直接证明与间接证明
- 格式:doc
- 大小:72.50 KB
- 文档页数:7
直接证明和间接证明例如,我们要证明一个分数小于1的正数与其倒数相乘的结果一定小于1、我们可以直接证明如下:设分数为a/b,其中a和b均为正整数。
则有a<b,因此,a/b<b/b,即a/b<1又因为倒数的定义为1/a,即倒数为1除以该数,所以可知a/b *1/a = a/ba = 1/b,而1/b小于1因此,我们可以得出结论:一个小于1的正数与其倒数相乘的结果一定小于1间接证明是通过反证法(或称间接推理)推导出结论的证明方法。
它包括以下步骤:首先,假设要证明的结论不成立;其次,根据该假设推导出与已知事实矛盾的结论;最后,得出假设的结论非真,因此原结论为真。
间接证明的特点是通过推理和推导推翻假设,从而得到结论。
例如,我们要证明根号2是无理数。
假设根号2是有理数,即可表示为a/b的形式,其中a和b是整数,且a和b没有公因数。
则根号2=a/b,即2=(a/b)^2,即2b^2=a^2根据等式两边平方数的性质可知,a^2必为偶数。
那么,根据整数的性质可知,a也必为偶数,即a=2c,其中c为整数。
将a=2c代入等式2b^2=a^2中,得到2b^2=(2c)^2,化简得到b^2=2c^2依据同样的推理,b也是偶数,与假设a和b之间没有公因数相矛盾。
因此,假设根号2是有理数的假设不成立,根号2是无理数。
总结来说,直接证明是通过逻辑推理和数学定义直接得出结论,而间接证明是通过反证法推导出结论。
这两种证明方法在数学中应用广泛,可以灵活运用于各类数学问题的证明中。
无论是选择直接证明还是间接证明,重要的是要严谨、清晰地阐述证明的过程和推理的逻辑,以确保结论的正确性。
直接证明和间接证明课程教案第一章:引言1.1 课程目标本课程旨在帮助学生理解直接证明和间接证明的基本概念,掌握它们的应用方法,并能够灵活运用这两种证明方式解决实际问题。
1.2 课程内容本章将介绍直接证明和间接证明的定义、分类和基本方法。
1.3 教学方法采用讲授、案例分析、小组讨论等多种教学方法,帮助学生理解和掌握相关概念和方法。
第二章:直接证明2.1 定义和分类2.1.1 直接证明的定义直接证明是通过逻辑推理,直接从已知事实或前提出发,推导出要证明的结论。
2.1.2 直接证明的分类(1)直接逻辑推理:根据已知事实或前提,直接推导出结论。
(2)数学归纳法:先证明基本情况,再证明归纳步骤。
2.2 基本方法2.2.1 演绎法从一般到特殊的证明方法,即从一般原理推导出特殊情况下的结论。
2.2.2 归纳法从特殊到一般的证明方法,即先证明特殊情况,再推导出一般结论。
第三章:间接证明3.1 定义和分类3.1.1 间接证明的定义间接证明是通过证明相反命题的假性,从而证明原命题的真性。
3.1.2 间接证明的分类(1)反证法:假设相反命题为真,通过逻辑推理得出矛盾,从而证明原命题为真。
(2)归谬法:假设相反命题为真,推导出明显错误的结论,从而证明原命题为真。
3.2 基本方法3.2.1 反证法假设相反命题为真,通过逻辑推理得出矛盾,从而证明原命题为真。
3.2.2 归谬法假设相反命题为真,推导出明显错误的结论,从而证明原命题为真。
第四章:证明的辅助方法4.1 数学归纳法数学归纳法是一种包含直接证明和间接证明的方法,先证明基本情况,再证明归纳步骤。
4.2 逆否命题法将原命题的逆否命题作为证明对象,先证明逆否命题,再根据逆否命题与原命题的等价性得出原命题的证明。
第五章:练习与案例分析5.1 练习题设计一些有关直接证明和间接证明的练习题,帮助学生巩固所学内容。
5.2 案例分析分析一些实际案例,让学生运用直接证明和间接证明的方法解决问题。
2.1.1直接证明与间接证明1.直接证明(1)综合法是由原因推导到结果的证明方法,它是利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法.(2)分析法是从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后,把要证明的结论归结为判断一个明显成立的条件(已知条件、定义、公理、定理等)为止的证明方法.2.间接证明反证法是假设命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题成立的证明方法,它是一种间接的证明方法,用这种方法证明一个命题的一般步骤: ①假设命题的结论不成立;②根据假设进行推理,直到推理中导出矛盾为止;③断言假设不成立;④肯定原命题的结论成立.例题1、若10<<a ,10<<b 且b a ≠,则b a +,ab 2,22b a +,ab 2中最大的是( ).A b a + .B ab 2 .C 22b a + .D ab 2例题2、用反证法证明命题:“三角形的内角中至少有一个不大于︒60”时,应假设( ).A 三个内角都不大于︒60 .B 三个内角都大于︒60.C 三个内角至多有一个大于︒60 .D 三个内角至多有两个大于︒60例题3、 某个命题与正整数n 有关,若k n =(*N k ∈)时该命题成立,那么可推得1+=k n 时该命题也成立,现在已知当5=n 时该命题不成立,那么可推得( ).A 当6=n 时该命题不成立 .B 当6=n 时该命题成立 .C 当4=n 时该命题不成立 .D 当4=n 时该命题成立例题4、用反证法证明命题:若整系数一元二次方程02=++c bx ax (0≠a )存在有理数根,那么 c b a ,,中至少有一个是偶数.下列假设中正确的是( )..A 假设 a ,b ,c 都是偶数 .B 假设 a ,b ,c 都不是偶数.C 假设 a ,b ,c 至多有一个偶数 .D 假设 a ,b ,c 至多有两偶数例题5、若0>>b a ,则b a 1+ ab 1+(用“>”、“<”、“=”填空) 一、综合法证明:例题6、已知c b a ,,为正实数,1=++c b a .求证:(1)31222≥++c b a ;(2)6232323≤+++++c b a例题7、证明:若0>b a ,,则2lg lg 2lgb a b a +≥+.二、分析法证明: 例题8、已知0>a ,求证:212122-+≥-+a a a a例题9:、若0>>>>d c b a 且c b d a +=+,求证:c b d a +<+三、反证法证明:例题10、(2011.广东.理)已知数列{}n a 的前n 项和()21nn a n S +=,且11=a .(1)求数列{}n a 的通项公式;(2)令n n a b ln =,是否存在k (*2N k k ∈≥,),使得k b ,1+k b ,2+k b 成等比数列.若存在,求出所有符合条件的k 值;若不存在,请说明理由.例题11、已知实数0>y x ,,且2>+y x ,求证:x y +1与y x +1中至少有一个小于2.四、依据信息给予题中的推理证明例题12、(2011年湖南醴陵测试)对于给定数列{}n c ,如果存在实常数q p ,使得q pc c n n +=+1对于任意*N n ∈都成立,我们称数列{}n c 是“M 类数列”.(1)若n a n 2=,n n b 23⋅=,*N n ∈,数列{}n a ,{}n b 是否为“M 类数列”?若是,指出它对应的实常数q p ,,若不是,请说明理由;(2)证明:若数列{}n a 是“M 类数列”,则数列{}1++n n a a 也是“M 类数列”.例题13、对于定义域为[]1,0的函数()x f ,如果同时满足以下三条:①对任意的[]1,0∈x ,总有()0≥x f ;②()11=f ;③若0021≥≥x x ,,121≤+x x ,都有()()()2121x f x f x x f +≥+成立.则称函数()x f 为理想函数.(1)若函数()x f 为理想函数,求()0f 的值;(2)判断函数()12-=x x g ,[]1,0∈x 是否为理想函数,并予以证明.方法指导:1.综合法是一种由因导果的证明方法,又叫顺推法.它常见的书面表达形式是“∵…,∴…”或“…⇒…”.利用综合法证明“若 A 则 B ”命题的综合法思考过程可用如下图的框图表示为:综合法的思维过程是由因导果的顺序,是从A 推演到B 的途径,但由A 推演出的中间结论未必唯一,如B ,1B ,2B 等,可由B ,1B ,2B 能推演出的进一步的中间结论更多,如1C ,2C ,3C ,4C 等等,最终能有一个(或多个)可推演出结论B 即可.2.分析法是一种执果索因的证明方法,又叫逆推法或执果索因法.它常见的书面表达形式是:“要证…,只需证…”或“…⇐…”.利用分析法证明“若 A 则 B ”命题的分析法思考过程可用下图的框图表示为:分析法的思考顺序是执果索因的顺序,是从B 上溯寻其论据,如1C ,2C ,3C 等,再寻求1C ,2C ,3C 的论据,如B ,1B ,2B ,3B ,4B 等等,继而寻求B ,1B ,2B ,3B ,4B 的依据,如果其中之一B 的论据恰为已知条件,于是命题得证.3.反证法是一种间接的方法,常常是利用直接证法如综合法、分析法有困难时利用反证法来证明,即“正难则反”.注意:分析法和综合法是对立统一的两种方法,分析法的证明过程,恰好是综合法的分析、思考过程,即综合法是分析法的逆过程.混淆了它们间的区别与联系易产生思维障碍.要注意两种证明方法的书写格式,否则易产生逻辑上的错误.利用反证法证明问题是从否定结论入手的,没有使用假设命题而推出矛盾结果,其推理过程是错误的.。
第二节直接证明与间接证明直接证明与间接证明是数学推理中常用的两种证明方法。
直接证明是通过逻辑推理直接得出结论,而间接证明是通过反证法或归谬法得出结论。
以下将详细介绍这两种证明方法,并进行比较。
直接证明是最常见的证明方法之一、它的基本思路是根据已知条件和数学定义,逐步演绎出所要证明的结论。
直接证明需要使用与所要证明的结论相关的定理、性质、定义等来推导,使之成立。
这种方法是一个逐步推进的过程,每一步都必须经过严格的逻辑推理,从已知到结论的推导链条必须清晰、合理。
直接证明通常比较直观,逻辑性较为明显,容易理解。
例如,我们可以通过直接证明来证明“两个相等的数相加,结果仍然相等”。
间接证明是与直接证明相对的一种证明方式。
它的基本思路是假设所要证明的结论不成立,通过逻辑推理得出矛盾或不合理的结论,从而排除了假设的情况,证明了原来的结论是成立的。
间接证明常常采用反证法或归谬法。
反证法是一种最常用的间接证明方法,其基本思路是通过假设结论不成立,并推导出与已知条件或定义矛盾的结论,从而得出结论的真实性。
归谬法是一种较少使用的间接证明方法,它的基本思路是假设结论成立,并推导出与已知条件或定义矛盾的结论,从而得出结论的真实性。
例如,我们可以通过反证法来证明“根号2是无理数”。
直接证明与间接证明各有其优点和适用范围。
直接证明较为直观和直接,逻辑性更明显,适用于证明一些简单且直接的结论,或是一些简单的数学性质和定理。
间接证明更具有一般性和普遍性,适用于证明复杂的结论,或是一些需要反证或归谬的情况。
通过间接证明,我们可以深入分析和推理,挖掘结论的内在逻辑关系。
间接证明常常需要对结论进行反向思考,找到对立面、矛盾面,通过推导和推理得到最终的结论。
总的来说,直接证明和间接证明是数学推理中常用的两种证明方法。
直接证明通过逻辑推理直接得出结论,适用于一些简单直接的结论。
间接证明通过反证或归谬得出结论,适用于一些复杂或需要反向思考的结论。
66直接证明与间接证明直接证明和间接证明是逻辑学中的两种常见证明方法。
直接证明即通过逐步推理和逻辑推导来证明一个命题的真实性。
间接证明则采用反证法,假设命题的否定形式是真的,然后通过推理来推出矛盾,从而证明原命题的真实性。
