨论当△ABP ≌△MBP 、△ABP ≌△MPB 、△ABP ≌△MPB 时,点M 的坐标的情况;过点M 作x 轴的垂线、过点B 作y 轴的垂线,利用等腰直角三角形的性质及全等三角形的判定和性质求得点M 的坐标即可.【详解】(1)∵AB ∥x 轴,△APB 为等腰直角三角形,∴∠PAB =∠PBA =∠APO =45°,∴△AOP 为等腰直角三角形,∴OA =OP =4.∴t =4÷1=4(秒),故t 的值为4.(2)如图2,∠OA ′B 的度数不变,∠OA ′B =45°,∵点A 关于x 轴的对称点为A ′,∴PA =PA ',又AP =PB ,∴PA =PA '=PB ,∴∠PAA '=∠PA 'A ,∠PBA '=∠PA 'B ,又∵∠PAB +∠PBA =90°,∴∠PAA '+∠PA 'A +∠PA 'B +∠PBA '=180()PAB PBA ∠∠︒-+180=︒-90°=90°,∴∠AA 'B =45°,即∠OA 'B =45°;(3)当t =3时,M 、P 、B 为顶点的三角形和△ABP 全等,①如图3,若△ABP ≌△MBP ,则AP =PM ,过点M 作MD ⊥OP 于点D ,∵∠AOP =∠PDM ,∠APO =∠DPM ,∴△AOP ≌△MDP (AAS ),∴OA =DM =4,OP =PD =3,∴M 的坐标为:(6,-4).②如图4,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点E ,过点B 作BG ⊥x 轴于点G ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形, ∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PGB ≅∴34BG OP PG AO ====,∵BG ⊥x 轴BF ,⊥y 轴∴四边形BGOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OG OP PG ==+=+=在Rt ABF 和Rt PME 中∠BAF =45︒+1∠,∠MPE =45︒+2∠,∴∠BAF =∠MPE∵AB PM =∴Rt ABF Rt PME ≅∴71ME BF PE AF ====,∴M 的坐标为:(4,7),③如图5,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点D ,过点B 作BG ⊥x 轴于点E ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PEB ≅∴34BE OP PE AO ====,∵BE ⊥x 轴BF ,⊥y 轴∴四边形BEOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OE OP PE ==+=+=在Rt ABF 和Rt PMD 中∵BF ⊥y 轴∴42∠=∠∵42ABF PMD ∠∠∠+=∠+∴ABF PMD ∠∠=∵AB PM =∴Rt ABF Rt PMD ≅∴17MD AF PD BF ====,∴M 的坐标为:(10,﹣1).综合以上可得点M 的坐标为:(6,﹣4),(4,7),(10,﹣1).【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,矩形的判定和性质,第(3)小题要注意分类讨论,作此类型的题要结合图形,构建适当的辅助线,寻找相等的量才能得出结论.。
人教版_部编版八年级数学上册第十二章第一节全等三角形练习题(含答案) 如图,△ABC≌△ADE,点E在BC上,若∠C=80°,则∠DEB=_____.
【答案】20° 【解析】 【分析】 根据全等三角形的性质:对应角和对应边相等解答即可. 【详解】 解:∵△ABC≌△ADE, ∴∠C=∠AED=80°,AC=AE,
∴∠AEC=∠C=80°,
∴∠DEB=180°−80°−80°=20°,
故答案为:20°. 【点睛】 本题考查了全等三角形的性质,熟记性质并准确识图是解题的关键. 42.如果△ABC与△A'B'C'关于直线l对称,且∠A=50°,∠B'=70°,那么∠C'=______. 【答案】60° 【解析】 【分析】 根据轴对称的性质可知两个三角形全等,再根据全等三角形对应角相等及三角形内角和定理即可求解. 【详解】 解:∵△ABC与△A'B'C'关于直线l对称, ∴△ABC≌△A'B'C',
∴∠A=∠A',∠B=∠B',
又∵∠A=50°,∠B'=70°,∠A'+∠B'+∠C'=180°, ∴∠A=∠A'=50°,∠B=∠B'=70°,
∴∠C'=60°.
故答案为60°. 【点睛】 本题考查轴对称的性质,全等三角形的性质,熟练掌握轴对称的性质是解答本题的关键. 43.如图,BF=EC,∠A=∠D,那么要得到△ABC≌△DEF,可以添加一个条件(只需填上一个正确的条件_____.
