煤的直接液化与间接液化技术进展
- 格式:pdf
- 大小:238.47 KB
- 文档页数:2
现代化煤直接液化技术进展模版一、简介以煤为原料进行直接液化,是一种能源转化技术,可将煤转化为液体燃料和化工产品。
煤直接液化技术已经成为国内外煤化工领域的研究热点,取得了重要的科学研究成果和工程化应用。
本文将介绍现代化煤直接液化技术的最新进展,包括反应器设计、催化剂研发、工艺改进等方面。
二、反应器设计煤直接液化的关键环节是反应器的设计。
随着科技的发展和研究的深入,煤直接液化反应器的设计也取得了重要的进展。
目前,煤直接液化反应器主要分为固定床反应器和流化床反应器两种。
固定床反应器的设计包括反应器的体积、形状和温度控制等方面,旨在提高反应效率和产品质量。
流化床反应器的设计考虑了颗粒运动规律、气固两相流动特性等因素,以实现更好的液化效果。
三、催化剂研发催化剂在煤直接液化过程中具有重要作用,可以提高反应速率和选择性。
随着煤直接液化技术的进一步发展,研发高效、长寿命催化剂成为研究的热点。
目前,煤直接液化催化剂的研发主要集中在改进传统催化剂和开发新型催化剂两个方面。
改进传统催化剂包括提高比表面积、增加活性组分和改进载体结构等措施;开发新型催化剂主要探索新型活性组分和载体,以提高催化剂的性能。
四、工艺改进煤直接液化的工艺改进是提高技术经济指标和产品质量的重要途径。
近年来,煤直接液化技术的工艺改进主要集中在两个方面:一是改进溶剂和催化剂的循环体系,以提高产品收率和降低废物产生;二是改进产品分离和净化工艺,以提高产品质量和减少能源消耗。
工艺改进的关键在于找到合适的技术方案,并经过实验验证和工程应用的检验。
五、应用前景现代化煤直接液化技术的最新进展为煤资源高效利用和清洁能源转化提供了可靠保障。
随着能源需求的增长和环保要求的提高,煤直接液化技术具有广阔的应用前景。
煤直接液化技术可以将煤资源转化为高效清洁的液体燃料,满足国内外的能源需求。
此外,煤直接液化技术还可以生产多种化工产品,用于满足其他领域的需求。
通过进一步研究和工程应用,煤直接液化技术将为我国能源结构调整和可持续发展做出重要贡献。
现代化煤直接液化技术进展近年来,全球能源需求不断增加,尤其是发展中国家对于石油、天然气等传统能源的需求也在不断增加。
然而,传统能源的供应压力和环境污染问题也日益突出,因此寻找一种高效、清洁且可持续发展的能源替代品已成为全球能源领域的研究热点。
在这种背景下,煤直接液化技术成为了一个备受关注的技术。
煤直接液化技术是将煤转化为液体燃料的一种过程,通过该技术可将煤迅速转化为高品质的燃料油和化工产品。
这种技术具有以下几个主要优点:首先,煤是世界上储量最丰富的化石能源之一,尤其是对于中国这样一个资源相对匮乏的国家,煤直接液化技术可以将这一丰富的煤炭资源转化为高品质的燃料油和化工产品,满足国内经济发展对能源的需求。
其次,煤直接液化技术可以减少对传统能源的依赖,提高能源供应的多样性和安全性。
目前,全球石油和天然气的供应格局十分集中,既有政治风险也面临供应不稳定的问题。
而煤直接液化技术提供了一种替代性的能源供应途径,减少了对传统能源的依赖,提高了能源供应的多样性和安全性。
此外,煤直接液化技术还能够减少环境污染和温室气体排放。
相比于传统的煤燃烧技术,煤直接液化技术可以有效地减少大气污染物的排放,如二氧化硫、氮氧化物等。
此外,煤直接液化技术还能够实现二氧化碳的捕集和储存,减少温室气体的排放,对于应对气候变化具有重要意义。
然而,尽管煤直接液化技术具有巨大的潜力,但目前该技术在实际应用中还面临一些挑战。
首先,煤直接液化技术的成本较高。
由于煤直接液化技术需要经过复杂的化学转化过程,需要大量的能源和催化剂等原材料,成本较高,限制了技术的推广和应用。
其次,煤直接液化技术涉及的环境影响问题也需要重视。
虽然煤直接液化技术可以减少大气污染物的排放,但该技术本身也会产生一些废水和废气等固体、液体和气体废弃物。
这些废弃物对环境造成的影响需要通过科学合理的处理方法进行控制和减少。
最后,煤直接液化技术在技术创新和工程实施方面也面临一定的难题。
