架空输电线路防雷措施正式版
- 格式:docx
- 大小:38.69 KB
- 文档页数:15
架空线路防雷保护措施引言架空线路是电力传输和配电系统中常见的一种形式,它由许多电线和电缆组成,将电能从发电站传输到终端用户。
然而,在雷电活动频繁的地区,架空线路往往面临着被雷击的风险。
为了保护架空线路免遭雷击,采取一系列的防雷保护措施是必不可少的。
本文将介绍一些常见的架空线路防雷保护措施,包括避雷针的设置、屏蔽线的使用以及接地系统的建立。
1. 避雷针的设置避雷针是一种利用物体尖端的放电原理来吸引和引导雷电放电的设备。
通过安装避雷针,可以有效地减少雷电击中架空线路的风险。
在架空线路上设置避雷针时,应遵循以下几点:•按照地区的实际情况确定避雷针的数量和位置,通常每隔一段距离设置一个避雷针;•避雷针应该安装在架空线路的最高点,以提高有效吸引雷电的概率;•避雷针应该与架空线路之间保持一定的距离,以免介导过电压到达线路。
2. 屏蔽线的使用屏蔽线是一种能够吸收和消散雷电电荷的导体。
在架空线路中使用屏蔽线可以有效地减少雷电对线路的干扰。
使用屏蔽线时,需要注意以下几点:•屏蔽线应该与架空线路成一定的错层或缠绕结构,以增加雷电放电途径的长度,减少雷电对线路的影响;•屏蔽线的导电性能应该符合相关标准,确保其能够有效地吸收和消散雷电电荷;•屏蔽线与架空线路之间的接地应该可靠,以确保电荷能够有效地被导入地下。
3. 接地系统的建立接地系统是架空线路防雷保护的重要组成部分。
通过建立良好的接地系统,可以将雷电电荷有效地引入地下,减少对架空线路的影响。
建立接地系统时,需要考虑以下几点:•接地系统应该符合相关标准,确保其安全可靠;•接地系统的导电性能要良好,以保持低电阻;•接地系统应该定期检查和维护,确保其正常运行。
结论架空线路防雷保护是确保电力传输和配电系统安全运行的重要措施。
通过合理设置避雷针、使用屏蔽线以及建立良好的接地系统,可以有效地降低雷电对架空线路的影响。
然而,为了保持防雷保护的有效性,相关设备和系统需要定期检查和维护,以确保其正常运行。
输电线路防雷措施在输电线路遭受雷击时,雷电会对输电线路造成过电压冲击,破坏输电线路的绝缘层使其出现闪络或产生涉漏电弧的现象,严重时可能会导致输电线路发生相间短路或者对地短路的故障,进而导致事故跳闸,如果不能在受到雷击的输电线路进行有效的处理措施,则会导致电力系统的供电中断,影响人们的日常生产和生活。
输电线路的防雷措施有:(1)避雷线(架空地线):沿全线装设避雷线是目前为止110KV及其以上架空线最重要和最有效的防雷措施。
35KV及以下一般不全线架设避雷器,因为其绝缘水平较低,即使增加绝缘水平仍很难防止直击雷,可以靠增加绝缘水平使线路在短时间故障情况运行,主要靠消弧线圈和自动重合闸装置。
(2)降低杆塔接地电阻:这是提高线路耐雷水平和减少反击概率的主要措施,措施有采用多根放射状水平接地体、降阻模块等。
反击是当雷电击到避雷针时,雷电流经过接地装置通入大地。
若接地装置的接地电阻过大,它通过雷电流时电位将升的很高,作用在线路或设备的绝缘体,可使绝缘发生击穿。
接地导体由于地电位升高可以反过来向带电导体放电的这种现象叫“雷电反击”。
(3)加强线路的绝缘:如增加绝缘子的片数、改用大爬距悬式绝缘子、增大塔头空气距离。
在实施上有很大的难度,一般为提高线路的耐雷水平,均优先采用降低杆塔接地电阻的方法。
(4)耦合地线:在导线的下方加装一条耦合地线,具有一定的分流作用和增大导地线之间的耦合系数,可提高线路的耐雷水平和降低雷击跳闸率。
(5)消弧线圈:能使雷电过电压所引起的单相对地冲击闪络不转变为稳定的工频电弧,即大大减少建弧率和断路器的跳闸次数。
(6)避雷器:不作密集安装,仅用作线路上雷电过电压特别大或绝缘薄弱的防雷保护。
能免除线路的冲击闪络,使建弧率降为零。
(7)不平和绝缘:为了避免线路落雷时双回路同事闪络跳闸而造成的完全停电的严重局面,当采用通常的防雷措施都不能满足要求时,在雷击线路时绝缘水平较低的线路首先跳闸,保护了其他线路。
背景介绍•高压架空输电线路的防雷措施是保证电力系统安全运行的重要环节。
采取科学合理的防雷措施,可以减少雷电对高压架空输电线路的损害,降低线路跳闸率,提高电力系统的稳定性和可靠性。
同时,防雷措施还可以保护周边环境和人民生命财产安全,对于维护社会稳定和促进经济发展具有重要意义。
防雷措施的重要性安装避雷线避雷线的作用避雷线通常沿着导线或杆塔进行安装,其安装角度和高度需根据具体的地理环境和气象条件进行设计。
避雷线的安装方式避雷线的优点降低杆塔接地电阻降低接地电阻的方法降低接地电阻的优点接地电阻的作用安装避雷器030201强化绝缘避雷线的应用避雷线的应用可以有效地将雷电电流引导到架空线上,避免雷电直接击中线路或设备。
避雷线的安装位置和数量需根据线路的具体情况和环境进行设计,一般在线路的关键部位和易受雷击的区域应加强避雷线的布置。
避雷线的材料和结构也需根据线路的具体情况和环境进行选择,一般要求具有较高的耐压和耐腐蚀性能。
接地电阻的应用接地电阻是将雷电电流引入大地的关键设备,其阻值大小直接影响到电流的引入效果。
