浅谈架空输电线路防雷技术
- 格式:doc
- 大小:25.50 KB
- 文档页数:3
架空输电线路的防雷措施浅析【摘要】本文阐述了雷电过电压的形式,雷击对架空输电线路安全运行的危害,以及一些常见的架空输电线路的防雷措施。
由于在雷击经常造成线路跳闸事故,通过介绍架空输电线路有针对性地进行防雷的一些实例做法,统计和分析了相关措施的实效性。
【关键词】架空输电线路;雷击;防范1.引言110kv及以上架空输电线路路径多建于空旷地带或山上,在雷电活动极为频繁的地区,一直受到雷击故障的困扰。
尤其是雷雨季节,雷击跳闸率长期居高不下,严重地影响了架空输电线路的安全、可靠运行。
我国电网故障分类统计数据表明,多雷地区线路雷击跳闸次数占总跳闸次数的40%~70%。
因此,如何切实有效地制定及改善架空输电线路的防雷措施,已经成为确保线路安全、可靠运行的重要工作之一。
2.雷击的型式及危害输电线路雷害的形式有两种,一是感应雷,二是直击雷。
实际运行经验表明:110kv及以上电压等级的输电线路雷害的原因则主要是根据经验和故障现象,因而比较难做出准确判断,这对于有针对性地采取防雷对策,十分不利。
郊外线路因地面附近的空间电场受山坡地形等影响,其绕击率约为平原线路的3倍,或相当于保护角增大8°。
雷电对电力设备绝缘危害最大的是直击雷过电压,直击雷过电压的峰值很高,破坏性很强,在输电线路上可能引起绝缘子闪络、烧伤或击穿;重者击断导线造成停电事故。
3.防雷措施3.1运行管理3.1.1加强对防雷设备、设施的定期巡视。
架空输电线路的防雷设备大多都位于野外,经常遭受等外力破坏,这其中有人为(如盗窃)的因素也有自然的因素。
因此,只有加强对防雷设备的巡视检查,及时掌握其运行状态,才能使防雷设备真正地起到防雷的效果。
3.1.2定期对防雷设备、设施进行测试。
结合线路工作,每年至少记录一次线路避雷器记数的动作情况。
线路避雷器运行2~3年应停电检查一次。
线路避雷器运行5年应停电进行直流1ma参考电压及75%参考电压下泄漏电流试验,检查避雷器本体是否有劣化现象。
浅论架空输电线路雷电绕击与反击的识别摘要:由于防雷与接地措施不到位而引发的跳闸等事故的频繁发生,给经济社会的发展带来了很多的不便,因此,加强架空输电线路的防雷接地的相关研究是非常必要的。
反击主要靠提高线路绝缘水平、降低杆塔接地电阻来提高耐雷水平,而绕击主要靠改进线路保护角等方式来降低绕击率。
对雷击故障类型进行辨识可以为防雷设计提供依据,有针对性地采取防雷措施,可提高线路防雷水平。
关键词:架空输电线路雷电绕击反击识别1 架空输电线路的雷电危害雷电危害大多发生在春夏两季,但是,它也会受不同地区地理环境差异的影响。
雷电对输电线路的危害主要表现在以下几方面:一是,雷电自身的高热效应危害。
当遇到输电线路时,雷电的高热效应会转变为电流,使被击中部位瞬间产生极高的热能,导致此段输电线路被融化,进而燃烧起来。
二是,雷电所产生的电磁场危害。
在雷电形成的过程中伴有电磁效应,当输电线路被雷击中时,这部分电磁效应会在雷击部位形成交变电磁场,使得电路中的电流量瞬间增大,导致线路高温燃烧。
三是,雷电附带的高压效应危害。
雷电形成的瞬间电压通常为高压,能够达到十几万伏以上。
这种高压在雷击点会对输电线路上的电气设备造成极大的攻击,导致输电线路被烧坏、出现短路的情况,甚至还会引发更严重的事故。
四是,雷电所发出的电波危害。
电波也是雷电附带的一种现象,它经常会干扰防雷装置的正常工作,使其无法有效发挥防雷功能,变为放电器反击输电线路。
2 架空线路雷击跳闸分析雷电直击、绕击、反击、直击(雷直击铁塔顶部、雷直击避雷线中央)和反击(过高的接地电阻,造成塔顶电位大幅度上升)现象大体相同,其耐雷水平在规程中也是做统一规定,由于篇幅有限,在这我们把它们列入一起进行阐述,而绕击现象与直击和反击不同,它也是引起高压送电线路跳闸的主要原因,也是我们今后防雷工作的重点。
雷电直击、反击跳闸一般雷电流较大,如500kV典型铁塔反击耐雷水平可达125kA~175kA,雷电反击一般有下列特征:a.多相故障一般是由直击引起; b.水平排列的中相或上三角排列的上相故障一般是由雷电反击引起;c.档中导地线之间雷击放电(极为罕见的小概率事件)的,一般是雷电直击、反击引起;d.一次跳闸造成连续多级铁塔闪络的,有可能是雷电直击、反击引起。
架空输电线路防雷措施姓名:XXX部门:XXX日期:XXX架空输电线路防雷措施架空输电线路是电力网及电力系统的重要组成部分。
由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。
