计算机解耦控制系统装置
- 格式:doc
- 大小:613.50 KB
- 文档页数:22
第10章 解耦控制系统当再同一设备或装置上设置两套以上控制系统时,就要考虑系统间关联的问题。
其关联程度可通过计算各通道相对增益大小来判断。
如各通道相对增益都接近于1,则说明系统间关联较小;如相对增益于1差距较大,则说明系统间关联较为严重。
对于系统间关联比较小的情况,可以采用控制器参数整定,将各系统工作频率拉开的办法,以削弱系统间的关联的影响。
如果系统间关联非常严重,就需要考虑解耦的办法来加以解决。
解耦的本质是设置一个计算装置,去抵消过程中的关联,以保证各个单回路控制系统能独立地工作。
为了便于分析,下面对2×2系统的关联及其解耦方法进行研究。
具有关联影响的2×2系统的方块图如图10—1所示。
从图10—1可看出,控制器c 1的输出p 1(s )不仅通过传递函数G 11(s )影响Y 1,而且通过交叉通道传递函数G 21(s )影响Y 2。
同样控制器c 2的输出p 2(s )不仅通过传递函数G 22(s )影响Y 2,而且通过交叉通道传递函数G 12(s )影响Y 1。
上述关系可用下述数学关系式进行表达:Y 1(s )=G 11(s )P 1(s )+G 12(s )P 2(s )(10—1) Y 2(s )=G 21(s )P 1(s )+G 22(s )P 2(s )(10—2)将上述关系式以矩阵形式表达则成:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡)()()()()()()()(212221121121s P s P s G s G s G s G s Y s Y (10—3)或者表示成:Y (s )=G (s )P (s )(10—4)式中 Y (s )——输出向量;P (s )——控制向量;G (s )——对象传递矩阵:⎥⎦⎤⎢⎣⎡=)()()()()(22211211s G s G s G s G s G (10—5)所谓解耦控制,就是设计一个控制系统,使之能够消除系统之间的耦合关系,R 1) R 2图10—1 2×2关联系统方块图而使各个系统变成相互独立的控制回路。
解耦控制的基本原理解耦控制是一种常见的设计原则和方法,它旨在将复杂的系统分解成独立的模块,以降低系统的耦合度,提高可维护性和可扩展性。
本文将从解耦控制的基本原理、实现方法、应用场景等方面进行介绍和分析。
一、解耦控制的基本原理解耦控制的基本原理是通过降低模块之间的依赖程度,使得系统中的各个模块可以独立地进行开发、测试和维护。
具体来说,解耦控制主要包括以下几个方面的原理:1. 模块化设计:将系统划分为多个模块,每个模块负责处理特定的功能或任务。
模块之间通过定义清晰的接口进行通信,而不是直接依赖于具体的实现细节。
2. 松耦合:模块之间的依赖关系应尽量降低,使得修改一个模块不会对其他模块产生影响。
常见的实现方式包括使用接口、回调函数等。
3. 单一职责原则:每个模块应该只负责一个特定的功能或任务,避免一个模块承担过多的责任,以减少模块之间的依赖。
4. 分层架构:将系统划分为多个层次,每个层次负责不同的功能。
上层的模块只依赖于下层模块的接口,而不依赖于具体的实现。
二、解耦控制的实现方法解耦控制的实现方法多种多样,根据具体的应用场景和需求可以选择不同的方法。
以下是一些常用的实现方法:1. 接口隔离原则:定义清晰的接口,每个模块只依赖于自己需要的接口,而不依赖于其他模块不需要的接口。
这样可以避免模块之间的不必要的耦合。
2. 依赖注入:通过将依赖关系的创建和管理交给外部容器来实现解耦。
模块只需要声明自己需要的依赖,由外部容器来负责注入具体的实现对象。
3. 事件驱动:模块之间通过发布-订阅模式进行通信,一个模块发生的事件会被其他模块接收并进行相应的处理。
这样可以实现模块之间的解耦。
4. 消息队列:模块之间通过消息队列进行通信,一个模块将消息发送到队列中,其他模块从队列中获取消息并进行相应的处理。
消息队列可以实现模块之间的异步解耦。
三、解耦控制的应用场景解耦控制在软件开发中有着广泛的应用场景,下面列举几个常见的场景:1. 分布式系统:在分布式系统中,各个节点之间需要进行通信和协作。