在下面的文章中,我将详细讨论直接证明和间接证明的定义、用途、优点和缺点,并通过实例来解释如何使用这两种证明方法。
首先,直接证明是一种通过逻辑推理直接展示命题真实性的证明方法。
它是从已知的前提中进行推理,在推理的每一步中使用规则和定义来逐步推导出目标命题的真实性。
直接证明的一般结构是“假设P是正确的,然后通过推理步骤S1,S2,...,Sn,得出结论Q是正确的”。
例如,我们可以使用直接证明来证明命题“如果a和b是偶数,那么a+b也是偶数”。
首先,我们假设a和b是偶数,那么可以写成a=2m和b=2n(其中m和n是整数)。
然后,我们可以推导得到a+b=2m+2n=2(m+n),这说明a+b也能被2整除,因此是偶数。
这个推导过程可以通过严格的逻辑推理证明,从而证明了原命题的真实性。
然而,有时候直接证明并不那么容易,特别是当命题的真实性与一系列复杂的推理步骤或逻辑关系相关时。
在这种情况下,间接证明可以提供一种有效的证明方法。
间接证明是通过假设命题的否定形式是真的,然后通过推理来推出矛盾,从而证明原命题的真实性。
具体地说,我们假设命题的否定形式是真的,然后进行一系列逻辑推理,当推理过程中产生了矛盾时,我们可以得出结论原命题是真的。
例如,我们可以使用间接证明来证明命题“根号2是无理数”。
首先,我们假设根号2是有理数,即可以写成一个分数形式,a/b(其中a和b是整数,且a和b没有公因子)。
然后,我们将这个分数形式进行平方,得到a²/b²=2,整理得到a²=2b²。
根据这个方程,我们可以得出结论a²是偶数,那么a也一定是偶数。
假设a=2m(其中m是整数),我们可以再次代入方程得到4m²=2b²,整理得到2m²=b²,这说明b也是偶数。
高中数学推理证明题的常用证明方法及实例解析在高中数学中,推理证明题是一种常见的题型,要求学生运用已知的条件和基本的数学知识,通过逻辑推理和证明方法来得出结论。
这类题目不仅考察学生的数学思维能力,还培养了学生的逻辑思维和分析问题的能力。
本文将介绍一些常用的证明方法,并通过具体的题目解析,帮助读者更好地理解和应用这些方法。
一、直接证明法直接证明法是最常见的证明方法之一,它通过逻辑推理和运用已知条件来得出结论。
具体步骤如下:1. 首先,我们要明确问题的要求,即要证明的结论是什么。
2. 其次,我们要分析已知条件,找到与结论相关的条件和信息。
3. 然后,我们要根据已知条件和结论,通过逻辑推理和数学运算,一步一步地推导出结论。
4. 最后,我们要对证明过程进行总结,确保每一步的推理都是合理的,并且符合数学规律。
下面通过一个具体的例子来说明直接证明法的应用。
【例题】已知:直角三角形ABC中,∠B=90°,AB=BC。
证明:∠ABC=45°。
【解析】根据已知条件,我们可以得到∠B=90°和AB=BC。
接下来,我们通过直接证明法来证明∠ABC=45°。
由于∠B=90°,所以∠ABC+∠BCA=90°。
(三角形内角和定理)又因为AB=BC,所以∠BCA=∠ABC。
(等腰三角形的性质)将上述两个等式带入∠ABC+∠BCA=90°中,得到∠ABC+∠ABC=90°。
化简得到2∠ABC=90°,即∠ABC=45°。
因此,我们通过直接证明法证明了∠ABC=45°。
二、间接证明法间接证明法是一种通过反证法来证明结论的方法。
它假设结论不成立,然后通过逻辑推理推导出矛盾的结论,从而反驳了假设,证明了结论的正确性。
具体步骤如下:1. 首先,我们要明确问题的要求,即要证明的结论是什么。
2. 其次,我们要假设结论不成立,即假设反面命题成立。
直接证明与间接证明【要点梳理】要点一:直接证明直接证明最常见的两种方法是综合法和分析法,它们是思维方向相反的两种不同的推理方法. 综合法定义:一般地,从命题的已知条件出发,利用定义、公理、定理及运算法则,经过演绎推理,一步步地接近要证明的结论,直到完成命题的证明,我们把这种思维方法叫做综合法.... 基本思路:执因索果综合法又叫“顺推证法”或“由因导果法”.它是由已知走向求证,即从数学题的已知条件出发,经过逐步的逻辑推理,最后导出待证结论或需求的问题.综合法这种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法.综合法的思维框图:用P 表示已知条件,Q 表示要证明的结论,123...i Q i n =(,,,,)为已知的定义、定理、公理等,则综合法可用框图表示为: 11223...n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒(已知) (逐步推导结论成立的必要条件) (结论)要点诠释(1)从“已知”看“可知”,逐步推出“未知”,由因导果,其逐步推理实际上是寻找它的必要条件;(2)用综合法证明不等式,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹;(3)因用综合法证明命题“若A 则D ”的思考过程可表示为:故要从A 推理到D ,由A 推演出的中间结论未必唯一,如B 、B 1、B 2等,可由B 、B 1、B 2进一步推演出的中间结论则可能更多,如C 、C 1、C 2、C 3、C 4等等.所以如何找到“切入点”和有效的推理途径是有效利用综合法证明问题的“瓶颈”.综合法证明不等式时常用的不等式(1)a 2+b 2≥2ab (当且仅当a =b 时取“=”号);(2)2a b +≥a ,b ∈R*,当且仅当a =b 时取“=”号); (3)a 2≥0,|a |≥0,(a -b )2≥0;(4)2b a a b +≥(a ,b 同号);2b a a b+≤-(a ,b 异号); (5)a ,b ∈R ,2221()2a b a b +≥+, (6)不等式的性质定理1 对称性:a >b ⇔b <a .定理2 传递性:a b a c b c >⎫⇒>⎬>⎭. 定理3 加法性质:a b a c b c c R >⎫⇒+>+⎬∈⎭. 推论 a b a c b d c d >⎫⇒+>+⎬>⎭. 定理4 乘法性质:0a b ac bc c >⎫⇒>⎬>⎭. 推论1 00a b ac bc c d >>⎫⇒>⎬>>⎭. 推论2 0*n n a b a b n N >>⎫⇒>⎬∈⎭.定理5 开方性质:0*a b n N >>⎫⇒>⎬∈⎭ 分析法定义一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.基本思路:执果索因分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.分析法这种执果索因的证明方法,其逻辑依据是三段论式的演绎推理方法.分析法的思维框图:用123i P i =L (,,,)表示已知条件和已有的定义、公理、公式、定理等,Q 所要证明的结论,则用分析法证明可用框图表示为: 11223...Q P P P P P ⇐→⇐→⇐→→得到一个明显成立的条件(结论) (逐步寻找使结论成立的充分条件) (已知)格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证.要点诠释:(1)分析法是综合法的逆过程,即从“未知”看“需知”,执果索因,逐步靠拢“已知”,其逐步推理,实际上是寻找它的充分条件.(2)由于分析法是逆推证明,故在利用分析法证明时应注意逻辑性与规范性,即分析法有独特的表述.综合法与分析法的横向联系(1) 综合法是把整个不等式看做一个整体,通过对欲证不等式的分析、观察,选择恰当不等式作为证题的出发点,其难点在于到底从哪个不等式出发合适,这就要求我们不仅要熟悉、正确运用作为定理性质的不等式,还要注意这些不等式进行恰当变形后的利用.分析法的优点是利于思考,因为它方向明确,思路自然,易于掌握,而综合法的优点是宜于表述,条理清晰,形式简洁.我们在证明不等式时,常用分析法寻找解题思路,即从结论出发,逐步缩小范围,进而确定我们所需要的“因”,再用综合法有条理地表述证题过程.分析法一般用于综合法难以实施的时候.(2)有不等式的证明,需要把综合法和分析法联合起来使用:根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P .若由P 可以推出Q 成立,就可以证明结论成立,这种边分析边综合的证明方法,称之为分析综合法,或称“两头挤法”.分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系,分析的终点是综合的起点,综合的终点又成为进一步分析的起点.命题“若P 则Q ”的推演过程可表示为:要点二:间接证明 间接证明不是从正面确定命题的真实性,而是证明它的反面为假,或改证它的等价命题为真,间接地达到目的,反证法是间接证明的一种基本方法.反证法定义:一般地,首先假设要证明的命题结论不正确,即结论的反面成立,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等矛盾的结论,以此说明假设的结论不成立,从而证明了原命题成立,这样的证明方法叫做反证法.反证法的基本思路:假设——矛盾——肯定①分清命题的条件和结论.②做出与命题结论相矛盾的假设.③由假设出发,结合已知条件,应用演绎推理方法,推出矛盾的结果.④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明原命题为真.反证法的格式:用反证法证明命题“若p则q”时,它的全部过程和逻辑根据可以表示如下:要点诠释:(1)反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.(2) 反证法的优点:对原结论否定的假定的提出,相当于增加了一个已知条件.反证法的一般步骤:(1)反设:假设所要证明的结论不成立,假设结论的反面成立;(2)归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理、反设及明显的事实矛盾或自相矛盾;(3)结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立.要点诠释:(1)结论的反面即结论的否定,要特别注意:“都是”的反面为“不都是”,即“至少有一个不是”,不是“都不是”;“都有”的反面为“不都有”,即“至少有一个没有”,不是“都没有”;“都不是”的反面是“部分是或全部是”,即“至少有一个是”,不是“都是”;“都没有”的反面为“部分有或全部有”,即“至少有一个有”,不是“都有”(2)归谬的主要类型:①与已知条件矛盾;②与假设矛盾(自相矛盾);③与定义、定理、公理、事实矛盾.宜用反证法证明的题型:①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;比如“存在性问题、唯一性问题”等;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.比如带有“至少有一个”或“至多有一个”等字样的数学问题.要点诠释:反证法体现出正难则反的思维策略(补集的思想)和以退为进的思维策略,故在解决某些正面思考难度较大和探索型命题时,有独特的效果.【典型例题】【高清课堂:例题1】类型一:综合法证明例1.求证:a4+b4+c4≥abc(a+b+c).【证明】∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,∴(a4+b4)+(b4+c4)+(c4+a4)≥2(a2b2+b2c2+c2a2),又∵a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,a2b2+c2a2≥2a2bc,∴2(a2b2+b2c2+c2a2)≥2abc(a+b+c).