架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。
架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。
针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”,即:1防直击,就是使输电线路不受直击雷。
2防闪络,就是使输电线路受雷后绝缘不发生闪络。
3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。
4防停电,就是使输电线路建立工频电弧后不中断电力供应。
架空输电线路防雷的具体措施现对生产运行部门常用的架空输电线路防雷改进措施简述如下:1架设避雷线架设避雷线是输电线路防雷保护的最基本和最有效的措施。
避雷线的主要作用是防止雷直击导线,同时还具有以下作用:1)分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位;2)通过对导线的耦合作用可以减小线路绝缘子的电压;3)对导线的屏蔽作用还可以降低导线上的感应过电压。
通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。
因此,110kV及以上电压等级的输电线第 2 页共 8 页路都应全线架设避雷线。
同时,为了提高避雷线对导线的屏蔽效果,减小绕击率,避雷线对边导线的保护角应做得小一些,一般采用20°~30°。
220kV及330kV 双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°左右。
2安装避雷针安装避雷针也是架空输电线路常用的一种防雷措施。
但是在实际应用却存在以下问题:1)由于避雷针而导致雷击概率增大2)保护范围小国内外不少防雷专家,对避雷针能向被保护物有多大的保护距离做了系统的研究得出的结论是:“对一根垂直避雷针无法获得十分肯定的保护区域”。
从绕击和反击“聊”架空输电线路防雷1.前⾔▲讨论部分截图2.绕击&反击根据过电压形成的物理过程,雷电过电压可以分为两种:直击雷过电压,是雷电直接击中杆塔、避雷线或导线引起的线路过电压;感应雷过电压,是雷击线路附近⼤地,由于电磁感应在导线上产⽣的过电压。
按照雷击线路部位的不同直击雷过电压⼜分为两种情况:⼀种是雷击线路杆塔或避雷线时,雷电流通过雷击点阻抗使该点对地电位⼤⼤升⾼,当雷击点与导线之间的电位差超过绝缘的冲击放电电压时,会对导线发⽣闪络,使导线出现过电压。
因为杆塔或避雷线的电位(绝缘值)⾼于导线,故通常称为反击。
另⼀种是雷电直接击中导线(⽆避雷线时)或绕过避雷线(屏蔽失效)击于导线,直接在导线上引起过电压。
后者通常称之为绕击。
▲绕击和反击⽰意图3.讨论⼩编根据群聊顺序将与其内容⽆关部分删除后将原⽂字内容与⼤家分享,因是聊天过程,可能存在跳跃性,有问题可以加微信群与原⼤家讨论。
下⾯分享具体的聊天交流内容(其名字为化名)。
年年防雷来来来,群⾥各位⼤佬,雷⾬季节今年提前了,出来聊⼀聊雷击中的绕击和反击?群班长@年年防雷 绕击⼟点讲就是绕开避雷线保护⾓外劈您没被保护到的导线没商量的技术雷呀。
@年年防雷 反击⼟点讲就是劈您避雷线或铁塔都能使避雷线铁塔电位升⾼⾄击穿绝缘⼦串组的暴⼒雷。
川藏线路刘这两种雷多不多见群班长@川藏线路刘 多。
morty多国⽹绘制的图都是群班长我们的定义⽐⽓象系统有点乱,其实我们是把直击雷、感应雷劈到有架设避雷线的线路导线为定义为绕击,劈到没避雷线的线路导线为直击,劈到铁塔或避雷线后防雷接地装置泄流不⾜使铁塔电位升⾼⾄击穿绝缘⼦串组绝缘为反击,就这么简单。
很多论⽂都是乱七⼋糟写的复杂的很。
真要学习雷击得先学⽓象⽅⾯的,如下:对了,劈到避雷线保护⾓内的也称为直击。
被绕击雷劈概率最⾼的是⽔库旁等有⽔的⼭脚和⼭坡的杆塔。
雷电劈中杆塔远⾼于避雷线。
跟多的知识可以看看之前发过的浙江应伟国专家的ppt,他有带清华⽣在电科院搞过专题研究,否定了⼀⼤堆乱七⼋糟的新防雷东西,但课件不会体现,⽼板和⼚家不⼲避雷线和铁塔加装避雷针防雷原理与避雷针⼀样,与地⾯形成等电位差,利⽤⾃⾝的⾼度,使电场强度增加到极限值的雷电云电场发⽣畸变,开始电离并下⾏先导放电;避雷针或铁塔塔顶塔材在强电场作⽤下产⽣尖端放电,形成向上先导放电;两者会合形成雷电通路,随之泻⼊⼤地,达到避雷效果。
( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改架空输电线路的防雷(标准版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes架空输电线路的防雷(标准版)1架设避雷线架设避雷线是输电线路防雷保护的最基本和最有效的措施。