【答案】∠B=∠E或∠ACB=∠DFE 【解析】 【分析】 根据全等三角形的判定方法添加条件即可. 【详解】 解:∵BF=CE, ∴BC=EF,
∵∠A=∠D,
∴当∠B=∠E或∠ACB=∠DFE时,△ABC≌△DEF,
故答案为:∠B=∠E或∠ACB=∠DFE. 【点睛】 本题考查了全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考基础题. 44.如图,ABC的面积为21cm,BP平分ABC,APBP于P,则PBC
三角形全等之类比探究学生做题前请先回答以下问题问题1:解决类比探究问题的一般方法:(1)根据题干条件,结合____________先解决第一问;(2)用解决_______的方法类比解决下一问,整体框架照搬.问题2:整体框架照搬包括____________,____________,____________.问题3:“三角形全等”的辅助线:见中线,要________,________之后___________.三角形全等之类比探究(照搬辅助线)(人教版)一、单选题(共6道,每道16分)1.在等腰三角形ABC中,AB=AC,BG⊥AC于G,点D是BC上一点,DE⊥AB于E,DF⊥AC于F.(1)在图1中,D是BC边的中点,试判断BG,DE,DF之间的数量关系.小明同学的思路是连接AD,借助△ABD,△ACD,△ABC的面积之间的关系来证明.则BG,DE,DF之间的数量关系是( )A.DE+DF>BGB.DE+DF=BGC.DE+DF<BGD.无法判断2.(上接第1题)(2)在图2中,D是线段BC上的任意一点,DE,DF与BG之间的数量关系仍然成立.类比第1题的做法,下列辅助线叙述和思路正确的是( )A.连接EF,通过全等三角形证明EF=BGB.过点C作CM⊥AB于H,证明BG=CHC.连接AD,借助证明D.设BC的中点为H,过H作HM⊥AB,HN⊥AC3.(上接第1,2题)(3)在图3中,D是线段BC延长线上的点,探究DE,DF与BG之间的数量关系,类比第1,2题的做法,下列辅助线叙述和思路正确的是( )A.连接AD,借助证明B.连接AD,借助证明C.连接AD,借助证明D.设BC的中点为H,过H作HM⊥AB,HN⊥AC4.(1)如图1,在正方形ABCD的边AB上任取一点E,过点E作EF⊥AB,交BD于点F,取DF的中点G,连接EG,CG.求证:EG=CG,EG⊥CG.如图1-1,下面给出了证明的路线图:①△EFG≌△HDG;②△CBE≌△CDH;③EF=DH;④EF=DH,EG=HG;⑤EG=HG;⑥EC=HC,∠1=∠2;⑦∠1=∠2.以上横线处,依次所填正确的是( )A.①④②⑥B.②⑥①⑤C.①③②⑦D.②⑦①④5.(上接第4题)(2)在图1的基础上,将△BEF绕点B旋转,使点E在CB的延长线上,其他条件不变,如图2,则EG和CG之间的数量和位置关系为( )A.EG=CG,但EG与CG不垂直B.EGCG,EG⊥CGC.EG=CG,EG⊥CGD.EGCG,但EG与CG不垂直6.(上接第4,5题)(3)在图1的基础上,将△BEF绕点B旋转,使点E在AB的延长线上,其他条件不变,如图3,为了证明EG和CG之间的数量和位置关系,类比(1)(2)问中的辅助线和证明思路,需要作出的辅助线是( )A.延长EG,交CD的延长线于点H,连接EC,HCB.延长CG,交DA的延长线于点H,连接EC,EHC.延长EG,交AD于点H,连接EC,HCD.延长FE,交DC的延长线于点H,连接HG。
一、选择题1.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 2.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点,分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点,若点P 的坐标为(m ,n),则下列结论正确的是( )A .m =2nB .2m =nC .m =nD .m =-n 3.如图,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,DF AC ⊥于点F ,若ABC S 12=,DF 2=,AC 3=,则AB 的长是 ( )A .2B .4C .7D .94.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对5.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A .∠F =∠BCFB .AE =7cmC .EF 平分ABD .AB ⊥CF 6.下列说法正确的是( )A .两个长方形是全等图形B .形状相同的两个三角形全等C .两个全等图形面积一定相等D .所有的等边三角形都是全等三角形 7.如图,在Rt ABC △中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,且DE 所在直线是AB 的垂直平分线,垂足为E .若3DE =,则BC 的长为( ).A .6B .7C .8D .98.如图,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于,且OD=2,△ABC 的面积是( )A .20B .24C .32D .409.如图,AC 与DB 相交于E ,且BE CE =,如果添加一个条件还不能判定ABE △≌DCE ,则添加的这个条件是( ).A .AC DB = B .A D ∠=∠C .B C ∠=∠D .AB DC = 10.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为( )A .50°B .65°C .70°D .80°11.下列命题,真命题是( )A .全等三角形的面积相等B .面积相等的两个三角形全等C .两个角对应相等的两个三角形全等D .两边和其中一边的对角对应相等的两个三角形全等12.