离子膜法烧碱生产系统盐水精制技术进展(1)
- 格式:pdf
- 大小:1.22 MB
- 文档页数:5
离子膜烧碱工艺一、工艺流程简介烧碱目前以离子膜工艺为主。
按流程顺序分为一次盐水、二次盐水精制、电解、淡盐水脱氯、Cl2处理、H2处理等工序。
核心工序是二次盐水精制和电解部分。
盐水一次精制的主要目的是控制悬浮物(SS)与各种杂质离子的含量在要求的范围内,为盐水二次精制作准备。
盐水二次精制最主要部分是螯合树脂塔,,使粗盐水经过树脂塔后除去二价阳离子。
部分工艺在二次精制中盐水进螯合树脂塔之前设置碳素管或其它类型过滤器,以进一步降低盐水中的悬浮物的含量。
电解部分是烧碱制备流程的关键工序,符合电解要求指标的精制盐水流经电解槽时,在一定直流电作用下,离子经离子交换膜的发生迁移,最终在阴极液相形成烧碱,阳极液相产生淡盐水,阴极气相生成H2,阳极气相生成Cl2。
二、离子交换膜法电解制碱的主要生产流程工艺流程图精制的饱和食盐水进入阳极室;纯水(加入一定量的NaOH溶液)加入阴极室,通电后H2O在阴极表面放电生成H2,Na+则穿过离子膜由阳极室进入阴极室,此时阴极室导入的阴极液中含有NaOH;Cl-则在阳极表面放电生成Cl2。
电解后的淡盐水则从阳极室导出,经添加食盐增加浓度后可循环利用。
阴极室注入纯水而非NaCl溶液的原因是阴极室发生反应为2H++2e-=H2↑;而Na+则可透过离子膜到达阴极室生成NaOH溶液,但在电解开始时,为增强溶液导电性,同时又不引入新杂质,阴极室水中往往加入一定量NaOH溶液。
三、具体工艺流程盐水精制单元工艺简述:饱和粗盐水加入精制反应剂,经过精制反应后加入絮凝剂进入澄清桶澄清,澄清盐水经砂滤器粗滤后,再经α-纤维素预涂碳素管过滤器二次过滤,使盐水中的悬浮物小于1×10-6,然后进入离子交换树脂塔,进行二次精制,得到满足离子膜电解槽运行要求的精制盐水。
其工艺流程简图如图1所示。
①一次盐水精制一次澄清盐水的制备是氯碱生产工艺至关重要的工段,精制效果的好坏直接影响产品的质量和产量。
bc 精制原理①除镁镁离子常以氯化物的形式存在于原盐中,精制时向粗盐水中加入烧碱溶液生成不溶性的氢氧化镁沉淀。
离子交换膜法电解制碱工艺一、离子膜电解制碱原理如下图。
电解槽的阴极室和阳极室用阳离子交换膜隔开,精制盐水进入阳极室。
通电时H20在阴极表面放电生成氢气,Na+离子通过离子膜由阳极室与OH-结合成NaOH;CL-离子则在阳极表面放电生成氯气。
经电解后的淡盐水随氯气一起离开阳极室。
氢氧化钠的浓度可利用进电解槽的纯水量来调节。
离子膜电解制碱原理二、盐水的二次精制盐水的质量是离子膜电解槽正常生产的一个关键。
它不仅影响离子膜的寿命,也是离子膜能否在高电流密度下运行得到高电流效率的至关重要的因素。
电解槽所用的阳离子交换膜,具有选择和透过溶液中阳离子的特性。
因此,它不仅能使Na+离子大量通过,而且也能让Ca2+、 Mg2+、 Fe2+、Ba2+、等离子通过,当这些杂质阳离子透过膜时,就和从阴极室反渗过来的微量OH-离子形成难溶的氢氧化物堵塞离子膜。
在盐水中氯酸根和悬浮物也能影响离子膜的正常运行。
有的离子膜对盐水的I-离子的含量还有要求。
因此,用于电解的盐水的纯度远远高于隔膜电槽和水银电槽,他必须在原来一次精制的基础上再进行第二次精制。
(一)二次盐水的过滤一次盐水中的少量悬浮物,如果随盐水进入螯合树脂塔,将会堵塞树脂的微孔,甚至使树脂呈团状物,严重时有结块现象,从而降低树脂处理盐水的能力。