∴2(a4+b4+c4)≥2abc(a+b+c),即a4+b4+c4≥abc(a+b+c).【总结升华】利用综合法时,从已知出发,进行运算和推理得到要证明的结论,并且在用均值定理证明不等式时,一要注意均值定理运用的条件,二要运用定理对式子作适当的变形,把式分成若干部分,对每部分运用均值定理后,再把它们相加或相减.举一反三:【变式1】已知a,b是正数,且a+b=1,求证:114a b+≥.【证明】证法一:∵a,b∈R,且a+b=1,∴2a b ab +≥,∴12ab ≤, ∴1114a b a b ab ab++==≥. 证法二:∵a ,b ∈R +,∴20a b ab +=>,11120a b ab +≥>, ∴11()4a b a b ⎛⎫++≥ ⎪⎝⎭. 又a +b =1,∴114a b+≥. 证法三:1111224a b a b b a a b a b a b a b b a+++=+=+++≥+⋅=. 当且仅当a =b 时,取“=”号.【变式2】求证:5321232log 19log 19log 19++<. 【证明】待证不等式的左端是3个数和的形式,右端是一常数的形式,而左端3个分母的真数相同,由此可联想到公式,1log log a b b a =转化成能直接利用对数的运算性质进行化简的形式. ∵ 1log log a b b a =, ∴左边∵, ∴5321232log 19log 19log 19++<. 例2.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列.(2)设2n n na c =(n =1,2,…), 求证:数列{c n }是等差数列. 【证明】(1)∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减,得S n +2―S n +1=4a n +1―4a n (n =1,2,3,…),即a n +2=4a n +1―4a n ,变形得a n +2―2a n +1=2(a n +1―2a n ).∵b n =a n +1-2a n (n =1,2,…),∴b n +1=2b n (n =1,2,…).由此可知,数列{b n }是公比为2的等比数列.由S 2=a 1+a 2=4a 1+2,a 1=1,得a 2=5,b 1=a 2―2a 1=3.故b n =3·2n ―1.(2)∵2n n n a c =(n =1,2,…) ∴11111122222n n n n n n n n n n n a a a a b c c ++++++--=-== 将b n =3·2n -1代入,得134n n c c +-=(n =1,2,…). 由此可知,数列{c n }是公差34d =的等差数列,它的首项11122a c ==,故3144n c n =-. 【总结升华】本题从已知条件入手,分析数列间的相互关系,合理实现了数列间的转化,从而使问题获解,综合法是直接证明中最常用的证明方法.举一反三:【变式1】已知数列{}n a 满足15a =, 25a =,116(2)n n n a a a n +-=+≥.求证:{}12n n a a ++是等比数列;【证明】 由a n +1=a n +6a n -1,a n +1+2a n =3(a n +2a n -1) (n ≥2),∵a 1=5,a 2=5∴a 2+2a 1=15,故数列{a n +1+2a n }是以15为首项,3为公比的等比数列.【变式2】在△ABC 中,若a 2=b (b +c ),求证:A =2B .【证明】∵a 2=b (b +c ),222222()cos 22b c a b c b bc A bc bc+-+-+==, 又222222222()22cos 2cos 12121222()2a c b b c b c b bc c b B B ac a b b c b ⎛⎫+-++---⎛⎫=-=-=-== ⎪ ⎪+⎝⎭⎝⎭,∴cos A =cos2B .又A 、B 是三角形的内角,故A =2B .例3.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .求证:(1)P A ∥平面EDB ;(2)PB ⊥平面EFD .【证明】(1)连结AC 交BD 于O ,连结E O .∵底面ABCD 是正方形,∴点O 是AC 的中点,在△P AC 中,E O 是中位线,∴P A ∥E O .而E O ⊂平面EDB 且P A ⊄平面EDB ,∴P A ∥平面EDB .(2)PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC .由PD =DC ,可知△PDC 是等腰直角三角形,而DE 是斜边PC 上的中线,∴DE ⊥PC .①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD是正方形,∴DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.【总结升华】利用综合法证明立体几何中线线、线面和面面关系的关键在于熟练地运用判定定理和性质定理.举一反三:【变式1】如图,设在四面体PABC中,90ABC∠=o,PA PB PC==,D是AC的中点.求证:PD垂直于ABC∆所在的平面.【证明】连PD、BD因为BD是Rt ABC∆斜边上的中线,所以DA DC DB==又因为PA PB PC==,而PD是PAD∆、PBD∆、PCD∆的公共边,所以PAD∆≅PBD PCD∆≅∆于是PDA PDB PDC∠=∠=∠,而90PDA PDC∠=∠=o,因此90PDB∠=o∴PD AC⊥,PD BD⊥由此可知PD垂直于ABC∆所在的平面.【变式2】如图所示,在四棱锥S—ABCD中,底面ABCD是正方形,SA平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点.求证:(1)EF⊥CD;(2)平面SCD⊥平面SCE.【证明】(1)∵SA⊥平面ABCD,F为SC的中点,∴AF为Rt△SAC斜边SC上的中线.∴12AF SC=.又∵四边形ABCD是正方形,∴CB⊥AB.而由SA ⊥平面ABCD ,得CB ⊥SA ,∴CB ⊥平面SAB .又∵SB ⊂平面SAB ,∴CB ⊥SB .∴BF 为Rt △SBC 的斜边SC 上的中线,∴12BF SC =. ∴AF =BF ,∴△AFB 为等腰三角形.又E 为AB 的中点,∴EF ⊥AB .又CD ∥AB ,∴EF ⊥CD .(2)由已知易得Rt △SAE ≌Rt △CBE ,SE =EC ,即△SEC 是等腰三角形,∴EF ⊥SC .又∵EF ⊥CD 且SC ∩CD =C ,∴EF ⊥平面SCD .又EF ⊂平面SCE ,∴平面SCD ⊥平面SCE .类型二:分析法证明例4. 设0a >、0b >,且a b ≠,用分析法证明:3322a b a b ab ++>.【证明】要证3322a b a b ab +>+成立,只需证33220a b a b ab +--> 成立,即证22()()0a a b b b a -+->成立,即证22()()0a b a b -->成立,也就是要证2()()0a b a b +->成立,因为0a >、0b >,且a b ≠,所以2()()0a b a b +->显然成立,由此原不等式得证.【总结升华】1.在证明过程中,若使用综合法出现困难时,应及时调整思路,分析一下要证明结论成立需要怎样的充分条件是明智之举.从结论出发,结合已知条件,逐步反推,寻找使当前命题成立的充分条件的方法.2. 用分析法证明问题时,一定要恰当地用好“要证”“只需证”“即证”“也即证”等词语.举一反三:【变式1】设a ,b ,c ,d ∈R ,求证:ac bc +≤【证明】当ac +bc ≤0时,不等式显然成立.当ac +b d >0时,要证明ac bd +只需证明(ac +b d)2≤(a 2+b 2)(c 2+d 2),即证明a 2c 2+2abc d+b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2,只需证明2abc d≤a 2d 2+b 2c 2,只需证明(a d -bc )2≥0. 而上式成立,∴2222ac bd a b c d +≤+⋅+成立. 【变式2】求证:123(3)a a a a a --<---≥【证明】分析法: 要证123(3)a a a a a --<---≥成立, 只需证明321(3)a a a a a +-<-+-≥, 两边平方得232(3)232(2)(1)a a a a a a -+-<-+--(3)a ≥, 所以只需证明(3)(2)(1)a a a a -<--(3)a ≥, 两边平方得22332a a a a -<-+,即02<,∵02<恒成立,∴原不等式得证.【变式3】用分析法证明:若a >0,则212122-+≥-+a a a a . 【证明】要证212122-+≥-+a a a a , 只需证212122++≥++aa a a . ∵a >0,∴两边均大于零,因此只需证2222)21()21(++≥++a a a a 只需证)1(222211441222222a a a a a a a a +++++≥++++, 只需证)1(22122a a a a +≥+,只需证)21(2112222++≥+a a a a , 即证2122≥+a a ,它显然成立.∴原不等式成立.例5. 若a ,b ,c 是不全相等的正数,求证:lg2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【证明】要证lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c , 只需证lg 2b a +·2c b +·2a c +>lg (a ·b ·c ), 只需证2b a +·2c b +·2a c +>abc . 但是,2b a +0>≥ab ,2c b +0>≥bc ,2a c +0>≥ac .且上述三式中的等号不全成立,所以,2b a +·2c b +·2a c +>abc . 因此lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【总结升华】这个证明中的前半部分用的是分析法,后半部分用的是综合法.在实际证题过程中,分析法与综合法是统一运用的,把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也没有分析.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚刚相反,是综合法导主导地位,而分析法伴随着它.举一反三:【变式1】设a 、b 是两个正实数,且a ≠b ,求证:3a +3b >22ab b a +【证明】证明一:(分析法)要证3a +3b >22ab b a +成立,只需证(a +b )( 2a -ab +2b )>ab (a +b )成立,即需证2a -ab +2b >ab 成立.(∵a +b >0)只需证2a -2ab +2b >0成立,即需证()2b a ->0成立. 而由已知条件可知,a ≠b ,有a -b ≠0,所以()2b a ->0显然成立,由此命题得证. 证明二:(综合法)∵a ≠b ,∴a -b ≠0,∴()2b a ->0,即2a -2ab +2b >0,亦即2a -ab +2b >ab . 