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b二、填空题13.如图,AC=BC ,请你添加一个条件,使AE=BD .你添加的条件是:________.14.如图,四边形ABCD 中,180B D ∠+∠=︒,AC 平分DAB ∠,CM AB ⊥于点M ,若4cm AM =, 2.5cm BC =,则四边形ABCD 的周长为______cm .15.如图,已知ABC 的周长是8,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC 于D ,且3OD =,ABC 的面积是______.16.如图,线段AB ,CD 相交于点O ,AO=BO ,添加一个条件, 能使AOC BOD ≅,所添加的条件的是___________________________.17.已知70COB ∠=,30AOB ∠=,OD 平分AOC ∠,则BOD ∠=_________ 18.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.19.如图,9cm AB =,3cm AC =,点P 在线段AB 上以1cm/s 的速度由点B 向点A 运动,同时点Q 在射线BD 上以x cm/s 的速度由点B 沿射线BD 的方向运动,它们运动的时间为t (s )(1)如图①,若AC AB ⊥,BD AB ⊥,当ACP BPQ △≌△,x =________;CPQ ∠=________.(2)如图②,CAB DBA ∠=∠,当ACP △与BPQ 全等,x =________; 20.如图,△ACB 和△DCE 中,AC =BC ,∠ACB =∠DCE =90°,∠ADC =∠BEC ,若AB =17,BD =5,则S △BDE =_______.三、解答题21.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.22.如图,直角梯形ABCD 中,//,,AD BC AB BC E ⊥是AB 上的点,且,DE CE DE CE =⊥,(1)证明:AB AD BC =+.(2)若已知AB a ,求梯形ABCD 的面积.23.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =80°,试求: (1)∠EDC 的度数.(2)若∠BCD =n °,试求∠BED 的度数.(用含n 的式子表示)(3)类比探究:已知AB ∥CD ,BE 、DE 分别是∠ABC 、∠ADC 的n 等分线,ABE ∠=1ABC n ∠,1CDE ADC n∠=∠,∠BAD =α,∠BCD =β,请猜想∠BED = .24.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.25.已知:直线EF 分别与直线AB ,CD 相交于点G ,H ,并且180AGE DHE ∠+∠=︒(1)如图1,求证://AB CD ;(2)如图2,点M 在直线AB ,CD 之间,连接GM ,HM ,求证:M AGM CHM ∠=∠+∠;(3)如图3,在(2)的条件下,射线GH 是BGM ∠的平分线,在MH 的延长线上取点N ,连接GN ,若N AGM ∠=∠,12M N FGN ∠=∠+∠,求MHG ∠的度数. 26.已知:如图,AOB ∠.求作: A O B '''∠,使A O B AOB '''∠=∠.作法:①以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;②画一条射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C '; ③以点C '为圆心,CD 长为半径画弧,与②中所画的弧相交于点D ;④过点D 画射线O B '',则A O B AOB '''∠=∠;A OB '''∠就是所求作的角.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接C D ''.由作法可知OC O C ''=,,,∴COD C O D '''≅.( )(填推理依据).∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据全等三角形的判定,利用ASA 、SAS 、AAS 即可得答案.【详解】解:∵∠B=∠DEF ,AB=DE ,∴添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;添加AC DF =,不符合任何一个全等判定定理,不能证明△ABC ≌△DEF ;故选:D .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键.2.D解析:D【分析】根据角平分线的性质及第二象限内点的坐标特点即可得出结论.【详解】解:∵由题意可知,点C 在∠AOB 的平分线上,∴m=-n .故选:D .【点睛】本题考查的是作图−基本作图,熟知角平分线的作法及其性质是解答此题的关键. 3.D解析:D【分析】求出DE 的值,代入面积公式得出关于AB 的方程,求出即可.【详解】解:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE=DF=2,∵S △ABC =S △ABD +S △ACD ,∴12=12×AB×DE+12×AC×DF , ∴24=AB×2+3×2,∴AB=9,故选:D .【点睛】本题考查了角平分线性质,三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.4.C解析:C【分析】根据AD //BC 证得ADB CBD ∠=∠,由BE DF =得到BF=DE ,由此证明△ADE ≌△CBF ,得到AE=CF ,AD=CB ,由此证得△ABE ≌△CDF ,得到AB=CD ,由此利用SSS 证明△ABD ≌△CDB.