避雷线的主要作用是防止雷直击导线,同时还具有以下作用:①分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位;②通过对导线的耦合作用可以减小线路绝缘子的电压;③对导线的屏蔽作用还可以降低导线上的感应过电压。
通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。
因此规程规定,220kV及以上电压等级的输电线路应全线架设避雷线,110kV线路一般也应全线架设避雷线。
同时,为了提高避雷线对导线的屏蔽效果,减小绕击率。
避雷线对边导线的保护角应做得小一些,一般采用20°~30°。
220kV及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°及以下。
为了起到保护作用,避雷线应在每基杆塔处接地。
在双避雷线的超高压输电线路上,正常的工作电流将在每个档距中两根避雷线所组成的闭合回路里感应出电流并引起功率损耗。
为了减小这一损耗,同时为了把避雷线兼作通讯及继电保护的通道,可将避雷线经过一个小间隙对地(杆塔)绝缘起来。
雷击时,间隙被击穿,使避雷线接地。
2降低杆塔接地电阻降低杆塔接地电阻可以减小雷击杆塔时的电位升高,这是配合架设避雷线所采取的一项有效措施。
关于架空输电线路有效防雷措施的探讨摘要:架空输电线路主要由接地装置、绝缘子串、杆塔、架空地线以及导线等部分组成,在我国电力系统中承担着传输电能的重任。
架空输电线路在长期的运行过程中,很容易遭受雷击故障,造成大范围的停电事故,严重影响人们的正常用电和电力系统的安全稳定运行,因此必须采取有效的防雷措施,提高架空输电线路的安全性和稳定性。
本文分析了架空输电线路雷击跳闸故障,阐述了架空输电线路的有效防雷措施。
关键词:架空输电线路;防雷措施由于架空输电线路长时间暴露在自然环境中,很容易受到外界自然因素的损害和影响。
一旦架空输电线路遭受雷击,会严重影响整个线路的安全供电,因此相关电力部门应高度重视雷击危害,有针对性的采取措施,防止架空输电线路发生雷击跳闸,保障电网的供电可靠性和稳定性。
1 架空输电线路雷击跳闸故障分析雷击活动、地形地貌、接地电阻、绝缘强度、线路塔型等因素和架空输电线路雷击跳闸有着直接的关系。
在架空输电线路的运行过程中,一旦架空输电线路遭受雷击,大量的雷电电流会通过架空输电线路流入大地,大量的雷电电流使输电线路电压大幅度升高,降低输电线路的绝缘性能,损害架空输电线路的电力设备,并且容易发生闪络现象,导致架空输电线路跳闸和大范围停电事故。
架空输电线路从电厂将电能输送到电力终端,在这个过程中需要面对各种复杂的气候、地质和地形条件,根据相关数据统计,70%以上的架空输电线路雷击事故都发生山区。
并且雷击事故还和架空输电线杆塔的位置、高度和地面坡度有着直接的关系[1],杆塔高度越高,电感越大,雷击电流流过输电线路的电压幅值越高,当架空输电线杆塔沿着山坡架设时,雷电绕击次数明显增多。
架空输电线路发生雷击跳闸主要有两种表现形式:直接雷击形式和绕击雷或感应雷击形式。
直接雷击是指架空输电线路的杆塔或者线路直接被雷电击中,导致架空输电线路发生雷击跳闸故障;绕击雷或感应雷击是指当雷击在架空输电线路杆塔或者附件地面时,在电磁感应的作用下,雷电绕过避雷装置冲击输电线路,引起架空输电线路发生雷击跳闸故障。
关于架空输电线路防雷技术探讨架空输电线路是电力系统的重要组成部分,由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击,架空输电线路遭遇雷击,从而影响线路的供电可靠性。
因此,采取有效措施降低线路的雷击跳闸次数,是确保电网安全运行的一项重要工作。
解决线路的雷害问题,要结合防雷措施从实际出发因地制宜,综合治理。
标签:输电线路雷击跳闸防雷措施雷电是一种大气放电的自然现象,产生于积雨云中,积雨云在形成过程中,某些云团带正电荷,某些云团带负电荷。
它们对大地的静电感应,使地面或建(构)筑物表面产生异性电荷,当电荷积聚到一定程度时,不同电荷云团之间,或云团与大地之间的电场强度可以击穿空气(一般为25~30 kV/cm),开始游离放电,我们称之为“先导放电”。
在主放电阶段里,会出现很大的雷电流(一般为几十kA至几百kA),并随之发生强烈的闪电和巨响,这就形成了雷电。
雷电一般伴有阵雨,有时还会出现局部的大风、冰雹等强对流天气。