因此,盐水精制时一般要求盐水中悬浮物(s.s)的含量小于1ppm。
这样就必须经过过滤,如果采用传统的砂滤设备往往不能符合要求,目前常用的是碳素管式过滤器。
碳素管式过滤器是由许多根烧结的碳素管组成,具有良好的耐腐蚀性,它由纯碳烧结而成,管壁上分布有均匀的微孔,孔径为100μ,气孔率为42%。
过滤后的二次盐水能达到悬浮物(s.s)的含量小于1ppm的要求。
(我们公司的不锈钢纤维烧结滤芯亦能满足这种过滤要求,我们可以开拓它在离子膜制碱中二次盐水过滤中的应用。
)1-澄清盐水槽;2-澄清盐水泵;3-助剂给料泵;4-助剂接料泵;5-碳素过滤器;6-预涂泵;7-预涂槽;8-过滤盐水槽;9-过滤盐水泵预涂过滤前必须在碳素管的外表面预先涂上一层厚薄均匀的助滤剂α-纤维素,以防止盐水中的悬浮物堵塞碳素管的微孔,以提高过滤器的过滤性能。
离子膜烧碱工艺流程
离子膜电解法制作烧碱一般是以饱和食盐水为原料的,具体的制作工艺流程如下:
1、盐水精制
粗盐水中含有泥沙、Ca2+、Mg2t、Fe3+等杂质,远不能达到电解要求,需要经过提纯精制: 一次盐水一般是采用膜过流技术制取精制盐水,然后将精制盐水通过整合树脂塔处理,使钙、镁离子含量降到20wtppb的水平,得到二次精制的盐水。
2、离子膜电解
精制过的盐水即可进行电解制碱,离子交换膜电解槽主要由阳极、阴极、离子交换膜、电解槽框和导电铜棒等组成,精制的饱和食盐水进入阳极室,纯水(加入一定量的NaOH溶液)加入阴极室,通电后,H,0在阴极表面放电生成H,,Nat穿过离子膜由阳极室进入阴极室,导出的阴极液中含有NaOH;C-则在阳极表面放电生成C。
电解后的淡盐水从阳极导出,可重新用于配制食盐水。
离子膜烧碱工艺的工艺流程电解流程由二次盐水精制工序送来的精制盐水,通过盐水高位槽,进入电解槽的阳极液进料总管。
其流量由每个电解槽的自调阀来控制,以保证阳极液的浓度达到规定值。
进槽值由送入每台电解槽的直流电流进行串级控制。
浓度31%的高纯盐酸用来中和从阴极室通过离子膜渗透到阳极室的OH-离子,盐酸经过自动调节与阳极液一起送入阳极室。
精制盐水在阳极室中进行电解,产生氯气,同时NaCL浓度降低。
电解槽进、出口之间的NaCL分解率为约50%。
每个阳极室都有两个挠性软管,一个连接进料总管,另一个连接出料总管。
电解后产生的氯气和淡盐水混合物通过软管汇集排入阳极液总管,并在总管中进行气体和液体分离。
氯气在氯气总管中进行汇集后送入淡盐水储槽顶部。
在此,氯气中的水分被分离并滴落,然后氯气被送往界外。
氯气压力由自调阀控制。
淡盐水送入淡盐水储槽底部,然后用淡盐水循环泵一部分经液位自调控制送往脱氯工序;另一部分送往电解槽,进槽淡盐水流量由自动控制。
阴极液在阴极室电解产生氢气和烧碱,碱液进入阴极液循环槽,通过阴极液循环泵一部分经阴极液冷却器进入碱高位槽后,进入电槽,这部分电解液进槽前加纯水稀释,纯水量自调由直流电和碱串级控制;另一部分电解液经液位自调控制送入碱冷却器冷却至约45℃后送往碱储槽,然后送往罐区。
氢气在阴极液出口总管中分离,并在氢气主管线中进行汇集后,送到碱液循环槽顶部。
氢气中的水分被分离并滴落,然后氢气送往界外。
氢气压力由自调阀控制,与氯气压力串级控制,使氢气和氯气之间压差保持在设定范围内(5KPa)。
4.淡盐水脱氯工序电解槽出来的淡盐水和氯氢处理来的氯水混合后,用31%的高纯盐酸将PH值调节到约1.5,送入脱氯塔的顶部。
脱氯塔的压力为-70~75Kpa,由真空泵进行控制。
脱氯塔出口处游离氯降低到50mg/L,脱出的氯气汇入氯气总管,也可送入废气吸收塔。