【详解】解:∵AD //BC ,∴ADB CBD ∠=∠,BE DF =,BF DE ∴=,AE BD ⊥,CF BD ⊥,AED CFB ∠∠∴=90=,()ADE CBF ASA ∴≅,AE CF ∴=,AD CB =,∵∠AEB=∠CFD 90=,BE=DF ,()ABE CDF SAS ∴≅,AB CD ∴=,BD DB =,AB=CD ,AD CB =,()ABD CDB SSS ∴≅,则图中全等的三角形有:3对,故选:C .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据已知条件找到对应的边或角是解题的关键.5.C解析:C【分析】证明EF ∥BC 即可得到A 正确,证明()Rt ACB Rt FEC HL ≅,得AC =EF =12cm ,CE =BC =5cm ,得到B 正确,根据∠A +∠ACD =∠F +∠ACD =90°即可证明D 正确.【详解】解:∵EF ⊥AC ,∠ACB =90°,∴∠AEF =∠ACB =90°,∴EF ∥BC ,∴∠F =∠BCF ,故A 正确;在Rt ACB 和Rt FEC 中,CB EC AB FC=⎧⎨=⎩, ∴()Rt ACB Rt FEC HL ≅,∴AC =EF =12cm ,∵CE =BC =5cm ,∴AE =AC ﹣CE =7cm .故B 正确;如图,记AB 与EF 交于点G ,如果AE =CE ,∵EF ∥BC ,∴EG是△ABC的中位线,∴EF平分AB,而AE与CE不一定相等,∴不能证明EF平分AB,故C错误;,∵Rt ACB Rt FEC∴∠A=∠F,∴∠A+∠ACD=∠F+∠ACD=90°,∴∠ADC=90°,∴AB⊥CF,故D正确.∴结论不正确的是C.故选:C.【点睛】本题考查全等三角形的性质和判定,解题的关键是掌握全等三角形的性质和判定定理.6.C解析:C【分析】性质、大小完全相同的两个图形是全等形,根据定义解答.【详解】A、两个长方形的长或宽不一定相等,故不是全等图形;B、由于大小不一定相同,故形状相同的两个三角形不一定全等;C、两个全等图形面积一定相等,故正确;D、所有的等边三角形大小不一定相同,故不一定是全等三角形;故选:C.【点睛】此题考查全等图形的概念及性质,熟记概念是解题的关键.7.D解析:D【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【详解】解:∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠EAD=90°,∴∠EAD=30°,∵∠AED=90°,∴DA=BD=2DE,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=3,∴DA=BD=6,∴BC=BD+CD=6+3=9,故选:D.【点睛】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.8.A解析:A【分析】连接OA,过O作OE⊥AB于E,OF⊥AC于F;然后利用角平分线定理可得OF=OE=DO=2,然后用S△ABC=S△AOC+S△OBC+S△ABO求解即可.【详解】解:如图:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB,OC分别平分∠ABC和∠ACB,∴OD=OE,OF=OD,即OF=OE=DO=2,∴S△ABC=12×2AC+12×2BC +12×2AB=12×2(AC+BC+AB)= AC+BC+AB=20.故答案为A.【点睛】本题主要考查了角平分线定理,正确作出辅助线、利用角平分线定理得到OF=OE=DO=2是解答本题的关键.9.D解析:D【分析】根据全等三角形的判定定理,对每个选项分别分析、解答出即可.【详解】根据题意:BE=CE ,∠AEB=∠DEC ,∴只需要添加对顶角的邻边,即AE=DE (由AC=BD 也可以得到),或任意一组对应角,即∠A=∠D ,∠B=∠C ,∴选项A 、B 、C 可以判定,选项D 不能判定,故选:D .【点睛】此题考查全等三角形的判定定理,熟记判定定理并熟练应用是解题的关键.10.A解析:A【分析】根据题意可证明ABE ACD ≅,即得到B C ∠=∠.再利用三角形外角的性质,可求出DME ∠,继而求出BMD ∠.【详解】根据题意ABE ACD ≅(SAS ),∴30B C ∠=∠=︒∵DME B BDC ∠=∠+∠,BDC C A ∠=∠+∠∴307030130DME B A C ∠=∠+∠+∠=︒+︒+︒=︒∴180********BMD DME ∠=︒-∠=︒-︒=︒故选A .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质.利用三角形外角的性质求出DME B A C ∠=∠+∠+∠是解答本题的关键.11.A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A 、全等三角形的面积相等,本选项说法是真命题;B 、面积相等的两个三角形不一定全等,本选项说法是假命题;C 、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D 、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题; 故选:A .【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键. 12.B解析:B【分析】在线段AC 上作AF=AB ,证明△AEF ≌△AEB 可得∠AFE=∠B ,∠AEF=∠AEB ,再证明△CEF ≌△CED 可得CD=CF ,即可求得四边形ABDC 的周长.