强雷暴天气出现有时还带来灾害,如雷击危及人身和电力设备安全,当家用电器、计算机机房直接遭雷击或感应雷时将会被损坏,有时还会引起火灾等。
1. 雷电对电力线路的危害雷电对输电线路安全运行危害极大,常常造成绝缘子闪络事故,特别在山区、交通不便的地区,给巡视、查找故障增加不少困难。
高海拔地区因特殊的地理位置,雷电时常伴有瞬间大风与急雨,极大的风速常常造成高大树木倒落导线上、输电线振动、横向碰击和倒杆断线的发生。
如对这些现象处理不及时的话,就会造成电力事故,严重时会危机人们生命财产的安全。
电网中的事故以输电线路的故障占大部分,输电线路的故障又以雷击跳闸占的比重较大,尤其是在上面所述的山区输电线路中,线路故障基本上是由于雷击跳闸引起的,据运行记录,架空输电线路的供电故障一半是雷电引起的,所以防止雷击跳闸可大大降低输电线路的故障,进而降低电网中事故的发生频率。
2.输电线路遭受雷击的几种情况雷击,实际上就是雷云电荷向大地的突然渲泄,当雷电作用于输电线路上,将造成冲击过电压。
浅议架空输电线路防雷与接地技术摘要:随着输电线路的逐渐地延长,电压越来越高,架空输电线路以其低成本、检修容易的特点而被广泛使用。
但是,在架空输电线路运行的过程中,会受到自然因素、设计因素和施工因素的影响而导致输电线路防雷失效。
针对架空输电线路遭到雷击而跳闸的原因进行研究,对架空输电线路的防雷设计和接地设计具有一定的参考意义。
关键词:架空输电线路;防雷;接地技术一、输电线路雷电产生原因及种类1.1产生原因闪电的产生原因是云带电,它是一个大的雷暴电荷云的积累。
通常情况下,大气层中湿热气流上升,从而导致稀薄的空气向下冷凝,而上升的湿热气流强烈地穿过云层时会打裂水滴,导致其充电,水磨稍带负电荷。
在这种情况下,风向上吹起时,就会产生一些带正电的局部区域。
相关数据表明,一般云上部会产生正电荷,下部产生负电荷,而中间则是正电荷和负电荷的混合区。
实际上,闪电雷雨云可产生的最大电场强度达到了3.4kV/cm,雷云平均电场强度达到了1.5kV/cm,在放电阶段雷云主要包括主放电和先导放电两个阶段。
在雷雨天气,如果未按照要求做好防雷击措施,将会诱发输电线路出现跳闸故障,从而对输电线路的正常运行产生不利影响。
1.2种类以其过电压原理及形成物理过程为依据,可将雷电分为直击雷、感应雷两种。
直击雷和感应雷的性质及来源均不同。
其中,直击雷过电压是雷电直接击中线路、杆塔、避雷线这三者造成的过电压;而感应过电压则是雷电击中线路、大地而造成的两者之间相互的电磁感应。
多年的统计结果表明,线路跳闸的主要原因是直击雷过电压。
雷电击中杆塔或导线能够产生较高感应过电压,此电压通常高于绝缘子串冲击放电电压,因此会造成线路事故,从而影响正常供电。
直击雷还可根据雷击部位分为直击杆塔、直击避雷线、绕击导线三类。
杆塔、避雷线都对导线电阻抗有影响,当雷电击中杆塔或避雷线时,雷电击中点与导线会产生较大的压差,此压差高于放电电压绝缘水平,进而导致线路闪络,这一现象被称为反击。
简析架空输电线路的防雷技术措施一般来说,架空输电线路延绵分布在旷野之上,这使其极易遭到雷击。
长期以来,架空输电线路的防雷一直是保证电力系统稳定供电,提高输电线路稳定性的重要工作内容。
本文对当前架空输电线路的防雷现状、问题作出概述,分析了架空线路杆塔接地存在问题的主要原因,最后提出了针对架空输电线路的一些综合防雷措施,以期能够提高架空输电线路的防雷、抗雷击能力。
标签:电力系统;架空输电线;防雷措施1、分析架空输电线路的防雷现状由于架空输电线路的覆盖面广、使用线路繁多,而且其防雷水平有待提升,以至于每年都有因雷电事故造成的状况发生,给我国电力事业带来损失,增加了作业难度。
雷击主要有三种形式:①落在架空输电线路的导线上,产生雷击过电压;②雷电袭击避雷线,反击到输电线路上;③雷电落在杆塔或者附建筑物上产生雷击感应过电压。
我国目前的防雷现状不容乐观,具体可从以下几方面表现出来;架空输电线路的架设线路短,不会全线架设,一般情况下只在发电厂、变电所进出线段架设一千米左右的避雷线,从而造成两段进线保护段架设避雷线不足,而且架空输电线路的绝缘水平低,易造成其防止直击雷的能力下等缺陷。
再次,我国有些地区的架空输电线路等设备运行时间久造成设备陈旧老化,导致绝缘子冲击耐压水平低,绝缘水平降低,加上导线老化严重,致使线路承受闪络放电的能力大大降低,雷击闪络时极易造成绝缘子损坏和导线断线等现象。
架空输电线路一般都使用混凝土杆塔,线路所用杆塔由于大部分不设人工接地,只在发电厂、变电站进线段的杆塔埋设人工接地体,而且有些人工接地体装置老化,腐蚀现象严重,导致接地体装置破坏,造成架空输电线路塔杆接地电阻率高,使线路耐雷水平降低,雷击跳闸的危险性增加。