由题设条件知,a +b >0,∴(a +b )( 2a -ab +2b )>(a +b )ab即3a +3b >22ab b a +,由此命题得证.【变式2】ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c +=++++ 【证明】要证原式成立,只要证3a b c a b c a b b c +++++=++, 即只要证1c a a b b c+=++ 即只要证2221bc c a ab ab b ac bc+++=+++; 而2A C B +=,所以060B =,由余弦定理得222b a c ac =+-所以222222222221bc c a ab bc c a ab bc c a ab ab b ac bc ab a c ac ac bc ab a c bc+++++++++===+++++-+++++. 类型三:反证法证明例6.【证明】=只需证22≠,即证10≠5≠,即证2125≠,而该式显然成立,≠不成等差数列.=2125≠∵,5≠,10≠∴,即3720+≠,即2≠,∴ ≠∴【总结升华】结论中含有“不是”“不可能”“不存在”等词语的命题,此类问题的反面比较具体,适宜应用反证法. 举一反三:【变式1】求证:函数()f x =不是周期函数.【证明】假设()f x =则存在常数T (T≠0)使得对任意x ∈R ,都有成立.上式中含x=0,则有cos01=,2m =π(m ∈z 且m≠0). ①再令x=T ,则有1=,2n =π(n ∈Z 且n ≠0). ②②÷①得:32n m =, 这里,m ,n 为非零整数,故n m为有理数,而32无理数,二者不可能相等. 因此3()cos f x x =不是周期函数.【变式2】设{a n }是公比为q 的等比数列,S n 为它的前n 项和.(1)求证:数列{S n }不是等比数列.(2)数列{S n }是等差数列吗?为什么?【解析】(1)证明:假设{S n }是等比数列,则2213S S S =, 即222111(1)(1)a q a a q q +=⋅++.∵a 1≠0,∴(1+q )2=1+q +q 2.即q =0,与等比数列中公比q ≠0矛盾.故{S n }不是等比数列.(2)解:①当q =1时,S n =na 1,n ∈N*,数列{S n }是等差数列.②当q ≠1时,{S n }不是等差数列,下面用反证法证明:假设数列{S n }是等差数列,则S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3,∴2a 1(1+q )=a 1+a 1(1+q +q 2).∵a 1≠0,∴2+2q =1+1+q +q 2,得q =q 2.∵q ≠1,∴q =0,这与等比数列中公比q ≠0矛盾.从而当q ≠1时,{S n }不是等差数列.综上①②可知,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.【变式3】已知数列{a n }的前n 项的和S n 满足S n =2a n -3n (n ∈N *).(1)求证{a n +3}为等比数列,并求{a n }的通项公式;(2)数列{a n }是否存在三项使它们按原顺序可以构成等差数列?若存在,求出一组适合条件的项;若不存在,请说明理由.【解析】 (1) 证明:∵S n =2a n -3n (n ∈N *),∴a 1=S 1=2a 1-3,∴a 1=3.又由112323(1)n n n n S a n S a n ++=-⎧⎨=-+⎩得a n +1=S n +1-S n =2a n +1-2a n -3, ∴a n +1+3=2(a n +3),∴{a n +3}是首项为a 1+3=6,公比为2的等比数列.∴a n+3=6×2n-1,即a n=3(2n-1).(2)解:假设数列{a n}中存在三项a r,a s,a t (r<s<t),它们可以构成等差数列.由(1)知a r<a s<a t,则2a s=a r+a t,∴6(2s-1)=3(2r-1)+3(2t-1),即2s+1=2r+2t,∴2s+1-r=1+2t-r(*)∵r、s、t均为正整数且r<s<t,∴(*)左边为偶数而右边为奇数,∴假设不成立,即数列{a n}不存在三项使它们按原顺序可以构成等差数列.例7. 已知a,b,c∈(0,1),求证:(1―a)b,(1―b)c,(1-c)a中至少有一个小于或等于14.【证明】证法一:假设三式同时大于14,即1(1)4a b->,1(1)4b c->,1(1)4c a->,三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅->,又211 (1)24a aa a-+⎛⎫-≤=⎪⎝⎭,同理1(1)4b b-≤,1(1)4c c-≤,以上三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅-≤,这与1(1)(1)(1)64a ab bc c-⋅-⋅->矛盾,故结论得证.证法二:假设三式同时大于14.∵0<a<1,∴1-a>0.∴(1)11(1)242a ba b-+≥->=.同理(1)122b c-+≥,(1)122c a-+≥.三式相加,得33 22 >,∴原命题成立.【总结升华】从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形的问题多用反证法.比如这类带有“至少有一个”等字样的数学问题.举一反三:【变式】已知,,,0,1a b c R a b c abc ∈++==,求证:,,a b c 中至少有一个大于32. 【证明】假设,,a b c 都小于或等于32, 因为 1abc =,所以,,a b c 三者同为正或一正两负,又因为0a b c ++=,所以,,a b c 三者中有两负一正,不妨设0,0,0a b c ><<,则1,b c a bc a +=-=由均值不等式得()2b c bc -+≥,即12a a ≥, 解得33273482a ≥≥=,与假设矛盾,所以 ,,abc 中至少有一个大于32. 例8.已知:直线a 以及A ∉a .求证:经过直线a 和点A 有且只有一个平面.【证明】(1)“存在性”,在直线a 上任取两点B 、C ,如图.∵A ∉a ,B ∈a ,C ∈a ,∴A 、B 、C 三点不在同一直线上.∴过A 、B 、C 三点有且只有一个平面α∵B ∈α,C ∈α,∴a ⊂α,即过直线a 和点A 有一个平面α.(2)“唯一性”,假设过直线a 和点A 还有一个平面β.∵A ∉a ,B ∈a ,C ∈a ,∴B ∈β,C ∈β.∴过不共线的三点A 、B 、C 有两个平面α、β,这与公理矛盾.∴假设不成立,即过直线a 和点A 不可能还有另一个平面β,而只能有一个平面α.【总结升华】 这里证明“唯一性”时用了反证法.对于“唯一性”问题往往使用反证法进行证明,要注意与“同一法”的区别与联系.举一反三:【变式】求证:两条相交直线有且只有一个交点.【证明】假设结论不成立,即有两种可能:(1)若直线a 、b 无交点,那么a ∥b ,与已知矛盾;(2)若直线a 、b 不止有一个交点,则至少有两个交点A 和B ,这样同时经过点A 、B 就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.。
§13.2 直接证明与间接证明知识梳理·自主学习必备知识考点1直接证明1.反证法的定义假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明,从而证明的证明方法.2.利用反证法证题的步骤(1)假设命题的结论不成立,即假设结论的反面成立;(2)由假设出发进行正确的推理,直到推出矛盾为止;(3)由矛盾断言假设不成立,从而肯定原命题的结论成立.简言之,否定→归谬→断言.必会结论分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件、基础知识之间的关系,找到解决问题的思路,再运用综合法证明,或者在证明时将两种方法交叉使用.考点自测1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)综合法是直接证明,分析法是间接证明.( )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (3)用反证法证明结论“a >b ”时,应假设“a <b ”.( ) (4)反证法是指将结论和条件同时否定,推出矛盾.( )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( )2.要证明3+7<25,可选择的方法有以下几种,其中最合理的是( ) A .综合法 B .分析法 C .反证法D .归纳法3.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( ) A .假设至少有一个钝角 B .假设至少有两个钝角 C .假设没有一个钝角D .假设没有一个钝角或至少有两个钝角 4.若实数a ,b 满足a +b <0,则( ) A .a ,b 都小于0 B .a ,b 都大于0C .a ,b 中至少有一个大于0D .a ,b 中至少有一个小于05.设a >b >0,m =a -b ,n =a -b ,则m ,n 的大小关系是________.6.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +ab ≥2成立的条件的序号是________. 典例探究·考向突破 考向 综合法证明例1 已知sin θ,sin x ,cos θ成等差数列,sin θ,sin y ,cos θ成等比数列.证明:2cos2x =cos2y . 触类旁通综合法证明的思路(1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.变式训练1 已知f (x )=12x +2,证明:f (x )+f (1-x )=22.考向2 分析法证明 例2 已知a >0,证明: a 2+1a 2-2≥a +1a-2.触类旁通分析法证题的技巧(1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法由条件证明这个中间结论,从而使原命题得证. 变式训练2 已知正数a ,b ,c 满足a +b +c =1. 求证:a +b +c ≤ 3.考向3 反证法的应用 命题角度1 证明否定性命题例3 设{a n }是公比为q 的等比数列,S n 是它的前n 项和.(1)求证:数列{S n}不是等比数列;(2)数列{S n}是等差数列吗?为什么?命题角度2证明存在性问题例4设x、y、z>0,a=x+1y,b=y+1z,c=z+1x,求证:a、b、c三数至少有一个不小于2.命题角度3证明唯一性命题例5已知四棱锥S-ABCD中,底面是边长为1的正方形,又SB=SD=2,SA=1.(1)求证:SA⊥平面ABCD;(2)在棱SC上是否存在异于S,C的点F,使得BF∥平面SAD?若存在,确定F点的位置;若不存在,请说明理由.触类旁通反证法的适用范围及证明的关键(1)适用范围:当一个命题的结论是以“至多”“至少”“唯一”或以否定形式出现时,宜用反证法来证.(2)关键:在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,推导出的矛盾必须是明显的.