煤炭液化技术[编辑本段] 煤炭液化技术煤炭液化是把固体煤炭通过化学加工过程产品的先进洁净煤技术。
根据不同的加工,使其转化成为液体燃料路线,煤炭液化可分为直接、化工原料和液化和间接液化两大类:一、直接液化直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。
1、发展历史煤直接液化技术是由德国人于1913 年发现的,并于二战期间在德国实现了工业化生产。
德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。
二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。
70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。
日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。
目前世界上有代表性的直接液化工艺是日本的NEDOL 工艺、德国的IGOR工艺和美国的HTI工艺。
这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。
到目前为止,上述国家均已完成了新工艺技术的处理煤100t/d 级以上大型中间试验,具备了建设大规模液化厂的技术能力。
煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。
目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。
2、工艺原理煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。
第一部分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网络结构,它的主要前身物来自维管植物中以芳族结构为基础的木质素。
煤的直接液化与间接液化装备0904 张康200906081214煤液化是把固体煤炭通过化学加工过程,使其转化成为液体燃料、化工原料和产品的先进洁净煤技术。
根据不同的加工路线,煤炭液化可分为直接液化和间接液化两大类。
直接液化(DCL)发展历史1923年,德国化学家首先开发出了煤炭间接液化技术。
40年代初,为了满足战争的需要,德国曾建成9个间接液化厂。
二战以后,同样由于廉价石油和天然气的开发,上述工厂相继关闭和改作它用。
之后,随着铁系化合物类催化剂的研制成功、新型反应器的开发和应用,煤间接液化技术不断进步,但由于煤炭间接液化工艺复杂,初期投资大,成本高,因此除南非之外,其它国家对煤炭间接液化的兴趣相对于直接液化来说逐渐淡弱。
煤炭间接液化技术主要有三种,即的南非的萨索尔(Sasol)费托合成法、美国的Mobil甲醇制汽油法和正在开发的直接合成法。
目前,煤间接液化技术在国外已实现商业化生产,全世界共有3家商业生产厂正在运行,它们分别是南非的萨索尔公司和新西兰、马来西亚的煤炭间接液化厂。
新西兰煤炭间接液化厂采用的是Mobil液化工艺,但只进行间接液化的第一步反应,即利用天然气或煤气化合成气生产甲醇,而没有进一步以甲醇为原料生产燃料油和其它化工产品,生产能力1.25万桶/天。
马来西亚煤炭间接液化厂所采用的液化工艺和南非萨索尔公司相似,但不同的是它以天然气为原料来生产优质柴油和煤油,生产能力为50万吨/年。
因此,从严格意义上说,南非萨索尔公司是世界上唯一的煤炭间接液化商业化生产企业。
南非萨索尔公司成立于50年代初,1955年公司建成第一座由煤生产燃料油的Sasol-1厂。
70年代石油危机后,1980年和1982年又相继建成Sasol-2厂和Sasol-3厂。
3个煤炭间接液化厂年加工原煤约4600万t,产品总量达768万t,主要生产汽油、柴油、蜡、氨、乙烯、丙烯、聚合物、醇、醛等113种产品,其中油品占60%,化工产品占40%。
煤的直接液化概述煤的液化是先进的洁净煤技术和煤转化技术之一,是用煤为原料以制取液体烃类为主要产品的技术。