2、架空输电线路防雷工作存在的主要问题及原因架空输电线路防雷工作存在的主要问题是设计不符合规定,导致防雷设备不能起到防雷击的作用。
以杆塔接地装置为例,其存在的主要问题是接地电阻的系数与相关规定不合。
铁路电力架空线防雷技术探讨摘要:本文主要从雷电对铁路电力线路危害出发,来阐述铁路电力线路各类防雷措施的有效性及优缺点。
通过统计分析近年来管段内铁路电力贯通线发生的雷击故障情况,有针对性地采取防雷措施,最终有效降低雷击对铁路电力贯通线路造成的故障几率。
关键词:电力贯通线;故障;防雷措施一引言铁路电力系统由贯通线以及变配电所电源进线等设施构成。
其主要功能是为铁路沿线的有关于行车的信号、通信、机务、车站等重要负荷提供可靠电源,是确保铁路正常安全运营的重要组成部分。
目前铁路贯通线以10KV架空线路较普遍,也有一少部分为35KV电力架空线路。
电力贯通线因遭受雷击或感应雷引起的架空线路故障以及配电所跳闸等一系列事故,严重影响铁路行车安全。
因此,必须采取有效措施,以尽可能的减少贯通线雷击现象发生。
二、雷击对铁路电力贯通架空线路的危害1.造成绝缘闪络,造成绝缘子闪络时发生线路跳闸,一般时候,绝缘子利用自恢复功能使线路在跳闸后能够及时供电,但在瞬间停电时候,可能会因为设备的切换故障造成红光带,影响铁路运输安全。
2.造成线路绝缘击穿,击穿后由于设备不能及时更换,导致接地故障,大多数情况下为单相接地短路故障,影响人身安全,尤其是在线路未停电情况下靠近接地处所。
3.造成线路断线故障,多数情况下会造成铁路变电所跳闸,但是在不跳闸情况下,线路断线造成断线部分搭在大地或其他建筑物、树木等处会造成接近人群的极大安全隐患。
4.造成与电力线路连接的铁路箱变或者变压器等设备损坏,将会对变压器供电的包括行车负荷在内的所有负荷造成断电,影响铁路运营安全。
对于以上故障,铁路部门人员都需要进行巡视检查,对损坏的设备进行更换,势必会影响用户的正常用电,尤其是在偏僻的站间,山区等地形条件复杂地区,查找故障时间长,停电范围大的情况多见。
三、铁路电力架空线防雷措施1架设避雷针(线)避雷针(线)由接闪器、引下线和接地极三部分组成。
避雷针常用作铁路变配电所的屋外配电装置等的直击雷保护装置。
35kV架空输电线路与防雷措施摘要:本文笔者主要针对35kV架空输电线与防雷措施开展分析,希望通过笔者的分析可以提升架空输电线路的防雷能力,确保输电线路的有效运行。
关键词:35kV;输电线;防雷;措施在电力系统中架空输电线发挥着重要的作用,它会受各种因素的影响,造成输电线的出现运行安全问题,因此想要保护电力系统,做好35kV架空输电线的防雷工作是非常重要的。
因此,笔者认为开展35kV架空输电线路与防雷措施方面的分析是非常必要的。
一、雷击的含义分析雷击的形式主要分为绕击雷和直击雷。
当架空输电线没有采取避雷措施时会造成雷过电压的情况,从而影响输电线路的运行。
电线杆塔是输电线设施的重要部分,在输配电的过程中具有重大的作用。
随着我国经济发展,输电线路不断增多,输电线线路的防雷保护也是电力建设施工、运行的重中之重。
同时电线杆塔也会直接影响到输电线路,一旦遇到雷击杆塔的事件就会将电感直接传输至架空输电线,导致输电线路的电位升高,从而影响到电力系统的运行。
二、35kV架空输电线路雷击原因(一)输电线路自身原因35kV架空输电线路受雷击的主要原因大部分是由于输电线路的自身原因。
由于架空输电线路周边也会有其他线路,在这种情况下很容易受到雷击的影响。
另外,其他线路的防雷技术存在不同,如果不对架空输电线路进行深度的研究,不采取有效的防雷措施,也无法达到防雷效果,从而受到雷击的影响。
虽然部分架空输电线路已经使用绝缘子,但仍然存在很多问题,当绝缘子被雷击中很难找出故障,尤其是后期维修工作,延长了维修的时间,也加大了维修的难度。
(二)外部环境原因架空输电线被雷击也会受到外部原因的影响。
尤其是在一些乡镇地区,架空输电线路受到雷击是一种常见现象,也存在当地居民对接地线偷盗情况,由于输电线路长期暴露在外部的环境下,经常会受到一些外部的因素造成一些安全事故,例如在雷雨天气,架空输电线路就会受到雷击,从而导致输电线路的运行失常,甚至出现失灵的情况。
供电系统架空输电线路的防雷技术探讨 【摘 要】本文主要介绍了几种常用的保护架空输电线路的方法,以期最大限度降低架空线路雷击跳闸率,确保供电系统的安全无间断运行。
【关键词】输电线路;雷击;跳闸;防雷保护 0.引言 供电系统的输电线路采用埋地电缆敷设或在金属线槽中沿管廊架敷设,能起到很好的防雷作用,但一些工厂企业的高压输电线路一般由厂外架空引入。这些架空线路往往长达几十甚至上百公里,穿越的地形一般都相当复杂,极易遭受雷击。架空线路遭受雷击时可能发生绝缘子闪络、击穿,甚至导线折断,或造成短路跳闸。