接地电阻的安装位置和数量需根据线路的具体情况和环境进行设计,一般要求在易受雷击的区域应加强接地电阻的布置。
接地电阻的材料和结构也需根据线路的具体情况和环境进行选择,一般要求具有较高的导电性能和耐腐蚀性能。
避雷器的应用避雷器的安装位置和数量需根据线路的具体情况和环境进行设计,一般要求在易受雷击的区域应加强避雷器的布置。
避雷器的材料和结构也需根据线路的具体情况和环境进行选择,一般要求具有较高的耐压和耐腐蚀性能。
避雷器是一种将雷电电流引入地下的设备,其作用是在雷电电流过大时将其引入地下,避免对线路或设备造成损坏。
强化绝缘的应用强化绝缘是通过加强线路或设备的绝缘材料来提高其耐压能力,从而减少雷电电流对线路或设备的损坏。
强化绝缘的措施包括采用高性能的绝缘材料、增加绝缘层的厚度、添加绝缘涂层等。
强化绝缘的应用需根据线路的具体情况和环境进行设计,一般要求在易受雷击的区域应加强绝缘材料的强化。
( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改架空输电线路的防雷(标准版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes架空输电线路的防雷(标准版)1架设避雷线架设避雷线是输电线路防雷保护的最基本和最有效的措施。
避雷线的主要作用是防止雷直击导线,同时还具有以下作用:①分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位;②通过对导线的耦合作用可以减小线路绝缘子的电压;③对导线的屏蔽作用还可以降低导线上的感应过电压。
通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。
因此规程规定,220kV及以上电压等级的输电线路应全线架设避雷线,110kV线路一般也应全线架设避雷线。
同时,为了提高避雷线对导线的屏蔽效果,减小绕击率。
避雷线对边导线的保护角应做得小一些,一般采用20°~30°。
220kV及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°及以下。
为了起到保护作用,避雷线应在每基杆塔处接地。
在双避雷线的超高压输电线路上,正常的工作电流将在每个档距中两根避雷线所组成的闭合回路里感应出电流并引起功率损耗。
为了减小这一损耗,同时为了把避雷线兼作通讯及继电保护的通道,可将避雷线经过一个小间隙对地(杆塔)绝缘起来。
雷击时,间隙被击穿,使避雷线接地。
2降低杆塔接地电阻降低杆塔接地电阻可以减小雷击杆塔时的电位升高,这是配合架设避雷线所采取的一项有效措施。
35kV架空线路的防雷保护摘要:结合工作经验,以及我国35kV输电架空线路的现状,分析、总结多种防雷措施;在雷电活动频繁的“易击段、易击点及易击相”以及山区和高土壤电阻率地区,采用综合防雷措施,能使线路投资省、效果好,是值得推广的技术。
关键词:35kV架空线路;防雷;避雷35kV电网在我国电力工业中特别是在以架空线为主的城市近郊及农村供电网中占有相当重要的地位。
以架空线为主的35kV线路多经过山区,连绵不断地分布在旷野上,极易遭雷击。
绝大多数35kV线路为3~4片绝缘子,本身的绝缘水平较低。
当雷击架空线路时,不论是感应雷过电压还是直击雷过电压都极易引起绝缘子闪络。
通过降低线路杆塔接地电阻等措施在一定程度上可提高线路耐雷水平和降低绝缘子闪络概率,但要保证绝缘子不发生闪络是不大可能的。
因此降低35kV线路雷击跳闸率的关键是使线路因雷击引起单相接地时的工频续流尽早熄弧,避免单相接地发展成相间短路而导致线路跳闸。
一、35kV线路雷电性能分析35kV线路常用杆塔除两端外无架空地线,绝缘水平低。
感应雷、直击雷、反击雷均可能威胁安全运行。
图1中a和b分别为上、下层横担的长度,mm;L1为抱箍上装设角钢的长度,m。
图135kV线路典型杆型图1.感应雷害:对一般高度的线路,规程建议,当雷击点与线路的距离d>65m 时,Ug≈25Ihd/d (1) 式中,Ug为导线雷击感应最大过电压,kV;I为雷电流辐值,kA;hd=12.4-2f/3,为导线平均高度,m;d为雷击点距线路的距离,m;f为导线弧垂,m。
f取为4m,Ug为374.5kV,绝缘子串的3片X-4.5的绝子串临界雷闪电压U50%=100+84.5×3=353.5kV,故至少需4片悬瓶组成绝缘串或S-380瓷横担才不会造成绝缘闪络。
2.直击雷害:雷击导线时绝缘子串闪络的雷电流I2=U50%/100=3.5kA,据lgP=-I/88,P为雷电流幅值概率,超过此雷电流的概率为91%,即91%的雷电流都可能造成绝缘子串闪络。
架空线路遭雷击原因及防雷措施架空线路是指在空中悬挂的输电线路,它是电力系统中非常重要的一部分,负责输送电力到各个地方。
架空线路常常容易遭到雷击,造成电力系统的故障,给人们的生产生活带来很大的影响。
那么,架空线路遭雷击的原因是什么?我们又该如何采取防雷措施呢?一、架空线路遭雷击的原因1. 大气环境当大气中出现局部电荷分离,形成雷云时,就会产生雷电。
雷电的产生是由于云层中的冰晶和水滴之间发生碰撞,使云层内各处带电,产生了电场。