脱氯后的淡盐水先用NaOH把PH调到9~11,再将亚硫酸钠储槽中配制的浓度为10wt%的亚硫酸钠溶液用亚硫酸钠泵加入到淡盐水管道中,以彻底除去残余的游离氯。
离子膜烧碱生产工艺浅析离子膜法生产烧碱是目前世界上最先进的制碱技术,国内许多氯碱企业虽然也发现了成套引进的生产工艺存在某些工艺设计不合理、原材料及能源浪费等问题,但由于氯碱生产属于高危生产行业,且离子膜烧碱生产系统自动化程度高、联锁点多、技术复杂,一旦出现失误极易造成严重的安全环保事故和巨大的经济损失等原因,一直没有研究开发出有效的解决办法,致使我国的离子膜烧碱生产工艺一直无大的改进或实质性进展。
本文分析了离子膜烧碱生产工艺。
标签:离子膜;能耗;烧碱;生产工艺离子膜电解法又称膜电槽电解法,是利用阳离子交换膜将单元电解槽分隔为阳极室和阴极室,使电解产品分开的方法。
离子膜电解法是在离子交换树脂(见离子交换剂)的基础上发展起来的一项新技术。
利用离子交换膜对阴阳离子具有选择透过的特性,容许带一种电荷的离子通过而限制相反电荷的离子通过,以达到浓缩、脱盐、净化、提纯以及电化合成的目的。
这项技术已经用于氯碱的生产,海水和苦咸水的淡化,工业用水和超纯水的制备,酶、维生素与氨基酸等药品的精制,电镀废液的回收,放射性废水的处理等方面,其中应用最广泛、成效最显著的是氯碱工业。
在氯碱工业中,利用阳离子交换膜电解槽电解食盐或氯化钾水溶液来制造氯气、氢气和高纯度的烧碱(氢氧化钠)或氢氧化钾。
1 离子膜烧碱生产工艺1.1 配水在电解的工序中,需要脱离掉淡盐水中多余的硫酸根。
被输送到一次盐水工序的淡盐水包含两个部分:第一部分便是流经自动控制的装置调节出的盐水;第二部分是存储在储槽中的上清液(已经沉淀处理)。
从其它的工序中回收出来的水,调节所用的水和盐泥中排滤出的滤液,经过一定比例的调和就形成了化盐水。
1.2 化盐和盐水的精制把化盐水的温度调到适合,在盐池的底部经过逆流的方式接触到原盐,在逆流的水流中添加氢氧化钠溶液同液体中的镁离子发生化学反应,产生沉淀氢氧化镁而被分离出去,有机质也被逐步的分解为较小的分子。
经过混合器加压后的粗盐水,会进入预处理器中。
离子膜法制碱生产技术全书共分十四章及附录部分。
书中全面系统地阐述了盐水二次精制;离子膜电解工艺、电解槽结构、操作条件、脱氧;离子膜碱蒸发、片(固)碱的制备等,同时,详细介绍了高纯盐酸、设备防腐、分析、仪表自控及整流供电过程。
附录中介绍了相关设备的技术标准和生产企业。
第一章绪论第一节离子膜电解制碱的发展过程第二节离子膜电解制碱的特点第三节离子膜电解制碱的现状第二章盐水二次精制第一节盐水二次精制的目的和指标第二节盐水二次精制的流程第三节螯合树脂处理盐水第四节二次盐水精制岗位操作及事故处理第三章离子膜电解原理和工艺流程第一节电解原理第二节工艺流程第四章离子膜电解解槽第一节离子膜电解槽的结构设计第二节离子膜电解的槽的分类及及性能第三节离子膜电解槽技术的发展趋势第五章离子膜电解工艺操作条件和岗位操作第一节离子膜电解工艺操作条件第二节离子膜电解岗位操作第六章离子交换膜第一节全氟离子结构、特性及其要求第二节各种膜简介第三节离子膜的经济寿命第四节离子膜在国内使用情况第五节膜损伤的原因和预防措施第七章除氯酸盐和淡盐水脱氯第一节脱氯原理和工艺数据第二节真空法脱氯第三节空气吹除法第四节化学法除残余氯、废气吸收和除法氯酸盐第八章离子膜电解碱液的蒸发第一节概论第二节离子膜法碱液蒸发流程及设备第三节工艺操作条件及蒸发的影响因素第四节正常