1.架空输电线路防雷的主要方法分析 1.1直击雷防护 架空输电线路直击雷防护的最有效措施就是避雷线,通过在导线上方假设避雷线主要作用是:①防止落雷直接击中导线,起到拦截作用;②雷击输电杆塔时减小流经杆塔的雷电流,从而降低塔顶电位,起到分流作用;③通过对导线的耦合作用可以减小线路绝缘子的电压;④通过屏蔽作用降低导线上的感应过电压;⑤将各线路杆塔的接地装置进行电气连接,形成电气通路供雷云在大地感应出的电荷移动,降低高电阻率地区发生落雷的可能性。一般来说,避雷线的保护角度越小,其保护效果越好(一般应小于20o)。线路的电压等级越高,避雷线在线路总造价中占的比例越小,因此110kV以上输电线路应全程架设避雷线。但是避雷线的防护作用也有其局限性,如某石化企业220kV输电线路全程采用双避雷线,但是每年雷击跳闸率还是很高,这主要是由于输电杆塔大多数位于山顶或山腰上,线路基本上在山谷中穿越,地形条件复杂,雷电活动相当频繁并容易发生畸变,会通过绕击、反击等方式影响到输电线,这就需要其他手段来降低这类损害的发生。
1.2降低杆塔接地电阻 降低杆塔接地电阻是提高线路耐雷水平,以防止反击的有效措施,也是最经济、最有效降低线路雷击跳闸率的措施之一。通过这个方法可以减小雷击杆塔时的电位升高,当线路架设了避雷线时,杆塔的工频接地电阻值不宜大于表1所列数值:
浅谈110kV高压输电线路的防雷措施摘要:本文就110kV高压输电线路雷击跳闸的原因进行了分析,并在此基础上对输电线路防雷技术出现的问题进行分析,最后提出合理化建议。
关键词:110kV 高压输电线路防雷措施1、前言随着经济的发展,对输电线路供电可靠性的要求越来越高。
同时伴随着电网的发展,雷击输电线路引起的跳闸、停电事故绝对值也日益增多。
110kV线路的防雷治理问题,在电力同行业中一直是老大难的问题,因线路走向、局部地形、土壤电阻、气象条件、施工质量、运行维护等等因素,线路的防雷工作难度更大,现就近几年对110kV输电线路的防雷治理措施进行简要分析和探讨。
2、雷击线路跳闸原因分析架空输电线路雷害事故的形成通常要经历这样4个阶段:①输电线路受到雷电过电压的作用;②输电线路发生闪络;③输电线路从冲击闪络转变为稳定的工频电压;④线路跳闸,供电中断。
针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”:①防直击,就是使输电线路不受直击雷。
采取的措施是沿线路装设避雷线。
②防闪络,就是使输电线路受雷后绝缘不发生闪络。
采取的措施是加强线路绝缘、降低杆塔的接地电阻、在导线下方架设耦合地线等。
③防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧,采取的措施是系统采用消弧线圈接地方式、在线路上安装管形避雷器等。
④防停电,就是使输电线路建立工频电弧后不中断电力供应。
采取的措施是装设自动重合闸、双回路线路采用不平衡绝缘方式等。
3、输电线路防雷措施3.1 开展雷电参数的分析工作。
结合输电智能巡检系统科技项目的实施,对110kV及以上输电线路杆塔均实现GPS卫星定位,并将数据输入雷电定位系统中去。
今后凡是地区内出现雷电日时,都可及时查询输电线路附近雷电活动情况,进行雷电活动参数的分析,以确定线路可能遭受雷击的几率,划分出输电线路遭受雷害的等级,并采取相应的防雷措施。
3.2 架设避雷线。
这是高压线路防雷的基本措施,其主要作用是防止直接雷击导线,发生危及绝缘的过电压。
架空输电线路的防雷及运维措施摘要:架空输电线路是电力工程中最为常见的线路布设形式,由于大部分设施的布设高度较高且长期暴露在外,难免会因受到雷电影响而引发故障。
因此,需合理布设相应的防雷措施,制定科学合理的运维方案,以保障整体输电线路的安全。
关键词:架空输电线路;防雷;运维措施1架空输电线路防雷措施1.1布设避雷线布设避雷线作为一种传统的防雷保护措施,其可有效避免雷电直击并将雷电流进行合理疏导,进而为架空线路导线构建一层屏蔽层。
通常来讲,架空地线材料造价成本较低,主要采用钢绞线和铝包钢绞线(带通讯功能)或其他小线径导线制作。
针对部分山区地段的雷击事故多发区,若输电线路电压超过110kV,则一般采用构建全线双线避雷线进行防雷;若输电线路电压在35kV及以下,则一般采用单线全线架空地线或只需将架空地线布设于变电站附近2公里内的区域即可。
当然,以上布设方式多出于工程经济性方面考虑,若想进一步增强整体线路避雷效果,则可根据实际情况重新调整线路布设方案。