2. 架空线路高度架空线路一般都建立在高处,比如山顶、高层建筑等地方,而雷电会比较容易袭击高处的物体。
3. 气候一般来说,夏季是雷电活动的高发期,因为夏季大气湿度大,云层构成较多。
架空线路所采用的金属或者合金等材料,特别是高张力、高性能的导线,很容易成为雷电袭击的目标。
二、防雷措施1. 防雷装置在架空线路上安装防雷装置是最常见的预防措施。
这些装置一般采用封闭式避雷器,其原理是在雷电侵击时,将其引入大地,分散电流,保护线路和设备不受雷击影响。
2. 避雷线为了减少雷电对架空线路的影响,可以在线路上方安装一根金属绳——避雷线。
这样可以将雷电引向地下,减少对线路本身的影响。
3. 架设钢塔架设钢塔是确保架空线路安全运行的关键。
钢塔具有良好的导电性和耐腐蚀性,可以降低雷电对架空线路的影响。
4. 专业巡检定期对架空线路进行巡检,及时发现线路的损坏和老化情况,进行维护和修复,可以减少线路遭雷击的可能性。
5. 提高设备的耐雷水平对于电力设备,提高其耐雷水平也是很重要的防雷措施。
采用抗雷冲击能力强的设备替代易受雷电影响的设备,可以保障电力系统的安全运行。
通过以上防雷措施,我们可以有效地减少架空线路遭雷击的可能性,保障电力系统的正常供电。
还需要注意的是,在架空线路遭雷击后,需要及时对设备和线路进行维护和修复,确保电力系统的安全和稳定。
提升防雷意识,加强防雷设备的维护与更新,对于保障电力系统正常运行具有非常重要的意义。
架空配电线路雷击问题与防雷措施架空配电线路作为供电系统的重要组成部分,在雷电活动频繁的地区存在着雷击的问题。
雷击对配电线路的设备和人员安全都会产生严重威胁,因此需要采取一系列的防雷措施来保障配电线路的安全运行。
要对架空配电线路进行合理的规划和设计。
在规划和设计阶段,需充分考虑当地雷电活动的特点,选择合适的线路走向和位置。
避免将线路设置在明显的雷击风险区域,如高耸物体周围、山顶、山脚等,以减少雷击的可能性。
要合理安装避雷装置。
避雷装置是保护配电线路免受雷击影响的关键设备。
在架空配电线路中,常用的避雷装置包括避雷针和避雷线。
避雷针通过通过尖端集中电场,吸引雷电击中,避免雷电直接击中线路设备;避雷线将雷电从架空线路导向大地,减少雷电的影响区域。
合理安装和布置避雷装置,可以提高抗雷能力。
要定期对架空配电线路进行维护和检测。
定期维护和检测可以及时发现线路设备的损坏和故障,采取措施修复和替换,以确保线路的正常运行和使用安全。
还应定期检查避雷装置的完好性和工作状态,及时修复或更换避雷装置上的损坏部件,确保其正常工作。
还可以增加线路的绝缘等级。
采用高强度、高耐压的绝缘材料和设计结构来提高线路的绝缘等级,防止雷电导致的设备损坏和线路短路。
适当增加绝缘子串数,提高绝缘子串数与雷电活动频率的匹配度,也可以提高线路的抗雷击能力。
还需要加强对人员的防护和安全教育。
工作人员应具备雷电防护知识,了解各种防雷措施的作用和使用方法,遵守安全操作规程,正确配戴防雷设备,确保线路巡查和检修过程中的人身安全。
还需要加强对交流线路的绝缘互同时的防护。
在中性线与地线之间设置避雷器与绝缘物,以增加与地的绝缘距离,减小交流线对接地防护层的影响,确保线路正常运行。
架空配电线路的雷击问题是一个严重的安全隐患,需要采取一系列的防雷措施来保障线路的安全运行。
这些措施包括规划设计、安装避雷装置、维护检测、增加绝缘等级、加强人员防护和安全教育等多个方面。
架空电力线路的防雷保护1. 引言架空电力线路在现代社会中起着至关重要的作用。
然而,由于天气原因,这些电力线路常常面临着雷击的风险。
雷击不仅可能导致电力线路的损坏,还可能导致电力系统的中断,给人们的生活带来不便。
因此,为了保护架空电力线路免受雷击的影响,我们需要采取一系列的防雷保护措施。
2. 雷击产生的原因雷击是由于大气中存在的静电荷的积累和放电造成的。
当云与地面之间的电势差超过一定的临界值时,就会产生放电现象,即雷击。
雷击的主要原因有以下几个因素:•大气环境:大气中的湿度、温度、气压等因素会影响雷击的发生频率和损害程度。
•电力线路的高度:电力线路越高,越容易受到雷击的攻击。
•接地情况:电力线路的接地系统决定了雷电流的流向路径,直接影响到电力线路的防雷效果。
3. 防雷保护措施为了有效防止架空电力线路受到雷击的损害,我们可以采取以下的防护措施:3.1. 避雷针避雷针是一种常见的防雷保护设备,它能够吸引并导引雷电流,减少雷击对电力线路的影响。
避雷针通常放置在电力线路的高处,通过与大气中的电荷相互作用,将雷电流安全地引导到大地。
避雷针的材料通常采用具有较高的导电性能的金属,如铜或钢。
3.2. 导线防雷器导线防雷器是一种专门用于保护电力线路的设备。
它通常安装在电力线路的两端或者中间位置,起到阻断和吸收雷电流的作用。
导线防雷器通过与电力线路相连,当雷击发生时,能够迅速响应并将电力线路上的过电压引向地面,有效保护电力线路免受雷击的损害。
3.3. 接地系统接地系统是电力线路防雷保护的重要组成部分。
通过良好的接地系统设计和安装,可以将雷电流安全地引导到地下,减少雷击对电力线路的影响。
接地系统通常包括接地网、接地极和接地线等组成部分,其中接地极扮演着导流和分散雷击能量的重要角色。