过程控制系统多变量解耦控制系统过程控制系统多变量解耦控制系统(Multivariable Decoupling Control System)是一种能够同时控制多个相关变量的控制系统。
在传统的控制系统中,通常只有一个控制回路,而多变量解耦控制系统则可以通过多个回路同时对多个变量进行控制,从而实现变量之间的解耦。
在实际的工程应用中,往往需要控制多个相关的变量。
这些变量之间可能存在交互作用,控制其中一个变量可能会对其他变量产生影响。
传统的单变量控制系统无法有效地解决这个问题,因为它们无法考虑到变量之间的相互关系。
多变量解耦控制系统通过建立多个独立的控制回路,每个回路分别控制一个相关变量,从而实现变量之间的解耦。
解耦的目标是使每个回路的输出变量不再受到其他变量的影响,即通过调整每个回路的控制器参数,使得系统变得稳定并能够达到预期的控制效果。
多变量解耦控制系统的设计一般包括两个主要步骤:解耦器设计和控制器设计。
解耦器的作用是抑制变量之间的相互干扰,从而实现变量的解耦。
解耦器通常根据系统的数学模型来设计,通过调整解耦器的参数,可以实现变量之间的解耦效果。
在解耦器设计的基础上,需要设计每个回路的控制器。
控制器的设计一般采用传统的控制方法,如PID控制器或者先进的控制算法。
控制器的目标是为每个回路选择合适的控制参数,使得系统的稳定性和控制精度得到保证。
多变量解耦控制系统在实际应用中具有广泛的应用。
例如,在化工过程中,需要控制多个过程变量,如温度、压力和流量等。
传统的单变量控制方法无法满足工艺的需求,而多变量解耦控制系统可以通过解耦变量之间的相互作用,实现高效的过程控制。
总之,多变量解耦控制系统是一种用于控制多个相关变量的控制系统。
它通过建立多个独立的控制回路,实现变量之间的解耦,并通过调整控制器参数,使得系统达到稳定和预期的控制效果。
在工程应用中,多变量解耦控制系统具有广泛的应用前景,可以提高工艺的控制精度和稳定性,从而实现更高效的过程控制。
解耦控制的名词解释解耦控制是计算机科学中一个重要概念,被广泛应用于软件设计及程序开发中。
解耦控制的含义是将单一的程序模块或对象之间的依赖性降至最低限度,从而提高软件的灵活性、可重用性和可维护性。
本文将从以下几个方面对解耦控制的定义、原则及应用进行简要解释。
一、解耦控制的定义解耦控制是一种软件设计方法,旨在降低程序模块或对象之间的相互依赖性,从而提高可维护性、可扩展性和可重用性。
通过解除模块间的强关联关系,使各模块之间的独立性增加,也便于实现模块的替换和改写。
二、解耦控制的原则1.高内聚、低耦合原则高内聚指的是一个模块或对象内部的操作之间高度相关,而与其他模块或对象的关系较少;低耦合是指各个模块或对象之间的依赖关系较少,相对独立。
这两项原则是解耦控制的核心观念,是实现代码可维护性和可扩展性的必备条件。
2.接口分离原则该原则指在设计类或对象的接口时应尽量避免出现过于复杂的接口。
应该根据调用方的需要,将类或对象的接口分成多个小的接口,以便实现多个功能之间的解耦。
3.依赖倒置原则该原则指依赖于抽象,而不是具体的实现。
在软件设计中,应该从抽象层面出发,尽量避免直接依赖于具体的实现。
三、解耦控制的应用在软件设计中,采用解耦控制的方法可以实现更好的模块化设计,促进模块化的开发和重用。
1.模块化设计通过在系统架构上采用模块化的设计思路,可以将系统中的功能模块分解为相对独立的模块。
这样可以使模块之间的耦合度降低,便于模块的调整、维护和替换。
2.代码复用通过将一些独立的功能实现为软件库或者模块,可以提高代码复用率,节省重复的开发时间。
同时,采用解耦控制的方法,也可以使复用的代码与原有的代码相对独立,从而更好地实现复用代码的维护和升级。
总之,解耦控制是一种非常重要的软件设计原则,具有实际的应用意义。
采用解耦控制的方法可以使软件更加健壮、易于维护,同时也有助于提高代码的重用率和程序的可扩展性。
多变量解耦控制在现代化工业生产中,对过程控制的要求越来越高,因此,对一个生产装置中往往设置多个控制回路,稳定各个被控参数。
此时,各个控制回路之间会发生相互耦合,相互影响,这种耦合构成了多输入-多输出耦合系统。