变式训练3 (1)若三个方程x 2+4mx -4m +3=0,x 2+(m -1)x +m 2=0,x 2+2mx -2m =0中至少有一个方程有实数根,求实数m 的取值范围.(2)若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数. ①设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;②是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由. 归纳总结 核心规律1.分析法的特点:从未知看需知,逐步靠拢已知.2.综合法的特点:从已知看可知,逐步推出未知.3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来. 满分策略1.当题目条件较多,且都很明确时,由因导果较容易,一般用综合法,但在证明中,要保证前提条件正确,推理要合乎逻辑规律.2.当题目条件较少,可逆向思考时,执果索因,使用分析法解决.但在证明过程中,注意文字语言的准确表述.3.利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的. 启智培优·破译高考创新交汇系列12——分析法与综合法的交汇整合已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.解题视点 (1)先判断它们的大小,可用特例法.(2)用分析法探寻证题思路.(3)用综合法完成证明.事实上,取a =1,b =2,c =4,则f (a )+f (c )=f (1)+f (4)=log 218,2f (b )=2f (2)=log 216,于是由log 218>log 216,猜测f (a )+f (c )>2f (b ).要证f (a )+f (c )>2f (b ),则只需证log 2(a +2)+log 2(c +2)>2log 2(b +2),即证log 2[(a +2)(c +2)]>log 2(b +2)2,也即证(a +2)(c +2)>(b +2)2.展开整理得ac +2(a +c )>b 2+4b . 因为b 2=ac ,所以只要证a +c >2ac ,显然是成立的. 跟踪训练(1)设x ≥1,y ≥1,证明:x +y +1xy ≤1x +1y+xy ;(2)1<a ≤b ≤c ,证明:log a b +log b c +log c a ≤log b a +log c b +log a c .参考答案知识梳理·自主学习必备知识考点1 直接证明 推理论证 成立的方法 证明的结论 充分条件考点2 间接证明1. 假设错误 原命题成立 考点自测1.【答案】 (1)× (2)× (3)× (4)× (5)√ 2.【答案】 B【解析】 从要证明的结论——比较两个无理数大小出发,证明此类问题通常转化为比较有理数的大小,这正是分析法的证明方法.故选B. 3.【答案】 B【解析】 注意到:“至多有一个”的否定应为“至少有两个”.故选B. 4.【答案】 D【解析】 假设a ,b 都不小于0,即a ≥0,b ≥0,则a +b ≥0,这与a +b <0相矛盾,因此假设错误,即a ,b 中至少有一个小于0. 5.【答案】 m <n【解析】 解法一:(取特殊值法)取a =2,b =1,得m <n . 解法二:(分析法)a -b <a -b ⇐b +a -b >a ⇐a <b +2b ·a -b +a -b ⇐2b ·a -b >0,显然成立. 6.【答案】 ①③④【解析】 要使b a +a b ≥2,只需b a >0且ab >0成立,即a ,b 不为0且同号即可,故①③④都能使b a +ab ≥2成立. 典例探究·考向突破 考向 综合法证明例1 证明:∵sin θ与cos θ的等差中项是sin x ,等比中项是sin y , ∴sin θ+cos θ=2sin x ,① sin θcos θ=sin 2y ,②①2-②×2,可得(sin θ+cos θ)2-2sin θcos θ=4sin 2x -2sin 2y ,即4sin 2x -2sin 2y =1. ∴4×1-cos2x 2-2×1-cos2y 2=1,即2-2cos2x -(1-cos2y )=1.故证得2cos2x =cos2y .变式训练1 证明:∵f (x )=12x +2,∴f (x )+f (1-x )=12x +2+121-x +2=12x +2+2x 2+2·2x =22+2·2x +2x2+2·2x =2+2x 2+2·2x =2+2x 2(2+2x )=12=22.故f (x )+f (1-x )=22成立. 考向2 分析法证明 例2 证明:要证 a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2≥⎝⎛⎭⎫a +1a -(2-2). 因为a >0,所以⎝⎛⎭⎫a +1a -(2-2)>0, 所以只需证⎝⎛⎭⎫a 2+1a 22≥⎣⎡⎦⎤⎝⎛⎭⎫a +1a -(2-2)2, 即2(2-2)⎝⎛⎭⎫a +1a ≥8-42,只需证a +1a≥2. 因为a >0,a +1a ≥2显然成立⎝⎛当且仅当a =1a =1时等号成立 ),所以要证的不等式成立. 变式训练2 证明:欲证a +b +c ≤3, 则只需证(a +b +c )2≤3,即证a +b +c +2(ab +bc +ac )≤3, 即证ab +bc +ac ≤1.又ab +bc +ac ≤a +b 2+b +c 2+a +c 2=1,当且仅当a =b =c =13时取“=”∴原不等式a +b +c ≤3成立. 考向3 反证法的应用例3 (1)证明:若{S n }是等比数列,则S 22=S 1·S 3,即a 21(1+q )2=a 1·a 1(1+q +q 2), ∵a 1≠0,∴(1+q )2=1+q +q 2,解得q =0,这与q ≠0相矛盾,故数列{S n }不是等比数列. (2)解:当q =1时,{S n }是等差数列.当q ≠1时,{S n }不是等差数列.假设q ≠1时,S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3, 2a 1(1+q )=a 1+a 1(1+q +q 2).由于a 1≠0,∴2(1+q )=2+q +q 2,即q =q 2, ∵q ≠1,∴q =0,这与q ≠0相矛盾.综上可知,当q =1时,{S n }是等差数列;当q ≠1时,{S n }不是等差数列. 命题角度2 证明存在性问题 例4 证明:假设a 、b 、c 都小于2, 则a +b +c <6.而事实上a +b +c =x +1x +y +1y +z +1z ≥2+2+2=6(当且仅当x =y =z =1时取“=”)与a +b+c <6矛盾,∴a ,b ,c 中至少有一个不小于2. 命题角度3 证明唯一性命题例5 (1)证明:由已知得SA 2+AD 2=SD 2, ∴SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,∴SA ⊥平面ABCD .(2)解:假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD . ∵BC ∥AD ,BC ⊄平面SAD . ∴BC ∥平面SAD .而BC ∩BF =B ,∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立. 故不存在这样的点F ,使得BF ∥平面SAD . 变式训练3 (1)解:当三个方程都没有实根时, ⎩⎪⎨⎪⎧(4m )2-4(3-4m )<0,(m -1)2-4m 2<0,4m 2+8m <0,即⎩⎪⎨⎪⎧4m 2+4m -3<0,3m 2+2m -1>0,m 2+2m <0,解得⎩⎪⎨⎪⎧-32<m <12,m <-1或m >13,-2<m <0,所以-32<m <-1.所以,三个方程中至少有一个方程有实根时,m 的取值范围为m ≥-1或m ≤-32.(2)解:①由已知得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知g (1)=1,g (b )=b , 即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3. ②假设函数h (x )=1x +2在区间[a ,b ](a >-2)上是“四维光军”函数,因为h (x )=1x +2在区间(-2,+∞)上单调递减,所以有⎩⎪⎨⎪⎧h (a )=b ,h (b )=a ,即⎩⎨⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在.启智培优·破译高考创新交汇系列12——分析法与综合法的交汇整合解:f(a)+f(c)>2f(b).证明如下:因为a,b,c是两两不相等的正数,所以a+c>2ac.因为b2=ac,所以ac+2(a+c)>b2+4b,即ac+2(a+c)+4>b2+4b+4,从而(a+2)(c+2)>(b+2)2.因为f(x)=log2x是增函数,所以log2[(a+2)(c+2)]>log2(b+2)2,即log2(a+2)+log2(c+2)>2log2(b+2).故f(a)+f(c)>2f(b).跟踪训练证明:(1)由于x≥1,y≥1,所以要证明:x+y+1xy≤1x+1y+xy,只要证明:xy(x+y)+1≤y+x+(xy)2,只要证明:(xy)2-1+(x+y)-xy(x+y)≥0,只要证明:(xy-1)(xy+1-x-y)≥0,只要证明:(xy-1)(x-1)(y-1)≥0.由于x≥1,y≥1,上式显然成立,所以原命题成立.(2)设log a b=x,log b c=y,则log c a=1log b c log a b=1xy,log b a=1x,log c b=1y,log a c=xy,∴所要证明不等式即为x+y+1xy≤1x+1y+xy.∵c≥b≥a>1,∴x=log a b≥1,y=log b c≥1,由(1)知所证明的不等式成立.。