3.4. 绝缘设备绝缘设备是为了防止雷击造成的过电压对电力设备的损害而设计的。
绝缘设备通常包括绝缘子、绝缘套管和绝缘接头等。
这些设备能够有效地隔离电力设备与周围环境之间的电荷,降低雷击对电力设备的影响。
架空输电线路的防雷及接地措施架空输电线路一直以来都是电力行业中的重要组成部分,它们将电力从发电厂输送到各个用电单位,承载着人们日常生活和各行各业的发展。
然而,架空输电线路在运作过程中也会遭受各种天气影响,如雷电天气会对架空输电线路造成破坏,危及电网的正常运行。
因此,防雷及接地措施的重要性不言而喻。
一、架空输电线路的特点架空输电线路是由一系列电线、电缆、线杆和附属设备组成的,其主要特点包括以下几点:1.线杆的高度往往在10米以上,电线从高空悬挂,因此容易受到雷电影响。
2.电线之间的距离比较短,面积大,容易形成较强的电荷场,也容易被雷电击中。
3.电线由金属材料构成,易于导电,雷电一旦击中,容易引起电线或设备的损坏。
二、防雷措施1.避雷针避雷针是一种用于保护建筑物或其他大型设施免受雷击的装置,其原理是将大气中的自然电荷引到高处,形成电位差,从而避免雷电击中。
同样的道理,对于架空输电线路,也可以设置避雷针来保护电线或设备不受雷电影响。
2.避雷网避雷网是用金属网构成的,通常被安装在建筑物的屋顶或高处,可以有效地抵御雷电攻击。
对于架空输电线路,避雷网同样可以起到保护作用。
一般情况下,避雷网需要与接地网相连接,以便将蓄电荷等电荷引导到地下。
3.接地线接地线是将设备与大地相连的一种导线,通过进行接地,可以将电压和电流引入地下,以地下的土壤和其他材料来分散和吸收电能。
对于架空输电线路,通过铺设接地线并与电线或设备相连接,当雷电击中时,可以将电流引入地下,保证电线或设备的安全。
三、接地措施1.接地网接地网是一个基本的电气安装,主要是为了将设备的金属构件连接到地下,使其与地面保持相同的电位。
对于架空输电线路,首先需要建造一个良好的接地网,这样可以避免雷电攻击造成的电势差,确保系统的稳定运行。
2.接地极接地极是一种地下导电材料,作为接地系统的一部分,其主要功能是将电荷引入地下,以达到保护设备的目的。
对于架空输电线路,需要建立接地极,在架空线路的某些关键位置,如变电站、变压器、柱塞、配电盘等地方进行安装,以形成一个完整的接地系统。
架空输电线路防雷措施架空输电线路是电力网及电力系统的重要组成部分。
由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。
架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭受雷击的机率较大。
架空输电线路雷害事故的形成通常要经受这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。
针对雷害事故形成的四个阶段,现代输电线路在实行防雷爱护措施时,要做到“四道防线”,即:1防直击,就是使输电线路不受直击雷。
2防闪络,就是使输电线路受雷后绝缘不发生闪络。
3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。
4防停电,就是使输电线路建立工频电弧后不中断电力供应。
架空输电线路防雷的详细措施现对生产运行部门常用的架空输电线路防雷改进措施简述如下:1架设避雷线架设避雷线是输电线路防雷爱护的最基本和最有效的措施。
避雷线的主要作用是防止雷直击导线,同时还具有以下作用:1)分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位;2)通过对导线的耦合作用可以减小线路绝缘子的电压;3)对导线的屏蔽作用还可以降低导线上的感应过电压。
通常来说,线路电压愈高,采纳避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。
因此,110kV及以上电压等级的输电线路都应全线架设避雷线。
同时,为了提高避雷线对导线的屏蔽效果,减小绕击率,避雷线对边导线的爱护角应做得小一些,一般采纳20°~30°。
220kV及330kV双避雷线线路应做到20°左右,500kV 及以上的超高压、特高压线路都架设双避雷线,爱护角在15°左右。
架空输电线路防雷措施架空输电线路防雷措施架空输电线路是连接电源厂、变电站及用户的主要电力传输通道,是电网系统的重要组成部分。
然而,在雷电活动频繁的地区,架空输电线路往往面临严重的雷电灾害威胁,引发各种线路事故。
因此,架空输电线路的防雷工作至关重要,必须采取合理可行的措施来确保线路的安全运行。
一、架空输电线路的特点1、长线路、高杆塔:架空输电线路一般跨越山谷、河流等地形复杂的区域,需要高杆塔支撑,其线路长度往往达到几百公里以上。
2、集落密集:随着城市化进程的不断加快,架空输电线路不可避免地要穿越人口密集区域,这加大了防雷工作的难度。
3、高电压、大电流:架空输电线路一般采用高于220kV、甚至500kV以上的高电压输电,受电端的电流也很大,因此对防雷措施的要求很高。