由于这种耦合,使得系统的性能很差,过程长久不能平稳下来。
例如发电厂的锅炉液位和蒸汽压力两个参数之间存在耦合关系。
锅炉系统的示意图如图所示。
发电锅炉中,液位系统的液位是被控量,给水量是控制变量,蒸汽压力系统的蒸汽压力是被控量,燃料是控制变量。
这两个系统之间存在着耦合关系。
例如,蒸汽负荷加大,会使液位下降,给水量增加,而压力下降;又如压力上升时,燃料量减少,会使锅炉蒸汽蒸发量减少,液位升高,如此等等,各个参量之间存在着关联或耦合,相互影响。
实际装置中,系统之间的耦合,通常可以通过3条途径予以解决: (1) 在设计控制方案时,设法避免和减少系统之间有害的耦合;(2) 选择合适的调节器参数,使各个控制系统的频率拉开,以减少耦合; (3) 设计解耦控制系统,使各个控制系统相互独立(或称自治)。
8.4.1 解耦控制原理工业生产中可以找出许多耦合系统。
下面以精馏塔两端组分得到耦合,说明解耦控制原理。
精馏塔组分控制如图8.65所示。
图中 q ),(t r q s (t)分别是塔顶回流量和塔底蒸汽流量; y 1(t),y 2(t)分别是塔顶组分和塔地组分。
显然,在精馏塔系统中,塔顶回流量q ),(t r 塔底蒸汽流量q s (t)对塔顶组分y 1(t)和塔底组分y 2(t)都有影响,因此,两个组分控制系统之间存在耦合,这种耦合关系,可表示成图8.66所示。
图中R 1(s),R 2(s)分别为两个组分系统的给定值; Y 1(s) Y 2(s)分别为两个组分系统的被控量D 1(s) D 2(s)分别为两个组分系统调节器的传递函数;g 2(s)是对象F(s)的传递矩阵,其中G 11(s)是调节器D 1(s)对Y 1(s)的作用通道。
解耦控制的基本原理解耦控制是一种通过拆分控制系统成为多个相对独立的子系统,从而实现对系统的分析、设计和调节的控制策略。
其基本原理是将控制系统分解成互不影响的几个子系统,并用相应的子控制器来单独控制每个子系统的行为。
这样做的好处是可以减少系统的复杂性,提高系统的可调节性和可靠性,同时也方便了系统的分析和优化。
1.系统拆分:将整个控制系统分解为若干个子系统,每个子系统对应一个相对独立的动态行为。
通过这种方式,将控制系统的复杂度分解为多个较简单的子系统,从而减少控制的难度。
2.子系统控制:为每个子系统设计相应的控制器,以独立地控制每个子系统的动态行为。
通过精确地控制每个子系统的输入和输出,可以实现对整个控制系统的有效控制。
3.反馈控制:每个子系统的控制器可以通过反馈控制的方式,根据系统输出与期望输出之间的差异来调整输入信号。
这样可以实时地修正系统的误差,使系统更加稳定和可靠。
4.信息交互:通过适当的信息交互,将各个子系统的状态和参数信息传递给其他子系统,以实现协同工作。
这样可以保证整个控制系统的统一性和一致性。
电力系统是一个由多个发电机、负荷和输电线路组成的复杂网络。
为了保证电力系统的稳定运行,需要对电力系统进行控制和调节。
解耦控制在电力系统中的应用主要包括两个方面:解耦发电机和解耦负荷。
解耦发电机是指将电力系统中的每个发电机视为一个独立的子系统,并为每个发电机设计相应的控制器。
这样可以实现对发电机的独立控制,使各个发电机之间的影响减小,从而提高电力系统的稳定性。
解耦负荷是指将电力系统中的每个负荷视为一个独立的子系统,并为每个负荷设计相应的控制器。
这样可以实现对负荷的独立控制,使各个负荷之间的影响减小,从而提高电力系统的可靠性。
在电力系统中,可以通过测量发电机的频率、电压和功率等参数,并基于这些测量结果进行分析和优化。
通过控制发电机的输入信号,可以调整发电机的输出功率,从而实现电力系统的稳定供电。
类似地,通过测量负荷的功率需求和电压电流等参数,并基于这些测量结果进行分析和优化。
LGSX-04A单片机、自动控制、计算机控制技术、信号与系统综合实验装置一、概述LGSX-04A单片机、自动控制、计算机控制技术、信号与系统综合实验装置由控制屏、实验挂箱、实验桌组成,通过单片机开发实训台可完成单片机的接口扩展、数据采集、数据显示、键盘控制、定时器、打印机接口等实验,配备有仿真器。
LGSX-04A单片机、自动控制、计算机控制技术、信号与系统综合实验装置设有电流型漏电保护器,控制屏若有漏电现象,漏电流超过一定值,即切断电源,对人身安全起到一定的保护。