【详解】解:在线段AC上作AF=AB,∵AE是BAC∠的平分线,∴∠CAE=∠BAE,又∵AE=AE,∴△AEF≌△AEB(SAS),∴∠AFE=∠B,∠AEF=∠AEB,∵AB∥CD,∴∠D+∠B=180°,∵∠AFE+∠CFE=180°,∴∠D=∠CFE,∵AE CE⊥,∴∠AEF+∠CEF=90°,∠AEB+∠CED=90°,∴∠CEF=∠CED,在△CEF和△CED中∵D CFECEF CEDCE CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEF≌△CED(AAS)∴CE=CF,∴四边形ABDC的周长=AC+AB+BD+CD=AC+AF+CF+BD=2AC+BD=2a b+,故选:B.【点睛】本题考查全等三角形的性质和判断.能正确作出辅助线构造全等三角形是解题关键.二、填空题13.∠A=∠B或CD=CEAD=BE∠AEC=∠BDC等【分析】根据全等三角形的判定解答即可【详解】解:因为AC=BC∠C=∠C所以添加∠A=∠B或CD=CEAD=BE ∠AEC=∠BDC 可得△ADC 与△解析:∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC 等【分析】根据全等三角形的判定解答即可.【详解】解:因为AC=BC ,∠C=∠C ,所以添加∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC ,可得△ADC 与△BEC 全等,利用全等三角形的性质得出AD=BE ,故答案为:∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.13【分析】过点C 作CN ⊥AD 交AD 延长线于点N 由角平分线的性质得到CN=CM 然后证明△CDN ≌△CBM 得到DN=BMCD=CB=25然后求出AN=AM=4则AD=4DN 即可求出四边形的周长【详解】解析:13【分析】过点C 作CN ⊥AD ,交AD 延长线于点N ,由角平分线的性质,得到CN=CM ,然后证明△CDN ≌△CBM ,得到DN=BM ,CD=CB=2.5,然后求出AN=AM=4,则AD=4-DN ,即可求出四边形的周长.【详解】解:根据题意,过点C 作CN ⊥AD ,交AD 延长线于点N ,如图:∵CM AB ⊥,CN ⊥AD ,∴∠N=∠CMB=90°,∵180B ADC ∠+∠=︒,180CDN ADC ∠+∠=︒,∴B CDN ∠=∠,∵AC 平分DAB ∠,∴CN=CM ,∴△CDN ≌△CBM ,∴DN=BM ,CD=CB=2.5,∵AC=AC ,∠N=∠CMA=90°,∴△ACN ≌△ACM (HL ),∴AN=AM=4,∴AD=4-DN,∴AB=4+BM=4+DN,∴四边形ABCD的周长为:4 2.5 2.5413AD DC CB AB DN DN+++=-++++=;故答案为:13.【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,解题的关键是利用所学的知识,正确得到AD=4-DN,AB=4+DN.15.12【分析】连接OA过O作OE⊥AB于EOF⊥AC于F根据角平分线的性质求出OE=OF=OD=3再根据三角形的面积公式求出即可【详解】解:连接OA过O作OE⊥AB于EOF⊥AC于F∵OBOC分别平分解析:12【分析】连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质求出OE=OF=OD=3,再根据三角形的面积公式求出即可.【详解】解:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB, OC分别平分∠ABC和∠ACB,OD⊥BC,OD=3,∴OE=OD=3,OF=OD=3,∵△ABC的周长是8,∴AB+BC+AC=8,∴△ABC的面积S=S△ABO+S△BCO+S△ACO=12×AB×OE+12×BC×OD+12×AC×OF=12×AB×3+12×BC×3+12×AC×3=12×3×(AB+BC+AC)=12×3×8=12,故答案为:12.【点睛】本题考查了三角形的面积和角平分线的性质,能根据角平分线的性质求出OE=OD=OF=3是解此题的关键.16.或或或【分析】先根据对顶角相等可得再根据三角形全等的判定定理即可得【详解】由对顶角相等得:当时由定理可证当时由定理可证当时由定理可证当时则由定理可证故答案为:或或或【点睛】本题考查了对顶角相等三角形 解析:CO DO =或A B ∠=∠或C D ∠=∠或//AC BD【分析】先根据对顶角相等可得AOC BOD ∠=∠,再根据三角形全等的判定定理即可得.【详解】由对顶角相等得:AOC BOD ∠=∠,AO BO =,∴当CO DO =时,由SAS 定理可证AOC BOD ≅,当A B ∠=∠时,由ASA 定理可证AOC BOD ≅,当C D ∠=∠时,由AAS 定理可证AOC BOD ≅,当//AC BD 时,则A B ∠=∠,由ASA 定理可证AOC BOD ≅,故答案为:CO DO =或A B ∠=∠或C D ∠=∠或//AC BD .【点睛】本题考查了对顶角相等、三角形全等的判定定理等知识点,熟练掌握三角形全等的判定定理是解题关键.17.20°或50°【分析】根据题意分两种情况进行讨论然后根据角平分线的性质计算解决即可【详解】解:①如图∵∠BOC=70°∴∠AOC=100°∵OD 平分∠AOC ∴∠AOD=∠AOC=50°∠AOD-=2解析:20°或50°【分析】根据题意,分两种情况进行讨论,然后根据角平分线的性质计算解决即可.【详解】解:①如图∵30AOB ∠=︒,∠BOC=70°,∴∠AOC=100°,∵OD 平分∠AOC∴∠AOD=12∠AOC=50°, BOD ∠=∠AOD-AOB ∠=20°;②如图,∵30AOB ∠=︒,∠BOC=70°,∴∠AOC=40°,∵OD 平分∠AOC∴∠AOD=12∠AOC=20°, BOD ∠=∠AOD+AOB ∠=50°;故答案为:20°或50°【点睛】本题考查了角平分线的性质,解决本题的关键是正确理解题意,熟练掌握角平分线的性质,能够由角平分线得出相等的角,在解决问题时注意要分类讨论.18.3【分析】过点D 作于点H 先证明BD 是的角平分线然后根据角平分线的性质得到当点P 运动到点H 的位置时DP 的长最小即DH 的长【详解】解:如图过点D 作于点H ∵∴∵∴∴BD 是的角平分线∵∴∵点D 是直线BC 外一 解析:3【分析】过点D 作DH BC ⊥于点H ,先证明BD 是ABC ∠的角平分线,然后根据角平分线的性质得到3AD DH ==,当点P 运动到点H 的位置时,DP 的长最小,即DH 的长.