二、架空输电线路的防雷措施1、引雷接地引雷接地是指将雷电引入地下,以减少雷电对架空输电线路的破坏力。
具体措施包括:(1)杆塔接地:对于架空输电线路的杆塔,在深层土壤中钻孔、埋放电极,将杆塔与深层土层直接接通,形成一定的接地网。
(2)导线接地:在架空输电线路导线的每个杆塔上,安装接地线,将导线接地,以震荡雷电电压。
2、避雷针避雷针是将空气中存在的雷电集中在避雷针顶部,减少大地与云之间的电荷过渡。
具体措施包括:(1)安装避雷针:在架空输电线路的每个杆塔上方,安装避雷针,将避雷针接地,使之与架空输电线路杆塔的接地网相连。
(2)避雷绝缘子串:在导线张力较大处,安装避雷绝缘子串,用以增强其防雷能力。
3、避雷装置避雷装置是指将雷击能量通过适当的元件进行断开,以保障线路安全。
具体措施包括:(1)雷电监测装置:通过架设适当的雷电监测装置,监测雷电密集区域的雷击情况,及时采取相应的措施。
(2)避雷放电装置:在导线张力较大处,采用避雷放电装置,在雷电冲击导线时,使其迅速放电,达到抵消雷电的效果。
三、结语架空输电线路的防雷工作需要综合考虑诸多因素,采取科学合理的措施和方法,才能确保线路的安全运行。
10KV架空线路防雷措施雷电天气给架空线路的安全运行带来极大的威胁,特别是在降雨时段,由于雨水的导电性,雷击概率更高,因此采取有效的防雷措施,保障架空线路的安全运行至关重要。
本文将讲述一些10KV架空线路防雷措施的实践方法。
1. 合理选用导线和导线附件10KV架空线路的导线和附件应有很好的导电性能和耐腐蚀能力,抗拉强度和弯曲余量要求也很高。
在导线材料方面,应采用铝合金导线,这种导线具有比较优良的导电性和机械性能,能够有效地抵御风、雨等外部的自然环境影响;在选择导线附件方面,应选择抗氧化、耐腐蚀能力强的金属材料。
另外,导线的垂直、水平等传输方式对于防雷具有重要影响,应尽量减少传输方式的转弯角度、提高导线的延展度和挂绳的刚度。
2. 核心耐久的绝缘材料应用绝缘材料的选择十分重要,应选择具有好的内部绝缘性能、耐高温和耐腐蚀能力强的材料。
常见绝缘材料有瓷、玻璃钢以及高强度绝缘带等,根据实际情况选用。
另外,在安装线杆时,应选择合理的杆高和杆距。
安装时,注意线杆与绝缘子的接触面应尽可能大,贴合度高,接触紧密度达到最优状态,从而使导线较好地绝缘。
3. 地线的连接方式地线是防雷措施不可或缺的一部分,适合的连接方式有助于发挥地线的最佳防雷效果。
防雷的主要原则是实现与大地的电光接触。
因此,在连接地线时,应确保地线与大地的电阻何地导线和大地的电阻相当或更小,从而使地线消除电荷。
4. 高效的避雷装置使用避雷针是一种专门用于防止室外设施受到雷击损坏的装置。
在高压线路中,避雷装置应位于每根线杆的顶部或安装在特定的绝缘杆上,从而达到最佳的防雷效果。
而且,每个避雷装置应与地线相接触,从而使积攒的电荷通过导线和避雷装置消散到大地。
5. 完善的保护开关系统完备有效的保护开关系统是快速响应雷暴天气的重要手段。
保护开关系统的设计应考虑到电力传输路线上的高压变压器和继电器的总装置。
系统应能自动启动并及时转移供电线路,从而减小电力故障造成的损失。
10KV架空线路防雷措施架空线路是一种常见的输电方式,由于线路高空、迎风暴露在自然环境中,容易受到雷击的影响。
为了确保架空线路的安全运行,必须采取适当的防雷措施。
本文将介绍关于10KV架空线路防雷的措施。
首先,要选择合适的材料和技术。
在架设架空线路时,应选择耐雷击的材料,如钢材或铝合金材料,以提高线路的耐雷性。
另外,还要注意线路的接地问题。
接地系统应具备良好的接地电阻,确保雷电能够及时地引入地下,保护线路正常运行。
其次,要合理布置避雷装置。
避雷装置可以分为避雷针、避雷网和避雷线等。
在架设架空线路时,应合理布置避雷针和避雷线,以降低雷击频率并减小雷击危害。
避雷网可以用于保护线路周围的建筑物,防止雷电通过架空线路引发火灾等危险。
第三,定期检查线路设施。
为了确保架空线路的安全运行,需要定期对线路设施进行检查和维护。
检查内容包括线路支架、避雷装置、导线和接地系统等。
如果发现设施损坏或存在缺陷,应及时进行修复或更换,以保证线路的可靠性和安全性。
第四,加强监测和预警能力。
可以利用雷电监测系统对架空线路周围的雷电活动进行监测,并及时发出预警信号。
预警信号可以提醒工作人员及时采取措施,保护线路设施和人员的安全。
此外,还可以考虑利用避雷装置的保护区域对线路进行绝缘处理,以减小雷击的概率。
同时,可以加装避雷装置的接闪器,用于消除线路上的雷电积累,保护线路的绝缘性能。
总之,10KV架空线路防雷措施需要综合考虑材料选择、避雷装置布置、定期检查、监测预警和绝缘处理等因素。
通过科学合理的措施,可以有效降低雷击频率,提高架空线路的安全性和可靠性。
架空配电线路雷击问题与防雷措施雷击是指大气中产生的雷电在接近或直接影响人类生活或设备设施等进行传播和放电。
架空配电线路处于室外环境,容易受到雷击的影响,给人类生活和电网运行带来威胁。
本文将探讨架空配电线路雷击问题及其防雷措施。
架空配电线路的雷击问题主要表现在以下几个方面:1. 直接击中:雷电直接与架空线路接触,形成强电流,造成线路设备受损甚至烧毁。