LGSX-04A单片机、自动控制、计算机控制技术、信号与系统综合实验装置采用组件式结构,更换实验模块便捷。
如需扩展功能或开发新实验,只需添加实验模块挂箱即可,永不淘汰。
二、主要技术参数1、输入电源:AC220V±10% 50Hz2、工作环境:温度-10℃~+40℃相对湿度<85%(25℃)3、装置容量:200VA4、重量:100Kg5、外形尺寸(cm):160×75×1506、挂箱尺寸(mm):410×240×607、输出电源:有漏电、短路、过流保护A.~220V,通过安全插座输出B.直流稳压电源:±5V/1A ±12V/2A三、装置构成(一)实验屏:实验时放置实验挂箱,并提供实验电源,铁质双面亚光密纹喷塑结构。
(二)实验桌:钢木结构,桌面为防火、防水、耐磨高密度板,电脑桌连体设计,造型美观大方。
(三)实验模块:1、LGDP-01 单片机实验挂箱(一)LED点阵显示模块、点阵式字符液晶显示模块、8253定时计数器、A/D转换、D/A转换、V/F 转换、F/V转换、串引EEPROM、EEPROM、Flash Rom、SRAM、I2C总线接口2、LGDP-02 单片机实验挂箱(二)8251串行口扩展、232总线串行接口、单片机最小应用系统1、单片机最小应用系统2、拔码开关输出3、LGDP-03 单片机实验挂箱(三)ISD 1420语音控制、IC卡读写接口、实时时针/日历、USB接口、RS232转RS485接口4、LGDP-04 单片机实验挂箱(四)8279接口电路、8255 I/O扩展、8155 I/O扩展、动态扫描显示模块、转换接口、MC14433、整列式键盘实验模块5、LGDP-05 单片机实验挂箱(五)步进电机驱动程序示列、温度传感器与温度控制、汽车转弯信号灯/十字路口交通灯、数字频率计、看门狗6、LGDP-06 单片机实验挂箱(六)十六位逻辑电平显示、继电器控制接口、常用器件接口、八位逻辑电平输出、单次脉冲、扬声器、串引静态显示模块、查询式键盘。
第 3 章解耦控制系统3.1多变量解耦控制系统概述3.2解耦控制理论3.3解耦控制方法与设计3.3.1 解耦控制系统分类及解耦方法3.3.2 解耦控制方案3.3.3 解耦控制中的问题3.4解耦控制算法3.5几种先进解耦控制理论的介绍3.1 多变量解耦控制系统概述工业生产过程中的被控对象往往是多输入多输出系统(MIMO ,如冶金工业中的钢坯加热炉的多段炉温,轧机中的厚度与板型;电力工业中发电机组的蒸汽压力与温度;石化工业中的精馏塔顶部产品流量和成分、底部产品流量和成分;国防工业中的飞行控制、风动稳定段总压和试验段马赫数等,都是需要控制而又是彼此关联的量。
多变量系统的控制就是调整被控系统的多个输入作用使系统输出达到某些指定的目标。
在实际的工业过程中,常常遇到的多变量系统具有不确定性,也就是系统的某些参数位置或时变或受到未知的随机干扰。
因此,现代工业过程本身就是是一个复杂的变化过程,在现代化的工业生产中,为了达到指定的生产要求,不断出现一些较复杂的设备或装置。
然而,这些设备或装置的本身所要求的被控制参数往往较多,相应的,决定和影响这些参数的原因也不止一个。
随着生产规模的不断扩大化,对控制的要求也越来越高。
而且,在一个生产过程中,要求控制的变量以及操作往往不止一对,需要设置的控制回路也不止一个。
因此,必须设置多个控制回路对该种设备进行控制。
由于控制回路的增加,往往会在它们之间造成相互影响、相互干扰的作用。
因此大多数工业过程控制是一个相互关联的多输入多输出过程。
在这样的过程中,一个输入将影响到多个输出,而一个输出也将受到多个输入的影响。
也即系统中一些控制回路的输入信号对其它回路的输出都有影响,而一些回路的输出又会受到其它输入的作用。
如果将一对输入输出称为一个控制通道,则在各通道之间存在相互作用,我们把这种输入与输出间、通道与通道间复杂的相互影响与相互作用的因果关系称为过程变量或通道间的耦合。
由此看来,要想一个输入只去控制一个输出几乎不可能,这就构成了“耦合”系统。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。