【详解】解:如图,过点D 作DH BC ⊥于点H ,∵BD CD ⊥,∴90BDC ∠=︒,∵180C BDC DBC ∠+∠+∠=︒,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,∴ABD CBD ∠=∠,∴BD 是ABC ∠的角平分线,∵AD AB ⊥,DH BC ⊥,∴3AD DH ==,∵点D 是直线BC 外一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长,即DP 长的最小值是3.故答案是:3.【点睛】本题考查角平分线的性质,解题的关键是熟练运用角平分线的性质定理.19.90°2或【分析】(1)根据全等找出对应边利用BP 边求得时间再在BQ 边上求速度再运用全等三角形的性质即可证明角度;(2)结合条件对与全等时的情况进行分析分类讨论即可【详解】(1)当时又;(2)①当时解析:90° 2或23【分析】(1)根据全等找出对应边,利用BP 边求得时间,再在BQ 边上求速度,再运用全等三角形的性质,即可证明角度;(2)结合条件,对ACP △与BPQ 全等时的情况进行分析,分类讨论即可.【详解】(1)当ACP BPQ △≌△时,3AC PB ==,936AP BQ cm ==-=, 331cm t s cm /s ∴==,623cm x cm /s s==, 又CPA PQB ∠=∠,90PQB QPB ∠+∠=︒,90CPA QPB ∴∠+∠=︒,18090CPQ ∴∠=︒-︒=90︒;(2)①当ACP BPQ △≌△时,3AC BP ==,936AP BQ ==-=,此时,331cm t s cm /s ==,623cm x cm /s s==; ②当ACP BQP △≌△时, 3AC BQ ==,92AP BP ==, 此时,99212cm t s cm /s ==,32932cm x cm /s s ==; 综上:当ACP △与BPQ 全等,2x cm /s =或23cm /s . 【点睛】本题考查了全等三角形的性质及判定,熟练掌握全等三角形的性质是解题关键. 20.30【分析】根据∠ACB =∠DCE =90°可得∠ACD =∠BCE 利用三角形全等判定可得△ACD ≌△BCE 则BE =AD ∠DAC =∠EBC 再证明∠DBE =90°根据三角形面积计算公式便可求得结果【详解】解析:30【分析】根据∠ACB =∠DCE =90°,可得∠ACD =∠BCE ,利用三角形全等判定可得△ACD ≌△BCE ,则BE =AD ,∠DAC =∠EBC ,再证明∠DBE =90°,根据三角形面积计算公式便可求得结果.【详解】解:∵∠ACB =∠DCE =90°,∴∠ACB -∠DCB =∠DCE -∠DCB .即∠ACD =∠BCE .∵AC =BC ,∠ADC =∠BEC ,∴△ACD ≌△BCE .∴BE =AD ,∠DAC =∠EBC .∵∠DAC +∠ABC =90°,∴∠EBC +∠ABC =90°.∴△BDE 为直角三角形.∵AB =17,BD =5,∴AD =AB -BD =12.∴S △BDE =12BD ⋅BE =30. 故答案为:30.【点睛】本题考查了全等三角形的判定与性质,通过分析题意找出三角形全等的条件并能结合全等性质解决相应的计算问题是解题的关键.三、解答题21.见解析【分析】根据ASA 定理证明三角形全等,从而利用全等三角形的性质求解.【详解】证明:∵DE=BF ,∴DE+EF=BF+EF ;∴DF=BE ;∵AF BD ⊥,CE BD ⊥∴∠AFD=∠CEB=90°∵//AD CB∴∠B=∠D在Rt △ADF 和Rt △BCE 中B D DF BE AFD CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt △ADF ≌Rt △BCE∴AF CE =【点睛】本题考查了三角形全等的判定及性质;由DE=BF 通过等式的性质得DF=BE 在三角形全等的证明中经常用到,应注意掌握应用.22.(1)见解析;(2)12a 2 【分析】(1)由DE 垂直于EC ,得到一个角为直角,利用平角的定义得到一对角互余,又三角形BEC 为直角三角形,根据直角三角形的两锐角互余得到一对角互余,利用同角的余角相等得到一对角相等,再由一对直角相等及DE =CE ,利用AAS 可得出三角形AED 与三角形BCE 全等,根据全等三角形的对应边相等得到AD =EB ,AE =BC ,由AB =AE +EB ,等量代换可得证;(2)由第一问的结论AB =AD +BC ,根据AB =a ,得出此直角梯形的上下底之和为a ,高为a ,利用梯形的面积公式即可求出梯形ABCD 的面积.【详解】解:(1)证明:∵DE ⊥EC ,∴∠DEC =90°,∴∠AED +∠BEC =90°,又AB ⊥BC ,∴∠B =90°,∴∠BCE +∠BEC =90°,∴∠AED =∠BCE ,又AD ∥BC ,∴∠A +∠B =180°,∴∠A =∠B =90°,在△AED 和△CBE 中,A B AED BCE ED CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AED ≌△CBE (AAS ),∴AD =EB ,AE =BC ,则AB =AE +EB =BC +AD ;(2)由AB =a ,及(1)得:AB =BC +AD =a ,则S 直角梯形ABCD =12AB •(BC +AD )=12a 2. 