1.直接证明内容综合法分析法定义从已知条件出发,经过逐步的推理,最后达到待证结论的方法,是一种从原因推导到结果的思维方法从待证结论出发,一步一步寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实的方法,是一种从结果追溯到产生这一结果的原因的思维方法特点从“已知”看“可知”,逐步推向“未知”,其逐步推理,实际上是要寻找它的必要条件从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是要寻找它的充分条件步骤的符号表示P0(已知)⇒P1⇒P2⇒P3⇒P4(结论)B(结论)⇐B1⇐B2…⇐B n⇐A(已知)2.间接证明(1)反证法的定义:一般地,由证明p⇒q转向证明:綈q⇒r⇒…⇒tt与假设矛盾,或与某个真命题矛盾,从而判定綈q为假,推出q为真的方法,叫做反证法.(2)应用反证法证明数学命题的一般步骤:①分清命题的条件和结论;②做出与命题结论相矛盾的假设;③由假设出发,应用演绎推理方法,推出矛盾的结果;④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明命题为真.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)综合法是直接证明,分析法是间接证明.( × )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( × ) (3)用反证法证明结论“a >b ”时,应假设“a <b ”.( × ) (4)反证法是指将结论和条件同时否定,推出矛盾.( × )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ ) (6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1b D.b a >ab答案 B解析 对于A ,若c =0,则ac 2=bc 2,故不正确. 对于B ,∵a <b <0,∴a -b <0,∴a 2-ab =a (a -b )>0, ∴a 2>ab ,∴ab -b 2=b (a -b )>0,∴ab >b 2, ∴a 2>ab >b 2,故B 正确.对于C ,∵a <b <0,∴1a -1b =b -aab >0,∴1a >1b,故错; 对于D ,∵a <b <0,b a -a b =b 2-a 2ab <0,∴b a <ab,故错. 2.(2014·山东)用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实数C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 答案 A解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根,故应选A. 3.要证a 2+b 2-1-a 2b 2≤0只要证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0 答案 D解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________. 答案 a ≥0,b ≥0且a ≠b 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(教材改编)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为________三角形. 答案 等边解析 由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , ∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c , ∴A =C ,∴A =B =C =π3,∴△ABC 为等边三角形.题型一 综合法的应用例1 对于定义域为[0,1]的函数f (x ),如果同时满足: ①对任意的x ∈[0,1],总有f (x )≥0; ②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,都有f (x 1+x 2)≥f (x 1)+f (x 2)成立,则称函数f (x )为理想函数. (1)若函数f (x )为理想函数,证明:f (0)=0;(2)试判断函数f (x )=2x (x ∈[0,1]),f (x )=x 2(x ∈[0,1]),f (x )=x (x ∈[0,1])是不是理想函数.(1)证明 取x 1=x 2=0,则x 1+x 2=0≤1, ∴f (0+0)≥f (0)+f (0),∴f (0)≤0. 又对任意的x ∈[0,1],总有f (x )≥0, ∴f (0)≥0.于是f (0)=0.(2)解 对于f (x )=2x ,x ∈[0,1],f (1)=2不满足新定义中的条件②, ∴f (x )=2x ,(x ∈[0,1])不是理想函数.对于f (x )=x 2,x ∈[0,1],显然f (x )≥0,且f (1)=1. 任意的x 1,x 2∈[0,1],x 1+x 2≤1, f (x 1+x 2)-f (x 1)-f (x 2)=(x 1+x 2)2-x 21-x 22=2x 1x 2≥0,即f (x 1)+f (x 2)≤f (x 1+x 2). ∴f (x )=x 2(x ∈[0,1])是理想函数.对于f (x )=x ,x ∈[0,1],显然满足条件①②. 对任意的x 1,x 2∈[0,1],x 1+x 2≤1,有f 2(x 1+x 2)-[f (x 1)+f (x 2)]2=(x 1+x 2)-(x 1+2x 1x 2+x 2)=-2x 1x 2≤0, 即f 2(x 1+x 2)≤[f (x 1)+f (x 2)]2.∴f (x 1+x 2)≤f (x 1)+f (x 2),不满足条件③. ∴f (x )=x (x ∈[0,1])不是理想函数.综上,f (x )=x 2(x ∈[0,1])是理想函数,f (x )=2x (x ∈[0,1])与f (x )=x (x ∈[0,1])不是理想函数.思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得 a 2+b 2+c 2≥ab +bc +ca . 由题设知(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a≥1.题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. 证明 要证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22,只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2).由于x 1,x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). 所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2, 即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. 引申探究若本例中f (x )变为f (x )=3x -2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22. 证明 要证明f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22,即证明(3x 1-2x 1)+(3x 2-2x 2)2≥3x 1+x 22-2·x 1+x 22,因此只要证明3x 1+3x 22-(x 1+x 2)≥3x 1+x 22-(x 1+x 2),即证明3x 1+3x 22≥3x 1+x 22,因此只要证明3x 1+3x 22≥3x 1·3x 2,由于x 1,x 2∈R 时,3x 1>0,3x 2>0,由均值不等式知3x 1+3x 22≥3x 1·3x 2显然成立,故原结论成立.思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.已知a >0,求证a 2+1a 2-2≥a +1a-2.证明 要证 a 2+1a 2-2≥a +1a -2,只需要证a 2+1a 2+2≥a +1a+ 2.因为a >0,故只需要证( a 2+1a 2+2)2≥(a +1a+2)2,即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22(a +1a )+2,从而只需要证2a 2+1a 2≥2(a +1a),只需要证4(a 2+1a 2)≥2(a 2+2+1a2),即a 2+1a 2≥2,而上述不等式显然成立,故原不等式成立.题型三 反证法的应用 命题点1 证明否定性命题例3 已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列. (1)解 当n =1时,a 1+S 1=2a 1=2,则a 1=1. 又a n +S n =2,所以a n +1+S n +1=2, 两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.(2)证明 反证法:假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N +), 则2·12q =12p +12r ,所以2·2r -q =2r -p +1.(*)又因为p <q <r ,且p ,q ,r ∈N +,所以r -q ,r -p ∈N +. 所以(*)式左边是偶数,右边是奇数,等式不成立. 所以假设不成立,原命题得证. 命题点2 证明存在性问题例4 (2015·济南模拟)若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b的值;若不存在,请说明理由.解 (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b , 即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.(2)假设函数h (x )=1x +2在区间[a ,b ] (a >-2)上是“四维光军”函数,因为h (x )=1x +2在区间(-2,+∞)上单调递减,所以有⎩⎪⎨⎪⎧h (a )=b ,h (b )=a ,即⎩⎨⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在. 命题点3 证明唯一性命题例5 已知M 是由满足下述条件的函数构成的集合:对任意f (x )∈M ,(ⅰ)方程f (x )-x =0有实数根; (ⅱ)函数f (x )的导数f ′(x )满足0<f ′(x )<1.(1)判断函数f (x )=x 2+sin x4是不是集合M 中的元素,并说明理由;(2)集合M 中的元素f (x )具有下面的性质:若f (x )的定义域为D ,则对于任意[m ,n ]⊆D ,都存在x 0∈(m ,n ),使得等式f (n )-f (m )=(n -m )f ′(x 0)成立.试用这一性质证明:方程f (x )-x =0有且只有一个实数根. (1)解 ①当x =0时,f (0)=0,所以方程f (x )-x =0有实数根为0; ②f ′(x )=12+14cos x ,所以f ′(x )∈⎣⎡⎦⎤14,34,满足条件0<f ′(x )<1. 由①②可得,函数f (x )=x 2+sin x 4是集合M 中的元素.(2)证明 假设方程f (x )-x =0存在两个实数根α,β (α≠β),则f (α)-α=0,f (β)-β=0. 不妨设α<β,根据题意存在c ∈(α,β), 满足f (β)-f (α)=(β-α)f ′(c ). 因为f (α)=α,f (β)=β,且α≠β, 所以f ′(c )=1.与已知0<f ′(x )<1矛盾. 又f (x )-x =0有实数根,所以方程f (x )-x =0有且只有一个实数根.思维升华 应用反证法证明数学命题,一般有以下几个步骤:第一步:分清命题“p ⇒q ”的条件和结论; 第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N +),求证:数列{b n }中任意不同的三项都不可能成为等比数列.