2. 感应击中:雷电附近产生强电流,通过感应作用传递给架空线路,导致线路设备受损。
3. 导热击中:雷电通过大气中的导体(如金属杆、树木)传导到架空线路上,造成线路设备受损。
为了保障架空配电线路的安全运行,需要采取一系列的防雷措施:1. 架设避雷针:在架空配电线路附近设置避雷针,能够吸引雷电,并通过导线将雷电引入地下,减少雷击的危害。
2. 设置避雷装置:在架空线路中适当的位置设置避雷器,能够在雷击时释放过电压,保护线路设备不受损坏。
3. 加装过电压保护装置:在主要设备和重要线路上加装过电压保护装置,能够快速将过电压流入地下,保护线路设备。
4. 绝缘保护:在架空线路中使用合适的绝缘材料,保障线路的绝缘性能,减少雷电对线路的影响。
5. 定期检测维护:定期对架空配电线路进行检测和维护,及时发现问题并加以修复,确保线路的正常运行。
6. 电网接地:建立良好的接地系统,将过电压导入地下,减少雷电对架空线路的影响。
7. 加强抗干扰能力:在线路设备中加入抗干扰元件,提高设备对雷电的抵抗能力。
架空配电线路雷击问题是一项需要高度重视的安全隐患。
通过有效的防雷措施,可以减少雷击对线路设备的破坏,保障电网运行的安全和稳定。
文件编号:GD/FS-9033(解决方案范本系列)架空输电线路防雷措施详细版A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing.编辑:_________________单位:_________________日期:_________________架空输电线路防雷措施详细版提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。
,文档所展示内容即为所得,可在下载完成后直接进行编辑。
架空输电线路是电力网及电力系统的重要组成部分。
由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。
架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。
架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。
针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”,即:1防直击,就是使输电线路不受直击雷。
2防闪络,就是使输电线路受雷后绝缘不发生闪络。
3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。
4防停电,就是使输电线路建立工频电弧后不中断电力供应。
架空输电线路防雷的具体措施现对生产运行部门常用的架空输电线路防雷改进措施简述如下:1架设避雷线架设避雷线是输电线路防雷保护的最基本和最有效的措施。
避雷线的主要作用是防止雷直击导线,同时还具有以下作用:1)分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位;2)通过对导线的耦合作用可以减小线路绝缘子的电压;3)对导线的屏蔽作用还可以降低导线上的感应过电压。
架空输电线路的防雷及运维措施摘要:架空输电线路是电力工程中最为常见的线路布设形式,由于大部分设施的布设高度较高且长期暴露在外,难免会因受到雷电影响而引发故障。
因此,需合理布设相应的防雷措施,制定科学合理的运维方案,以保障整体输电线路的安全。
关键词:架空输电线路;防雷;运维措施1架空输电线路防雷措施1.1布设避雷线布设避雷线作为一种传统的防雷保护措施,其可有效避免雷电直击并将雷电流进行合理疏导,进而为架空线路导线构建一层屏蔽层。
通常来讲,架空地线材料造价成本较低,主要采用钢绞线和铝包钢绞线(带通讯功能)或其他小线径导线制作。
针对部分山区地段的雷击事故多发区,若输电线路电压超过110kV,则一般采用构建全线双线避雷线进行防雷;若输电线路电压在35kV及以下,则一般采用单线全线架空地线或只需将架空地线布设于变电站附近2公里内的区域即可。
当然,以上布设方式多出于工程经济性方面考虑,若想进一步增强整体线路避雷效果,则可根据实际情况重新调整线路布设方案。
此外,架空地线保护角大小是防止线路直接遭受雷击的关键所在,雷击导线的概率随着保护角减小而降低,导线悬挂点与架空地线两者间所设置的保护角越小,防直击雷的效果越高。
保护角的大小,通常取决于导线横担与地线横担之间的设计结构,大部分输电线路会将保护角的角度设定在10-25°范围内。
对于110kV-220kV高压线路防雷,通常会布设双避雷线并将保护角的角度设定为不大于20°,而针对超过500kV的超高压、特高压的架空线路,通常保护角的角度不高于15°。
但对重覆冰地区线路保护角可适当加大,以防止导线落冰跳动引起安全距离不足。
1.2设计接地网对于输电线路而言,改善接地装置,构建良好的接地系统可以在一定程度上规避雷击事故。
以110kV输电线路为例,在运行中应将接地装置的改进和优化作为工作重心。
通过改进接地装置,可以有效地减少输电线路的跳闸次数,从而降低事故发生的概率。
架空电力线路的防雷保护架空电力线路是电力系统中最普遍的输电方式之一。