操作及故障处理第九章离子膜固体烧碱第一节大锅熬制离子膜固体烧碱第二节片状离子膜固体烧碱第三节离子膜固碱的种类第十章高纯盐酸第一节高纯盐酸原性质和要求第二节生产原理第三节生产工艺流程第四节主要设备及优缺点第十一章设备防腐第一节腐蚀论述第二节IM法制烧碱装置的防腐蚀第三节主要材料的腐蚀形态和防腐第四节设备与管道防腐第五节蒸发与固碱设备防腐第十二章分析第一节实验室用水规格第二节工业无离子水和电导率测定第三节高纯盐酸分析第四节一次盐水分析第五节二次盐水分析第六节离子膜法液体烧碱分析第七节氯气和氢气分析第十三章自动控制与仪表第一节概述第二节主要检测与控制系统第三节联锁系统第四节DCS在离子膜烧碱装置中的应用第五节仪表防腐及引进问题第十四章离子膜电解槽的供电第一节概述第二节整流变压器第三节整流装置第四节变压整流装置的保护、测量、控制与信号第五节近控屏、远控屏、冷却装置第六节停送电操作及巡视检查和事故预想第七节离子膜槽整流装置设计选型实践附录相关设备《离子膜法制碱生产技术》电子书下载地址。
济源职业技术学院毕业设计(论文)(冶金化工系)题目氯碱生产—盐水精制工艺专业应用化工技术班级姓名学号指导教师完成日期2012年6月30日~2012年9月30日目录摘要 (3)第一章绪论 (4)氯碱工业概述 (4)氯碱工业主要产品及用途 (4)氯碱工业的发展趋势 (4) (5)我国的氯碱工业及其发展趋势 (5)第二章盐水精制工艺 (6)原盐的品种及组成 (6) (7) (7) (10) (13)第三章精制工艺主要生产设备 (18) (18)溶盐设备——化盐桶 (18)澄清设备——浮上澄清桶 (18)过滤设备——虹吸式过滤器 (19)盐泥处理设备——三层洗泥桶、板框式压滤机 (20)盐水二次精制工艺主要生产设备 (22)炭素管式过滤器 (22)螯合树脂塔 (23)第四章工艺计算 (24)计算依据 (24)物料衡算 (25)精盐水组成 (25) (25)盐水精制剂的用量 (26)盐泥的组成 (27)回收盐水组成 (27)补充水量 (28)致谢 (30)参考文献 (31)附录一 (32)附录二 ................................................. 错误!未定义书签。
摘要盐水的生产精制工段是将固体原盐与蒸发工段送来的回收的淡盐水、洗盐泥回收的淡盐水,按比例掺和、加热溶解成含氯化钠的饱和水溶液,同时按原盐中杂质含量连续加入适量的精制剂(氢氧化钠、碳酸钠和氯化钡等),使盐水中钙、镁、硫酸根等杂质离子分别生成难溶的沉淀物,然后加入助沉剂(苛化麸皮或聚丙烯酸钠等),经过澄清、砂滤、中和等步骤,制得质量合格的精盐水,按需要源源不断地输送给电解工段。
在确定好工艺流程的基础上进行物料衡算和能量衡算,从而确定出主要工艺设备的型号、尺寸及数量,并绘制带控制点的工艺流程图和主要设备图等。
关键词:氯碱工业原盐盐水精制工艺流程第一章绪论氯碱工业概述工业上用电解饱和NaCl溶液的方法来制取NaOH、Cl2和H2,并以它们为原料生产一系列化工产品的工业,称为氯碱工业。
离子膜烧碱就是采用离子交换膜法电解食盐水而制成烧碱(即氢氧化钠)。
其主要原理是因为使用的阳离子交换膜,该膜有特殊的选择透过性,只允许阳离子通过而阻止阴离子和气体通过,即只允许H+、Na+通过,而Cl-、OH-和两极产物H2和Cl2无法通过,因而起到了防止阳极产物Cl2和阴极产物H2相混合而可能导致爆炸的危险,还起到了避免Cl2和阴极另一产物NaOH反应而生成NaClO 影响烧碱纯度的作用。