煤液化分为“煤的直接液化”和“煤的间接液化”两大类,煤的直接液化是煤直接催化加氢转化成液体产物的技术.煤的间接演化是以煤基合成气(CO+H2)为原料,在一定的温度和压力下,定向催化合成烃类燃料油和化工原料的工艺,包括煤气化制取合成气及其挣化、变换、催化合成以及产品分离和改质加工等过程。
通过煤炭液化,不仅可以生产汽油、柴油、LPG(液化石油气)、喷气燃料,还可以提取BTX(苯、甲苯、二甲苯),也可以生产制造各种烯烃及含氧有机化台物。
煤炭液化可以加工高硫煤,硫是煤直接液化的助催化剂,煤中硫在气化和液化过程中转化威H2S再经分解可以得到元素硫产品.本篇专门介绍煤炭直接液化技术早在1913年,德国化学家柏吉乌斯(Bergius)首先研究成功了煤的高压加氢制油技术,并获得了专利,为煤的直接液化奠定了基础。
煤炭直接加氢液化一般是在较高温度(400℃以上),高压(10MPa以上),氢气(或CO+H2, CO+H2O)、催化剂和溶剂作用下,将煤的分子进行裂解加氢,直接转化为液体油的加工过程。
煤和石油都是由古代生韧在特定的地质条件下,经过漫长的地质化学滴变而成的。
煤与石油主要都是由C、H、O等元素组成。
煤和石油的根本区别就在于:煤的氢含量和H/C 原子比比石油低,氧含量比石油高I煤的相对分子质量大,有的甚至大干1000.而石油原油的相对分子质量在数十至数百之间,汽油的平均分子量约为110;煤的化学结构复杂,它的基本结构单元是以缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。
煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧,氮、硫)、碱金属和微量元素。
通过加氢,改变煤的分子结构和H/C原子比,同时脱除杂原子,煤就可以液化变成油。
1927年德国在莱那(Leuna)建立了世界上第一个煤直接液化厂,规模10×l04 t/a。
煤间接液化技术及工业前景(化工12-3 孔庆文)摘要:分析了世界能源结构,介绍了我国煤炭液化技术的发展概况和国外煤炭间接液化技术的现状,展望了煤间接液化技术的发展前景。
从工艺路线、产品构成、技术经济等方面对煤直接液化和间接液化技术进行了对比。
关键词:煤间接液化合成技术发展水平煤直接液化世界范围内,能源主要由煤炭、石油、天然气、核电、水电等构成,其中石油与煤炭占世界能源消耗的66%,勘探资料表明,按能量计算,全世界煤的可开采量相当于石油资源的10倍。
而煤炭是我国最丰富的燃料资源,全国累计探明的储量超过1000 Gt,经济开采储量 114.5Gt,位列美国、俄罗斯之后。
煤通过液化技术可以制油。
煤液化制油主要有两种途径:一种是煤加氢直接液化合成油品途径;另一种是煤先气化为合成气(CO+H2 ),然后再在催化剂作用下经Fischer-Tropsch(FT)合成催化反应转化为油品的间接液化途径。
煤间接液化(CTL)技术是当前C1化工的重要发展方向,煤间接液化合成油具有清洁、环保、燃烧性能优异等优点,是化石液体燃料的直接替代品,对保障我国能源安全具有重要意义。
煤炭间接液化技术在生产油品的同时还可副产大量化工产品,延长了产品链,增强了市场适应性,成为当前洁净煤技术的发展热点。
1.中国煤炭液化技术发展概况1.1 20 世纪80年代初,中科院山西煤炭化学研究所开始了合成油的研究开发工作,在分析了国外 F- T 合成和MTG工艺的基础上,提出了将传统的F- T 合成与沸石分子筛择形作用相结合的固定床两段法合成工艺(简称 MFT)和浆态床固定床两段法合成工艺(SMFT)。
20 世纪90年代完成了2000 t/a 规模的煤基合成汽油中间实验和SMFT工艺的模拟试验,并对自主开发的两类催化剂分别进行了3000 h的长周期运行,取得了令人满意的结果。
近年来,该所针对新型浆态床合成反应器、共沉淀铁系催化剂制备等进行了放大开发试验,于 2002年建成合成油品1000 t/a装置,其后进行了多次运行实验,取得了开发自主知识产权技术的阶段性成果。