(1)解 由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明 由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N +,且互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N +,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∴(p +r 2)2=pr ,即(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴假设不成立,即数列{b n }中任意不同的三项都不可能成等比数列.24.1反证法在证明题中的应用典例 (12分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思维点拨 (1)根据菱形对角线互相垂直平分及点B 的坐标设出点A 的坐标,代入椭圆方程求得点A 的坐标,后求AC 的长;(2)将直线方程代入椭圆方程求出AC 的中点坐标(即OB 的中点坐标),判断直线AC 与OB 是否垂直. 规范解答(1)解 因为四边形OABC 为菱形,则AC 与OB 相互垂直平分. 由于O (0,0),B (0,1)所以设点A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.[4分] (2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[6分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22=k ·x 1+x 22+m =m1+4k 2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[8分] 因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k,因为k ·⎝⎛⎭⎫-14k =-14≠-1,所以AC 与OB 不垂直.[10分] 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[12分]温馨提醒 (1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去.[方法与技巧]1.分析法的特点:从未知看需知,逐步靠拢已知. 2.综合法的特点:从已知看可知,逐步推出未知.3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来. [失误与防范]1.用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直至一个明显成立的结论.2.利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.A 组 专项基础训练 (时间:45分钟)1.若a 、b ∈R ,则下面四个式子中恒成立的是( ) A .lg(1+a 2)>0 B .a 2+b 2≥2(a -b -1) C .a 2+3ab >2b 2 D.a b <a +1b +1答案 B解析 在B 中,∵a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0, ∴a 2+b 2≥2(a -b -1)恒成立.2.①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下正确的是( ) A .①与②的假设都错误 B .①与②的假设都正确 C .①的假设正确;②的假设错误 D .①的假设错误;②的假设正确 答案 D解析 反证法的实质是否定结论,对于①,其结论的反面是p +q >2,所以①不正确;对于②,其假设正确. 3.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( ) A .a -b >0 B .a -c >0 C .(a -b )(a -c )>0 D .(a -b )(a -c )<0 答案 C解析 由题意知b 2-ac <3a ⇐b 2-ac <3a 2 ⇐(a +c )2-ac <3a 2 ⇐a 2+2ac +c 2-ac -3a 2<0 ⇐-2a 2+ac +c 2<0 ⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.4.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定答案 C解析 ∵P 2=2a +7+2a ·a +7=2a +7+2a 2+7a ,Q 2=2a +7+2a +3·a +4=2a +7+2a 2+7a +12,∴P 2<Q 2,∴P <Q . 5.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤答案 C解析 若a =12,b =23,则a +b >1, 但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.6.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是____________________________.答案 a ,b 中没有一个能被5整除解析 “至少有n 个”的否定是“最多有n -1个”,故应假设a ,b 中没有一个能被5整除.7.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b≥2成立的条件的序号是________. 答案 ①③④解析 要使b a +a b ≥2,只需b a >0且a b >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立. 8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝⎛⎭⎫-3,32 解析 令⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0, 解得p ≤-3或p ≥32, 故满足条件的p 的范围为⎝⎛⎭⎫-3,32. 9.已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .证明 要证明2a 3-b 3≥2ab 2-a 2b 成立,只需证:2a 3-b 3-2ab 2+a 2b ≥0,即2a (a 2-b 2)+b (a 2-b 2)≥0,即(a +b )(a -b )(2a +b )≥0.∵a ≥b >0,∴a -b ≥0,a +b >0,2a +b >0,从而(a +b )(a -b )(2a +b )≥0成立,∴2a 3-b 3≥2ab 2-a 2b .10.已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD .∴BC ∥平面SAD .而BC ∩BF =B ,∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD .B 组 专项能力提升(时间:30分钟)11.已知函数f (x )=(12)x ,a ,b 是正实数,A =f (a +b 2),B =f (ab ),C =f (2ab a +b),则A 、B 、C 的大小关系为( )A .A ≤B ≤CB .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A答案 A解析 ∵a +b 2≥ab ≥2ab a +b, 又f (x )=(12)x 在R 上是减函数. ∴f (a +b 2)≤f (ab )≤f (2ab a +b),即A ≤B ≤C . 12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( )A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形答案 D解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形. 由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎫π2-A 1,sin B 2=cos B 1=sin ⎝⎛⎭⎫π2-B 1,sin C 2=cos C 1=sin ⎝⎛⎭⎫π2-C 1,得⎩⎪⎨⎪⎧ A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2, 这与三角形内角和为180°相矛盾.所以假设不成立,又显然△A 2B 2C 2不是直角三角形.所以△A 2B 2C 2是钝角三角形.13.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N +,设c n =a n -b n ,则c n 与c n +1的大小关系为__________.答案 c n +1<c n解析 由条件得c n =a n -b n =n 2+1-n =1n 2+1+n, ∴c n 随n 的增大而减小,∴c n +1<c n .14.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小; (3)证明:-2<b <-1.(1)证明 ∵f (x )的图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a ⎝⎛⎭⎫1a ≠c , ∴1a是f (x )=0的一个根. (2)解 假设1a <c ,又1a>0, 由0<x <c 时,f (x )>0,知f ⎝⎛⎭⎫1a >0与f ⎝⎛⎭⎫1a =0矛盾, ∴1a ≥c ,又∵1a ≠c ,∴1a>c . (3)证明 由f (c )=0,得ac +b +1=0,∴b =-1-ac .又a >0,c >0,∴b <-1.二次函数f (x )的图象的对称轴方程为x =-b 2a =x 1+x 22<x 2+x 22=x 2=1a , 即-b 2a <1a. 又a >0,∴b >-2,∴-2<b <-1.15.已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n ≥1),数列{b n }满足:b n =a 2n +1-a 2n (n ≥1). (1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.(1)解 由题意可知,1-a 2n +1=23(1-a 2n ). 令c n =1-a 2n ,则c n +1=23c n .又c 1=1-a 21=34,则数列{c n }是首项为c 1=34, 公比为23的等比数列,即c n =34·(23)n -1, 故1-a 2n =34·(23)n -1⇒a 2n =1-34·(23)n -1. 又a 1=12>0.a n a n +1<0, 故a n =(-1)n -1 1-34·(23)n -1. b n =a 2n +1-a 2n =[1-34·(23)n ]-[1-34·(23)n -1] =14·(23)n -1. (2)证明 用反证法证明.假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列, 于是有b r >b s >b t ,则只能有2b s =b r +b t 成立.∴2·14(23)s -1=14(23)r -1+14(23)t -1, 两边同乘以3t -121-r ,化简得3t -r +2t -r =2·2s -r 3t -s .由于r <s <t ,∴上式左边为奇数,右边为偶数, 故上式不可能成立,导致矛盾.故数列{b n }中任意三项不可能成等差数列.。
第2讲 直接证明与间接证明
一、选择题
1.设a ,b ∈R ,则“a +b =1”是“4ab ≤1”的 ( ).