1 生产流程离子交换膜法电解制碱的主要生产流程精制的饱和食盐水进入阳极室;纯水(加入一定量的NaOH溶液)加入阴极室,通电后H2O在阴极表面放电生成H2,Na+则穿过离子膜由阳极室进入阴极室,此时阴极室导入的阴极液中含有NaOH;Cl-则在阳极表面放电生成Cl2。
电解后的淡盐水则从阳极室导出,经添加食盐增加浓度后可循环利用。
阴极室注入纯水而非NaCl溶液的原因是阴极室发生反应为2H++2e-=H2↑;而Na+则可透过离子膜到达阴极室生成NaOH 溶液,但在电解开始时,为增强溶液导电性,同时又不引入新杂质,阴极室水中往往加入一定量NaOH溶液。
2 主要原料氯碱工业的主要原料:饱和食盐水,但由于粗盐水中含有泥沙、Ca2+、Mg2+、Fe3+、SO等杂质,远不能达到电解要求,因此必须经过提纯精制。
3 工艺设计一次盐水一次澄清盐水的制备是氯碱生产工艺至关重要的工段,精制效果的好坏直接影响产品的质量和产量。
传统性的一次盐水精制工艺,采用配水、化盐、加精制剂反应、澄清、砂滤,然后再经炭素烧结管过滤器过滤。
近几年新建氯碱装置一次盐水工艺大都采用膜过滤技术制取精制盐水,该工艺路线省去了砂滤器、炭素烧结管过滤器。
经生产实践证明,经膜过滤分离方法制得的一次盐水质量指标、设备投资等都比传统工艺理想。
所以一次精制盐水工艺采用膜过滤器过滤工艺。
二次盐水精制离子膜法电解槽使用的高度选择性离子交换膜要求入槽盐水的钙、镁离子含量低于20wtppb,普通的化学精制法只能使盐水中的钙、镁离子含量降到10wtppm左右。
离子膜制碱工艺流程离子膜制碱工艺是一种通过离子膜技术制取氢氧化钠(NaOH)的工艺流程。
该工艺流程主要包括原料处理、电解制碱、产碱和产品处理四个步骤。
首先是原料处理。
工艺的原料为食盐(NaCl),需要进行精制处理以去除杂质。
原料先经过洗涤、研磨等预处理工序,随后进入盐溶解器进行溶解。
在这一步骤中,需要加入一定量的水来保持适当的盐溶度。
接下来是电解制碱。
该步骤包括溶液浓缩、电解槽和电解过程三个环节。
首先,将通过原料处理得到的食盐溶液进行浓缩,以提高溶液的盐浓度。
浓缩后的溶液将被引入电解槽,电解槽中的离子膜将该溶液分为阴阳两个室,分别进行阳极和阴极的电解反应。
在阳极室,盐溶液中的氯离子(Cl-)经过电解反应生成氯气(Cl2)和自由电子。
氯气排除,而自由电子通过电解膜进入阴极室。
在阴极室,水分子(H2O)由于电解膜的作用,只能分解为氢离子(H+)和氢氧根离子(OH-)。
由于阳极室产生的氯气,使得阴极室中氢离子与氯离子结合生成气体氯化氢(HCl)。
然而,由于电解膜的存在,氯化氢不能通过电解膜向阳极室传递,因此会溶解在阴极室中。
在电解过程中,阳极室和阴极室分开了氯离子和氢离子,使得碱性电解质在阳极室中消耗而在阴极室中生成,实现了氢氧化钠的制取。
第三个步骤是产碱。
在电解过程中,在阴极室中生成的氢离子与产生的氢氧根离子结合形成氢氧化钠。
此时,阴极室中的溶液就成了浓度较高的氢氧化钠溶液。
最后一个步骤是产品处理。
将产生的氢氧化钠溶液从阴极室中抽出,经过蒸发、冷却等处理工序,使其达到所需浓度。
然后,将氢氧化钠溶液进行过滤、净化等处理,以去除杂质。
最终,符合要求的氢氧化钠产品将被装入合适的包装容器中,待出厂销售或用于其他生产过程。
总之,离子膜制碱工艺流程包括原料处理、电解制碱、产碱和产品处理四个步骤,通过控制电解反应,可制取高纯度的氢氧化钠。
这种工艺流程具有操作简单、高效益和环保等优点,在工业生产中得到了广泛应用。