然而,随着自然灾害频繁发生,特别是雷电灾害,架空电力线路的防雷保护也成为了电力系统中的一个重要问题。
防雷保护是一项高度技术性的工作,能够防止电力系统设备受到雷击损坏,提高电力系统的运行可靠性。
防雷保护措施不仅需要针对设备的特殊性质进行考虑,还需要考虑设备所处的环境和电力系统所处的地区气候等特殊因素,以确保防雷保护的有效性。
在架空电力线路的防雷保护中,需要采取如下措施:1. 保护设施选择首先需要选择适合于架空电力线路的防雷保护设备。
其中,雷击计、雷电流互感器、避雷针等是常用的防雷保护设备,能够起到拦截和吸收雷电能量,保护架空电力线路设备的作用。
2. 架设线路方式的选择架设线路的方式是影响架空电力线路防雷保护的重要因素之一。
为了提高防雷效果,应尽可能采用G形或W形架设线路,因为这种方式能够对电力线路产生更好的保护。
3. 接地电阻的控制接地电阻是影响防雷保护效果的关键因素,它通常用来评估电力系统接地极的电气性能。
在架空电力线路的防雷保护中,应尽可能控制接地电阻,以降低电力设备和线路受到雷击的风险。
4. 防雷标准的应用对于架空电力线路的防雷保护,应严格按照国家相关标准执行,包括GB/T 15618-2008 《高压电气设备的防雷与大气过电压试验》、DL/T 698-1999 《电力设施防雷设计规范》等。
在执行防雷标准过程中,还需要依据实际情况选择合适的防雷保护措施,以确保电力设备和线路安全运行。
最后,架空电力线路的防雷保护是一个复杂的系统工程,需要综合考虑电力设备和线路的特殊性质以及环境和气候等因素。
只有通过科学严密的防雷保护方案和有效的操作实践,才能确保架空电力线路的平稳运行,保障供电的安全可靠性。
In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.架空输电线路防雷措施正
式版
架空输电线路防雷措施正式版
下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。
文档可以直接使用,也可根据实际需要修订后使用。
架空输电线路是电力网及电力系统的重要组成部分。
由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。
架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。
架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。
针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护
措施时,要做到“四道防线”,即:
1防直击,就是使输电线路不受直击雷。
2防闪络,就是使输电线路受雷后绝缘不发生闪络。
3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。
4防停电,就是使输电线路建立工频电弧后不中断电力供应。
架空输电线路防雷的具体措施
现对生产运行部门常用的架空输电线路防雷改进措施简述如下:
1架设避雷线
架设避雷线是输电线路防雷保护的最基本和最有效的措施。
避雷线的主要作用
是防止雷直击导线,同时还具有以下作用:
1)分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位;
2)通过对导线的耦合作用可以减小线路绝缘子的电压;
3)对导线的屏蔽作用还可以降低导线上的感应过电压。
通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。
因此,110kV及以上电压等级的输电线路都应全线架设避雷线。
同时,为了提高避雷线对导线的屏蔽效果,减小绕击率,避雷线对边导线的保护角应做得小一些,一般采用20°~
30°。
220kV及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°左右。
2安装避雷针
安装避雷针也是架空输电线路常用的一种防雷措施。
但是在实际应用却存在以下问题:
1)由于避雷针而导致雷击概率增大
2)保护范围小
国内外不少防雷专家,对避雷针能向被保护物有多大的保护距离做了系统的研究得出的结论是:“对一根垂直避雷针无法获得十分肯定的保护区域”。
英国的
BS6551法规曾指出:“经验显示不能依赖避雷针提供任何保护区内的完整保护”。
而德国防雷法规则有意识地不引入避雷针保护范围的概念。
从避雷针因侧击雷、绕击雷,造成事故的实例来分析,其保护范围是不十分肯定的。
由于避雷针的引雷作用,所以雷击次数就会提高,当雷电被吸引到针上,在强大的雷电流沿针而流入大地过程中,雷电流周围形成的磁场会产生截应过电压,它与雷电流的大小及变化速度成正比,与雷击的距离成反比。
而被保护物的自然屏蔽装置对电磁感应或电磁干扰的屏蔽作用,不能达到有效屏蔽,使被保护区内的弱电设备因感应过电压而损坏。
4)反击的危害
当雷电被吸引到针上,将有数千安的
高频电流通过避雷针及其接地引下线和接地装置,此时针和引线的电压很高,若针对被保护物之间的距离小于安全距离时,会由针及引下线向被保护物发生反击,损坏被保护物。