【点睛】此题考查了直角梯形,全等三角形的判定与性质,以及梯形的面积公式,利用了转化的思想,灵活运用全等三角形的判定与性质是解本题的关键,本题在做第二问时注意运用第一问的结论. 23.(1)40︒;(2)1402BED n ∠=︒+︒;(3)1()αβ+n【分析】(1)根据平行线的性质及角平分线的性质即可得解;(2)过点E 作EF ∥AB ,则EF ∥AB ∥CD ,由AB ∥CD ,BE 平分∠ABC ,推出12BEF ABE n ∠=∠=︒,利用EF ∥CD ,求得∠FED =∠EDC =40°,即可得到 1402BED n ∠=︒+︒; (3)过点E 作EF ∥AB ,则EF ∥AB ∥CD ,利用AB ∥CD 推出∠ABC =∠BCD =β,∠ADC =∠BAD =α,求得1ABE n β∠=,111FED CDE ADC BAD n n n α∠=∠=∠=∠=,利用EF ∥AB ,求出1BEF ABE n β∠=∠=,即可得到1()BED n αβ∠=+. 【详解】解:(1)∵AB ∥CD ,∴∠ADC =∠BAD =80°,又∵DE 平分∠ADC , ∴1402EDC ADC ∠=∠=︒;(2)如图,过点E 作EF ∥AB ,则EF ∥AB ∥CD ,∵AB ∥CD ,∴∠ABC =∠BCD =n °,又∵BE 平分∠ABC , ∴12ABE n ∠=︒, ∵EF ∥AB , ∴12BEF ABE n ∠=∠=︒, ∵EF ∥CD ,∴∠FED =∠EDC =40°,∴1402BED n ∠=︒+︒. (3)1()αβ+n.如图,过点E 作EF ∥AB ,则EF ∥AB ∥CD ,∵AB ∥CD ,∴∠ABC =∠BCD =β,∠ADC =∠BAD =α,∴1ABE nβ∠=,111FED CDE ADC BAD n n n α∠=∠=∠=∠=, ∵EF ∥AB , ∴1BEF ABE n β∠=∠=, ∴1()BED nαβ∠=+. 故答案为:1()αβ+n .【点睛】此题考查平行线的性质,角平分线的性质,熟记平行线的性质并正确引出辅助线解决问题是解题的关键.24.见详解【分析】先证明ACE △≅DBF ,从而得∠DBF=∠ACE ,进而即可得到结论.【详解】∵AB DC =,∴+AB BC DC BC =+,即:AC=DB ,∵//AE FD ,∴∠A=∠D ,又∵AE FD =,∴ACE △≅DBF (SAS ),∴∠DBF=∠ACE ,∴CE ∥BF .【点睛】本题主要考查全等三角形的判定和性质定理以及平行线的判定和性质定理,熟练掌握SAS 证明三角形全等,是解题的关键.25.(1)见解析;(2)见解析;(3)60°【分析】(1)推出同旁内角互补即可(2)如图,过点M 作//MR AB ,利用平行线性质推出////AB CD MR .得GMR AGM ∠=∠,HMR CHM ∠=∠.利用角的和M GMR HMR ∠=∠+∠代换即可.(3)如图,令2AGM α∠=,CHM β∠=,由N AGM ∠=∠推得2N α∠=,2M αβ∠=+,由射线GH 是BGM ∠的平分线,推得1902FGM BGM α∠=∠=︒-, 则90AGH AGM FGM α∠=∠+∠=︒+,由12M N FGN ∠=∠+∠,求出2FGN β∠=,过点N 作//HT GN ,由平行线的性质22GHM MHT GHT αβ∠=∠+∠=+,求出∠CHG 23αβ=+,利用//AB CD 的性质180AGH CHG ∠+∠=︒,即9023180ααβ︒+++=︒,求出30αβ+=︒,再求()260MHG αβ∠=+=︒即可.【详解】(1)证明:如图,∵180AGE DHE ∠+∠=︒,AGE BGF ∠=∠.∴180BGF DHE ∠+∠=︒,∴//AB CD .(2)证明:如图,过点M 作//MR AB ,又∵//AB CD ,∴////AB CD MR .∴GMR AGM ∠=∠,HMR CHM ∠=∠.∴M GMR HMR AGM CHM ∠=∠+∠=∠+∠;(3)解:如图,令2AGM α∠=,CHM β∠=,∵N AGM ∠=∠则2N α∠=,2M αβ∠=+,∵射线GH 是BGM ∠的平分线, ∴()111809022FGM BGM AGM α∠=∠=︒-∠=︒-, ∴29090AGH AGM FGM ααα∠=∠+∠=+︒-=︒+, ∵12M N FGN ∠=∠+∠, ∴1222FGN αβα+=+∠, ∴2FGN β∠=,过点N 作//HT GN ,则2MHT N α∠=∠=,2GHT FGN β∠=∠=,∴22GHM MHT GHT αβ∠=∠+∠=+,∴CHG CHM MHT GHT ∠=∠+∠+∠2223βαβαβ=++=+,∵//AB CD ,∴180AGH CHG ∠+∠=︒,∴9023180ααβ︒+++=︒,∴30αβ+=︒,∴()260MHG αβ∠=+=︒.【点睛】本题主要考查平行线的性质, 角平分线的定义,解决问题的关键是作平行线构造内错角,和同位角,利用两直线平行,内错角相等,同位角相等来计算是解题关键.26.(1)补全图形见解析;(2)OD O D ''=,CD C D ''=,SSS .【分析】(1)根据题意要求作图即可;(2)根据题意利用SSS 证明COD C O D '''≅即可.【详解】(1)作图:(2)连接C D '',∵OC O C ''=,OD O D ''= ,CD C D ''=,∴COD C O D '''≅(SSS ),∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角故答案为:OD O D ''=,CD C D ''=,SSS ..【点睛】此题考查作图能力—作一个角等于已知角,全等三角形的判定及性质,根据题意画出图形并确定对应相等的条件证明三角形全等是解题的关键.。
第1页 共7页
三角形全等之类比探究(习题)
➢ 例题示范
例1:已知,在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点
D不与点B,C重合).以AD为边作正方形ADEF,AD=AF,∠DAF=90°,连接
CF.