此外,架空地线保护角大小是防止线路直接遭受雷击的关键所在,雷击导线的概率随着保护角减小而降低,导线悬挂点与架空地线两者间所设置的保护角越小,防直击雷的效果越高。
保护角的大小,通常取决于导线横担与地线横担之间的设计结构,大部分输电线路会将保护角的角度设定在10-25°范围内。
对于110kV-220kV高压线路防雷,通常会布设双避雷线并将保护角的角度设定为不大于20°,而针对超过500kV的超高压、特高压的架空线路,通常保护角的角度不高于15°。
但对重覆冰地区线路保护角可适当加大,以防止导线落冰跳动引起安全距离不足。
1.2设计接地网对于输电线路而言,改善接地装置,构建良好的接地系统可以在一定程度上规避雷击事故。
以110kV输电线路为例,在运行中应将接地装置的改进和优化作为工作重心。
通过改进接地装置,可以有效地减少输电线路的跳闸次数,从而降低事故发生的概率。
探析架空输电线路的防雷设计架空输电线路是当今电力工程领域中最为常见的形式之一,在输电过程中起到了至关重要的作用。
它不仅可以完成电力输送的重大任务,而且还能保证电力系统的安全运行。
然而,由于区域气候环境的不同、组合悬挂线路的复杂性等多种因素的影响,架空输电线路在遭遇自然灾害时或者设备老化出现潜在安全隐患时,往往会受到雷电等电力环境的严重影响。
因此,如何在架空输电线路的设计中合理考虑防雷措施,就成为了当下电力领域应该着重解决的一个技术问题。
一、架空输电线路防雷措施的研究意义1、保障电力系统的稳定运行由于架空输电线路在输电过程中所承载的电流非常重要,因此,防雷措施的缺失或者不完善,不仅会影响电力系统的稳定运行,而且往往会对居民的正常用电带来一定的困扰。
因此,为了使电力系统能够稳定运行,必须对架空输电线路进行防雷设计,避免不必要的电力中断和电事故的发生。
2、提升电力输送的效率针对电力系统的长期稳定运行,完善的防雷措施也可以有效提升电力输送的效率。
因为当自然灾害等电力环境因素对手来袭时,及时采取可行的防雷措施可以大幅降低故障率,为电力输送的持续工作提供了更加坚硬的保障。
3、降低金钱成本和环保成本严格有效的防雷措施既能降低防雷的金钱成本,又能达到环保成本的降低。
因为在防雷措施的辅助下,架空输电线路的故障发生率降低很多,这可以减少从业者的设备更换费用,同时,通过防雷措施的使用,对于自然环境的敏感度也会降低,从而达到更好的环保效果。
二、架空输电线路防雷措施的应用1、考虑架空输电线路的方式针对不同环境下的架空输电线路使用需求,可以有不同的方式来进行防雷措施。
例如,对于在平原、海边地区等的地方要求溶散防雷需要使用的线路也会有不同的要求。
要避开线路可能旅行的路径,保证钢结构稳定可靠等,达到打通电力防雷之间的坚实境地。
2、实施针对性防雷针对不同场景下的防雷需求区块,可以使用不同的防雷处理方式,如金属球法、金属网法和Ф降瞬流法等多种方法,通过其自身的特性来降低雷击危险。
浅谈架空输电线路防雷技术
架空输电线路以及雷击跳闸始终是安全供电的一大阻力,如何使架空输电线路防雷技术更加安全有效,是广大电力工作人员共同关注的问题。
鉴于此,针对架空输电线路防雷技术的现状,存在的问题及其发展进行了探讨。
标签:架空输电线路:防雷技术;研究分析
最近几年高压线路铺设的越来越多,从而事故的发生也是在所难免的,最多的是雷击,因为以我国这样的地势地貌来看发生雷击的事故就比较频繁,给国家和自己造成重大损失,所以我国加大对防雷技术的使用,得到重视以后加强农民对于怎么防雷的知识学习,减少个人的资产的损失,为以后在架设线路的工作中最足了准备。
1 架空输电线路防雷技术的现状与存在问题
在不断的发展当中,电在千家万户已经广泛使用上,所以电在我国有着举足轻重的地位,使用电多了就会架设很多的线路,有了高压线就要安装防雷的装置,就大大增加防雷的使用率,使其研究得以实施。
减少事故的发生,可是我国雷达的现象依然存在,主要是因为跳闸影响的,反应出我国在这方面的技术还没有达到国外的水平,需要研究人员在这条道路上不断的努力。
雨季是雷击跳闸多发时期,下面主要介绍发生跳闸的情况:第一种是在发生雷电的时候,雷电并没有打在所安装的避雷针上而是直接打在了导线上,直接导致变相瓷瓶串闪络,一般这种情况出现线路空旷地和线路长的地带。
还有一种比较重要的方面,在雷击发生时,雷击的电流过猛,线路受到较大的电流时就会通过导线分流,把雷电在线路的两侧进行流动,如果在这杆塔的电流跟雷的电流是同性的话,就会使该塔的瓷瓶串闪络。
不是同性的话,跟其相邻的杆塔中的瓷瓶串因为电流过大也会发生闪络,如果电流击中的是塔顶电位使其杆塔带来极大反击,,把其他的相瓷瓶闪络,这就是绕击雷。