我国国标规定针距被保护物的空气中距离≥5米,针距被保护物的接地装置间的地中距离Sd≥3米,针对这一要求,微波塔和电视发射塔的各种天线上的避雷针是难以满足规范的要求。
5)电磁感应问题
在强大的雷电流沿避雷针向下流入地中的过程中,会在周围产生强大的电磁场,它会使微波通信、计算机等设备产生误动。
强大的电磁场,可以使金属开口环或打包用铁箍的接触不良处发生放电,从
而引燃引爆易燃易爆物。
更常见的则是引起微电子设备(通信设备,计算机设备等)的失灵与损坏。
受雷击的针及引线,在高频雷电流作用下,将从接触点至地面产生一个较高的接触电压。
当雷电流流入大地扩散时,在入地点沿半径各点形成不同的电位,若跨入该区域会产生很高的跨步电压。
在测避雷针不适用于对弱电设备的保护,更不易用于易燃易爆品的防雷保护。
因它引来强大的雷电流在接地引线断线卡处易产生火花,还会在附近的金属开口环处产生火花,从而引起事故。
3加强线路绝缘
由于输电线路个别地段需采用大跨越高杆塔(如:跨河杆塔),这就增加了杆塔
落雷的机会。
高塔落雷时塔顶电位高,感应过电压大,而且受绕击的概率也较大。
为降低线路跳闸率,可在高杆塔上增加绝缘子串片数,加大大跨越档导线与地线之间的距离,以加强线路绝缘。
在35kV及以下的线路可采用瓷横担等冲击闪络电压较高的绝缘子来降低雷击跳闸率。
4采用差绝缘方式
此措施适宜于中性点不接地或经消弧线圈接地的系统,并且导线为三角形排列的情况。
所谓差绝缘,是指同一基杆塔上三相绝缘有差异,下面两相较之最上面一相各增加一片绝缘子,当雷击杆塔或上导线时,由于上导线绝缘相对较“弱”而先击穿,雷电流经杆塔人地,避免了两相闪
络。
湖南郴州电业局和包头供电局在雷害严重的一些35kV线路上应用了这一方法,收到了事故率明显下降的效果。
据计算,采用差绝缘后,线路的耐雷水平可提高24%。
5采用不平衡绝缘方式
在现代高压及超高压线路上,同杆架设的双回路线路日益增多,对此类线路在采用通常的防雷措施尚不能满足要求时,可考虑采用不平衡绝缘方式来降低双回路雷击同时跳闸率,以保障线路的连续供电。
不平衡绝缘的原则是使双回路的绝缘子串片数有差异,这样,雷击时绝缘子串片数少的回路先闪络,闪络后的导线相当于地线,增加了对另一回路导线的耦合作
用,提高了线路的耐雷水平使之不发生闪络,保障了另一回路的连续供电。
6藕合地埋线
藕合地埋线可起两个作用,一是降低接地电阻,《电力工程高压送电线路设计手册》指出:连续伸长接地线是沿线路在地中埋设1—2根接地线,并可与下一基塔的杆塔接地装置相连,此时对工频接地电阻值不作要隶_国内外的运行经验证明,它是降低高土壤电阻率地区杆塔接地电阻的有效措施之一。
二是起一部分架空地线的作用,既有避雷线的分流作用,又有避雷线的藕合作用。
据有的单位的运行经验,在一个20基杆塔的易击段埋设藕合地埋线后,10年中只发生一次雷击故障,有文献
介绍可降低跳闸率40%,显著提高线路耐雷水平。
7预放电棒与负角保护针
预放电棒的作用机理是减小导、地线间距,增大藕合系数,降低杆塔分流系数,加大导线、绝缘子串对地电容,改善电压分布;负角保护针可看成装在线路边导线外侧的避雷针,其目的是改善屏蔽,减小临界击距。
预放电棒与负角保护针常一起装设,这一方法曾在广东、贵州等地采用,有一定的效果。
制作、安装和运行维护方便,以及经济花费不多是其特点。
8装设消雷器
消雷器是一种新型的直击雷防护装置,在国内已有十余年的应用历史,目前
架空输电线路上装设的消雷器已有上千套,运行情况良好。
虽然对消雷器的机理和理论还存在怀疑和争论,但它确实能消除或减少雷击的事实已被越来越多的人承认与接受。
消雷器对接地电阻的要求不严,其保护范围也远比避雷针大。
在实际装设时,应认真解决好有关的各个环节中的问题。
9使用接地降阻剂
近几年来国内一些单位在处理接地时使用了降阻剂,取得了较好的降阻效果,介绍降阻剂的文章也不少,降阻剂确实热极一时。
据有关资料介绍,降阻剂使用后接地电阻随时间的推移而下降,并且由于其PH值一般均在7.6一8.5之间,有的呈
中性略偏碱,对接地体有钝化保护作用,故基本无腐蚀现象。
但是,使用较长时间表明接地降阻剂对接地体产生了严重的腐蚀。
故在采用这一方法时应关注长期的效果,特别是对接地体的腐蚀问题。
10采用中性点非有效接地方式
在我国35kV及以下电力系统中采用中性点不接地或经消弧线圈接地的方式。
这样可使由雷击引起的大多数单相接地故障能够自动消除,不致引起相间短路和跳闸。
而在二相或三相落雷时,由于先对地闪络的一相相当于一条避雷线,增加了分流和对未闪络相的耦合作用,使未闪络相绝缘上的电压下降,从而提高了线路的耐雷水平。
因此,对35kV线路的钢筋混凝土
杆和铁塔,必须做好接地措施。
总之,影响架空输电线路雷击跳闸率的因素很多,有一定的复杂性,解决线路的雷害问题,要从实际出发,因地制宜,综合治理。
在采取防雷改进措施之前,要认真调查分析,充分了解地理、气象及线路运行等各方面的情况,核算线路的耐雷水平,研究采用措施的可行性、工作量、难度、经济效益及效果等,最后来决定准备采用某一种或几种防雷改进措施。
——此位置可填写公司或团队名字——。