(1)如图1,当点D在线段BC上时,求证:CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,
BC,CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC
的两侧,其他条件不变,求CF,BC,CD三条线段之间的关系.
图2图1
A
BCDEFFEDCB
A
【思路分析】
结合题目特征,本题为类比探究问题.
解决方法:
(1)根据题目条件及(1)问中D在线段BC上,证明△ABD≌△ACF,就可以
得出BD=CF,结论可证.
(2)用解决第(1)问的方法解决后续问题,方法上完全照搬.
如图2,通过证明△ABD≌△ACF,就可以得出BD=CF,进而得到BC+CD=CF;
如图3,通过证明△ABD≌△ACF,就可以得出BD=CF,进而得到BC+CF=CD.
【过程书写】
证明:如图,
图3
A
BC
D
E
F
第2页 共7页
图1
F
E
D
CB
A
∵∠DAF=90°,∠BAC=90°
∴∠BAD=∠CAF
在△BAD和△CAF中,
ABACBADCAFADAF
∴△BAD≌△CAF(SAS)
∴BD=CF
∵BD+CD=BC
∴CF+CD=BC
(2)BC+CD=CF
(3)BC+CF=CD,理由如下:
∵∠DAF=90°,∠BAC=90°
∴∠BAD=∠CAF
在△BAD和△CAF中,
ABACBADCAFADAF
∴△BAD≌△CAF(SAS)
∴BD=CF
∵BC+BD=CD
∴BC+CF=CD
➢ 巩固练习
1. 已知AB⊥BD,ED⊥BD,AC⊥CE,BC=DE,如图1.
图3
A
BC
D
E
F
第3页 共7页
(1)求证:AC=CE.
(2)若将△ECD沿CB方向平移至如图2的位置(C1,C2不
重合),其余条件不变,结论AC1=C2E还成立吗?请说明理由.
(3)若将△ECD沿CB方向平移至如图3的位置(B,C2重
合),其余条件不变,结论AC1=C2E还成立吗?请说明理由.
2. (1)【问题发现】小明学习中遇到这样一个问题:
如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE
交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关
系.小明发现,过点D作DF∥AC,交AB于点F,通过构造全等三角形,经
过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:
图3
图2
图1
A
B
C
D
E
E
DBAEDB(C2)AC2C
1
C
1
第4页 共7页
_______________;
(2)【类比探究】如图2,当点D是线段BC上(除B,C外)任意一点时
(其他条件不变),试猜想AD与DE之间的数量关系,并证明你的结论;
(3)【拓展应用】如图3,当点D在线段BC的延长线上(其他条件不变),
试猜想AD与DE之间的数量关系,并证明你的结论.
图1
F
E
D
CB
A
图2
E
DCB
A
图3
E
DCB
A
3. 如图1所示,在△ABC和△ADE中,AB=AC,AD=AE,
∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别
为BE,CD的中点,连接AM,AN,MN.
(1)求证:①BE=CD;②△AMN是等腰三角形.
(2)在图1的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件
不变,得到如图2所示的图形.(1)中的两个结论是否仍然成立?若成立,
请给予证明;若不成立,请说明理由.
图1
ABCD
E
M
N
N
C
第5页 共7页
【参考答案】
1. 证明略
路线图:
(AAS) ADCEABCCDEACCE
△≌△
提示:
(1)AC=CE,由垂直转互余可以得到∠A=∠DCE,
结合BC=DE证明△ABC≌△CDE,得到对应边相等,
可以得到AC=CE.
(2)成立,照搬第一问的字母、思路和过程可以得到AC1=C2E.
(3)成立,照搬第一问的字母、思路和过程可以得到AC1=C2E.
第6页 共7页
2. 证明略
DDFACABF过点作∥,交于点
路线图
(AAS) BDFBFBDAFCDADFDECADDE
△为等边三角形,
△≌△
提示:
(1)AD=DE
(2)AD=DE成立,根据△ABC以及△BDF是等边三角形,得到AF=DC,
再结合∠ADE=60°,倒角,得到∠DAF=∠EDC,结合外角平分线,知∠DCE=
∠AFD=120°,得到△ADF≌
△DEC,得到对应边相等,可得AD=DE.
(3)成立,照搬第二问的字母、思路和过程可以得到AD=DE.
3. 证明略
路线图
(SAS) (SAS) BAECADBECDABEACDABMACNAMANAMN△≌△
,
△≌△
△是等腰三角形
提示:
(1)由已知条件先证明△BAE≌△CAD(SAS),得到BE=CD,结合第一次
全等提供的条件证明△ABM≌△ACN(SAS)得到AM=AN,因而△AMN是等
腰三角形.
(2)成立,照搬第一问的字母、思路和过程可以得到BE=CD,△AMN是
等腰三角形.
第7页 共7页