第二种是带电的云层与地上目标发生迅猛的放电,电流峰值可达几十KA乃至几百KA,其之所以破坏性很强,主要原因是雷云所蕴藏的能量在极短的时间(其持续时间通常只有几us到几百us)就释放出来,从瞬间功率来讲,是巨大的。
导致的后果就是烧毁击中的物体使其融化,这就是直击雷。
2 架空输电线路防雷技术的发展
(1)架设避雷线。
避雷线不仅可以阻挡雷直击导线,还可以通过分流作用的发挥,削弱通过杆塔部位的雷电流,减小塔顶电位,此外其还可以利用对导线的耦合和屏蔽来降低线路绝缘子电压,减小导线感应过电压。
(2)安装避雷针。
这也是一种架空输电线路防雷技术,不过实际使用时问题较多需要注意。
(3)提高线路绝缘水平。
因为输电线路部位地段必须要用到大跨越高杆塔,因此增加了杆塔落雷的可能性。
当高塔落雷时不仅感应电压大,而且塔顶电位高,这时的受绕击率非常高。
为减少线路跳闸现象,可于高杆塔上多设置一些绝缘子串片,以增加地线以及大跨越档导线的间隔,进而达到提升线路绝缘水平的目的。
(4)不平衡绝缘方式的运用。
当架设于同杆上的双回路线路在使用一般防雷技术还无法达到要求时,可选择不平衡绝缘方式来减少双回路雷击跳闸现象的发生,以保证电力的正常供应。
(5)架设藕合地埋线。
该举措不仅可以减小接地电阻,而且在一定程度上还可发挥架空地线作用,即兼并分流和藕合功能。
(6)预放电棒以及负角保护针。
预放电棒可以缩短导地线二者间隔,减小杆塔分流系数,提高藕合系数,增加绝缘子串以及导线的对地电容以及对电压分布情况进行改善;负角保护针是设置在线路边上且具体位于导线外侧的一个避雷针,可以改善屏蔽情况,缩短临界击距。
(7)装设消雷器。
属于新型直击雷防护技术,其对接地电阻没有很高的要求,保护范围也大大超过了避雷针。
在具体装设时,需解决好有关问题。
(8)接地降阻剂的使用。
使用该降阻剂后,随着时间的增加,接地电阻会减小。
其一般没有腐蚀现象。
不过,长期使用后会腐蚀接地体,因此需特别注意。
(9)中性点非有效接地方式的运用。
在二相甚至三相落雷发生时,因为先对地闪络相等同于一个避雷线,使对未闪络相以及分流的耦合作用大大增加,减小了未闪络相绝缘电压,增强了线路的耐雷性。
因此,对35kV线路的铁塔以及钢筋混凝土杆,需采取接地措施(35kV及其以下不接地,故障即可自动消除。
3架空输电线路防雷技术的运用
3.1线路架设避雷器
现在我国生产运行部门常用的架空输电线路主要是避雷线和耦合地埋线,耦合地埋线具有两个作用:一是它可以降低高土壤电阻率地区杆塔接地电阻,二是起到一部分架空地线的作用,既有避雷线的分流作用,又有避雷线的耦合作用,根据资料记载在10年中只发生异常雷击故障,显著提高线路耐雷水平。
避雷线的作用是分流、屏蔽及降低导线上的感应电压。
避雷器在目前架空输电线路上装设已经有上千套,运行情况良好,虽然对避雷器的机理和理论上还在争论,但是它确实减少雷击的事实被很多人所接受。
3.2 提高线路绝缘水平
由于输电线路个别地段需采用跨河杆塔,这就增加了杆塔落雷的机会,高塔
落雷是塔顶点位高,感应国电压大,而且受绕击的概率也比较大,为了降低线路跳闸率,可以在高杆塔上加上绝缘子串片数,加大导线与地线的距离,加强线路的绝缘。
现在我国架空线路中所用绝缘子,常用的时候是陶瓷绝缘子、玻璃钢绝缘子、合成绝缘子、半导体绝缘子。
在高压架空线路上我们选择用合成绝缘子,它是有玻璃纤维环氧树脂引拔棒、硅橡胶伞裙、金具三部分组成。
合成绝缘的优势是机械性能优越、抗污闪性能好、耐电性优异、重量轻和结构稳定性比较好,在线路的使用上效率高。
但是在应用的缺点也不少最主要的是耐老化性能低,容易断,电位分布不均匀、容易发生不明原因闪络,雷击放电和鸟啄。
以我国南方山区为例,因为这些地区所处的位置都比较高,在这上面架设高压输电线路发生雷电的机会就比较多,这带多雨雷电活动比较大,在这样的地方使用合成绝缘子时,就要根据当地的情况,具体实施方案,合理的安排使用,以其合成绝缘子的最大特性来发挥它在该区的使用率,杜绝当地雷电的发生,减少资源的浪费。
4 结束语
总之,影响架空输电线路雷击跳闸率的因素很多,有一定的复杂性,解决线路的雷害问题,要从实际出发,因地制宜,综合治理,在采取防雷改进措施的道路上任重道远,所以必须认真调查分析,充分了解地理,气象及线路运行等各个方面的情况,算出线路耐雷的水平,根据研究采用措施的可事实性、工作量、经济效益和难度等方面,最后在决定准备采用哪一种方式进行防雷改进措施,能够正常的使用电。
参考文献
[1]余力,李和国.架空输电线路的防雷与接地[J]江西电力,2010(2).
[2]周泽存,沈其工,方瑜,等.高电压技术[M].北京:中国电力出版社,2004.。