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
解析 若“a +b =1”,则4ab =4a (1-a )=-4⎝ ⎛
⎭⎪⎫a -122+1≤1;若“4ab ≤1”,
取a =-4,b =1,a +b =-3,即“a +b =1”不成立;则“a +b =1”是“4ab ≤1”的充分不必要条件. 答案 A
2.对于平面α和共面的直线m ,n ,下列命题中真命题是
( ).
A .若m ⊥α,m ⊥n ,则n ∥α
B .若m ∥α,n ∥α,则m ∥n
C .若m ⊂α,n ∥α,则m ∥n
D .若m ,n 与α所成的角相等,则m ∥n
解析 对于平面α和共面的直线m ,n ,真命题是“若m ⊂α,n ∥α,则m ∥n ”. 答案 C
3.要证:a 2+b 2-1-a 2b 2≤0,只要证明
( ).
A .2ab -1-a 2b 2
≤0 B .a 2
+b 2
-1-a 4+b 4
2≤0
C.(a +b )2
2-1-a 2b 2≤0
D .(a 2-1)(b 2-1)≥0
解析 因为a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0,故选D. 答案 D
4.设a ,b 是两个实数,给出下列条件:
①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1. 其中能推出:“a ,b 中至少有一个大于1”的条件是
( ).
A .②③
B .①②③
C .③
D .③④⑤
解析 若a =12,b =2
3,则a +b >1,但a <1,b <1,故①推不出; 若a =b =1,则a +b =2,故②推不出; 若a =-2,b =-3,则a 2+b 2>2,故④推不出; 若a =-2,b =-3,则ab >1,故⑤推不出; 对于③,即a +b >2,则a ,b 中至少有一个大于1, 反证法:假设a ≤1且b ≤1, 则a +b ≤2,与a +b >2矛盾,
因此假设不成立,a ,b 中至少有一个大于1. 答案 C
5.设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1
a ( ). A .都大于2
B .都小于2
C .至少有一个不大于2
D .至少有一个不小于2
解析 ∵a >0,b >0,c >0,
∴⎝ ⎛
⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭
⎪⎫b +1b + ⎝ ⎛⎭⎪⎫
c +1c ≥6,当且仅当a =b =c 时,“=”成立,故三者不能都小于2,即至少有一个不小于2. 答案 D
6.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则
( ).
A .△A 1
B 1
C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形
C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形
D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形
解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.
不妨令⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝ ⎛⎭
⎪⎫
π2-A 1,
sin B 2
=cos B 1
=sin ⎝ ⎛⎭
⎪⎫π2-B 1
,
sin C 2
=cos C 1
=sin ⎝ ⎛⎭
⎪⎫
π2-C 1
,得⎩⎪⎨⎪⎧
A 2=π
2-A 1,
B 2
=π
2-B 1
,
C 2
=π2-C 1
.
那么,A 2+B 2+C 2=π
2,这与三角形内角和为π相矛盾. 所以假设不成立,所以△A 2B 2C 2是钝角三角形. 答案 D 二、填空题
7.用反证法证明命题“a ,b ∈N ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是________________________.
解析 “至少有n 个”的否定是“最多有n -1个”,故应假设a ,b 中没有一个能被5整除.
答案 a ,b 中没有一个能被5整除
8.设a >b >0,m =a -b ,n =a -b ,则m ,n 的大小关系是________. 解析 取a =2,b =1,得m <n .再用分析法证明: a -b <
a -
b ⇐a <b +
a -
b ⇐a <b +2b ·a -b +a -b ⇐2b ·a -b >0,
显然成立. 答案 m <n
9.已知a ,b ,μ∈(0,+∞)且1a +9
b =1,则使得a +b ≥μ恒成立的μ的取值范围是________.
解析 ∵a ,b ∈(0,+∞)且1a +9
b =1,
∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+⎝ ⎛⎭⎪⎫
9a b +b a ≥10+29=16,∴a +b 的最小值为16.
∴要使a +b ≥μ恒成立,需16≥μ,∴0<μ≤16. 答案 (0,16]
10.已知下表中的对数值有且只有一个是错误的.
解析 由2a -b =lg 3,得lg 9=2lg 3=2(2a -b )从而lg 3和lg 9正确,假设lg 5=a +c -1错误,则由
⎩⎪⎨⎪⎧ 1+a -b -c =lg 6=lg 2+lg 3,3(1-a -c )=lg 8=3lg 2,得⎩⎪⎨⎪⎧
lg 2=1-a -c ,
lg 3=2a -b ,
所以lg 5=1-lg 2=a +c .因此lg 5=a +c -1错误,正确结论是lg 5=a +c . 答案 lg 5=a +c 三、解答题
11.若a ,b ,c 是不全相等的正数,求证: lg a +b 2+lg b +c 2+lg c +a
2>lg a +lg b +lg c . 证明 ∵a ,b ,c ∈(0,+∞),
∴a +b 2≥ab >0,b +c 2≥bc >0,a +c
2≥ac >0. 又a ,b ,c 是不全相等的正数,
故上述三个不等式中等号不能同时成立. ∴a +b 2·b +c 2·c +a
2>abc 成立. 上式两边同时取常用对数, 得lg ⎝ ⎛⎭
⎪⎫a +b 2·b +c 2·c +a 2>lg(abc ),
∴lg a +b 2+lg b +c 2+lg c +a
2>lg a +lg b +lg c .
12.设数列{a n}是公比为q的等比数列,S n是它的前n项和.
(1)求证:数列{S n}不是等比数列;
(2)数列{S n}是等差数列吗?为什么?
(1)证明假设数列{S n}是等比数列,则S22=S1S3,
即a21(1+q)2=a1·a1·(1+q+q2),
因为a1≠0,所以(1+q)2=1+q+q2,
即q=0,这与公比q≠0矛盾,
所以数列{S n}不是等比数列.
(2)解当q=1时,S n=na1,故{S n}是等差数列;
当q≠1时,{S n}不是等差数列,否则2S2=S1+S3,
即2a1(1+q)=a1+a1(1+q+q2),
得q=0,这与公比q≠0矛盾.
13.已知f(x)=x2+ax+b.
(1)求:f(1)+f(3)-2f(2);
(2)求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于1 2.
(1)解∵f(1)=a+b+1,f(2)=2a+b+4,f(3)=3a+b+9,∴f(1)+f(3)-2f(2)=2.
(2)证明假设|f(1)|,|f(2)|,|f(3)|都小于1 2.
则-1
2<f(1)<
1
2,-
1
2<f(2)<
1
2,-
1
2<f(3)<
1
2,
∴-1<-2f(2)<1,-1<f(1)+f(3)<1.
∴-2<f(1)+f(3)-2f(2)<2,
这与f(1)+f(3)-2f(2)=2矛盾.
∴假设错误,即所证结论成立.
14.对于定义域为[0,1]的函数f(x),如果同时满足以下三条:
①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,
都有f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为理想函数.
(1)若函数f(x)为理想函数,求f(0)的值;
(2)判断函数g(x)=2x-1(x∈[0,1])是否为理想函数,并予以证明.
解(1)取x1=x2=0可得f(0)≥f(0)+f(0),∴f(0)≤0,又由条件①得f(0)≥0,故f(0)=0.
(2)显然g(x)=2x-1在[0,1]上满足条件①g(x)≥0;
也满足条件②g(1)=1.
若x1≥0,x2≥0,x1+x2≤1,
则g(x1+x2)-[g(x1)+g(x2)]
=2x1+x2-1-[(2x1-1)+(2x2-1)]
=2x1+x2-2x1-2x2+1=(2x2-1)(2x1-1)≥0,
即满足条件③,故g(x)是理想函数.。