勾股定理的简单应用(基础卷)解析版 -2021-2022学年八年级数学上册(苏科版)教材同步课时精练
- 格式:docx
- 大小:398.73 KB
- 文档页数:12
3.2 勾股定理的逆定理 同步测试题(满分120分;时间:90分钟)一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 , )1. 下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( )A.3,4,6B.7,12,13C.2,3,4D.9,12,152. 如果一个三角形的三边分别为8,10,6,则这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.无法确定3. 已知△ABC 的三边长分别是3cm 、4cm 、5cm ,则△ABC 的面积是( )A.6cm 2B.7.5cm 2C.10cm 2D.12cm 24. 以下列各组数为一个三角形的三边长,能够成直角三角形的是( )A.1,2,4B.1,√3,2C.1,3,5D.1,√3,√55. 下列那组数字是勾股数( )A.7、24、25B.34,1,54C.9、40、42D.12、15、206. 下列各组数中不能作为直角三角形的三边长的是( )A.1,√2,√3B.7,23,25C.8,15,17D.9,40,417. 下列几组数中,不能作为直角三角形三边长的是( )A.1,1,√2B.1,34,52C.0.5,1.2,1.3D.9,40,418. 给出下列四个说法:①由于0.3,0.4,0.5不是勾股数,所以以0.3,0.4,0.5为边长的三角形不是直角三角形;②由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数; ③若a ,b ,c 是勾股数,且c 最大,则一定有a 2+b 2=c 2;④若三个整数a ,b ,c 是直角三角形的三边长,则2a ,2b ,2c 一定是勾股数,其中正确的是( )A.①②B.②③C.③④D.①④二、 填空题 (本题共计 9 小题 ,每题 3 分 ,共计27分 , )9. 三角形三边分别为5,12,13,那么最长边上的高为________.10. 在△ABC 中,AB =12cm ,AC =9cm ,BC =15cm ,则△ABC 的面积等于________.11. 能够成为直角三角形三条边长的三个正整数,称为勾股数,试写出两种勾股数________,________.12. 给出下列几组数据:①3,4,5;②1,3,4;③4,4,6;④6,8,10;⑤5,7,2;⑥13,5,12;⑦7,25,24.以每组数据为三边长,可构成三角形的有________,可构成直角三角形的有________.(只填写序号)13. 若三角形的三边长分别等于1、√2、√3,则此三角形的面积是________.14. 若在△ABC中,a=m2−n2,b=2mn,c=m2+n2,则△ABC是________三角形.15. 下列四组数:①0.6,0.8,1:②5,12,13;③8,15,17;④4,5,6.其中是勾股数的组为________.16. △ABC中,AB=10,BC=6,AC=8,则△ABC的面积是________.17. 三边都是整数的直角三角形叫做勾股三角形,有一条边长为12的勾股三角形有________个.三、解答题(本题共计7 小题,共计69分,)18. 已知一个直角三角形的周长是12cm,两直角边长的和为7cm,求此三角形的面积.19. 如图,△ABC中,AB=6,AC=8,BC=10,(1)证明:△ABC是直角三角形.(2)若AD⊥BC,垂足为D,求AD的长.20. 木匠制作了一个三角形木板,量得此三角形的三边长恰好为5cm,10cm,5√3cm,问这个三角形木板是否为直角三角形?若是,请说明理由;若不是也请说明.21. 如图,DE=17,EF=30,EF边上的中线DG=8,求△DEF的面积.22. 一艘轮船以30千米/时的速度离开港口,向东南方向航行,另一艘轮船同时离开港口,以40千米/时的速度航行,它们离开港口一个半小时后相距75千米,求第二艘船的航行方向.23. 已知a、b、c为△ABC的三边,(1)若a4+b2c2−a2c2−b4=0,判断△ABC的形状;(2)若a2=b2+c2−bc,计算ca+b +ba+c的值.24. 阅读:所谓勾股数就是满足方程x2+y2=z2的正整数解,即满足勾股定理的三个正整数构成的一组数.我国古代数学专著《九章算术》一书中,在历史上第一次给出该方程的解为:x=12(m2−n2),y=mn,z=12(m2+n2),其中m>n>0,m、n是互质的奇数.应用:已知某直角三角形的三边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.。
八年级数学上册3.3 勾股定理的简单应用勾股定理中的常见题型例析素材(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册3.3 勾股定理的简单应用勾股定理中的常见题型例析素材(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册3.3 勾股定理的简单应用勾股定理中的常见题型例析素材(新版)苏科版的全部内容。
勾股定理中的常见题型例析勾股定理是几何计算中运用最多的一个知识点.考查的主要方式是将其综合到几何应用的解答题中,常见的题型有以下几种:一、探究开放题例1如图1,设四边形ABCD 是边长为1的正方形,以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去…….作的正方(1)记正方形ABCD 的边长为1a =1,依上述方法所值.形的边长依次为2a ,3a ,4a ,…,n a ,求出2a ,3a ,4a 的(2)根据以上规律写出第n 个正方形的边长n a 的表达式.分析:依次运用勾股定理求出a 2,a 3,a 4,再观察、归纳出一般规律. 解:(1)∵四边形ABCD 为正方形,∴AB=BC=CD=AD=1. 由勾股定理,得AC 222AB BC +=同理,AE =2,EH = 22 a 2= 2a 3=2,a 4= 22(2) ∵011(2)a ==, 122(2)a ==, 232(2)a ==, 3422(2)a ==, ∴1(2)n n a -= ()1,n n ≥是自然数.点拨:探究开放题形式新颖、思考方向不确定,因此综合性和逻辑性较强,它着力于考查观察、分析、比较、归纳、推理等方面的能力,对提高同学们的思维品质和解决问题的能力具有十分重要的作用.二、动手操作题例2如图2,图(1)是用硬纸板做成的两个全等的直角三角形,两条直角边长分别为a 和b ,斜边长为c .图(2)是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,写出它是什么图形; (2)用这个图形证明勾股定理;(3)假设图(1)中的直角三角形有苦干个,你能运用图(1)所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明).解:(1)所拼图形图3所示,它是一个直角梯形.(2)由于这个梯形的两底分别为a 、b ,腰为(a +b ),所以梯形的面积为211()()()22a b a b a b ++=+.又因为这个梯形的面积等于三个直角三角形的面积和,所以梯形的面积又可表示为:2111222ab ab c ++.∴221111()2222a b ab ab c +=++. ∴222a b c +=. (3)所拼图形如图4.点拨:动手操作题内容丰富,解法灵活,有利于考查解题者的动手能力和创新设计的才能。
八年级上册数学《第3章勾股定理》单元测试卷一.选择题1.直角三角形两条直角边的长分别为3和4,则斜边长为()A.4B.5C.6D.102.一个三角形三个内角之比为1:2:1,其相对应三边之比为()A.1:2:1B.1::1C.1:4:1D.12:1:23.已知四个三角形分别满足下列条件:①一个内角等于另外两个内角之和;②三个内角之比为3:4:5;③三边长分别为7,24,25;④三边之比为5:12:13.其中能判定是直角三角形的有()A.1个B.2个C.3个D.4个4.下列各组数是勾股数的是()A.3,4,5B.1.5,2,2.5C.32,42,52D.,,5.两只小鼹鼠在地下从同一处开始打洞,一只朝北面挖,每分钟挖8cm,另一只朝东面挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A.100cm B.50cm C.140cm D.80cm6.在一个直角三角形中,有一个锐角等于25°,则另一个锐角的度数是()A.25°B.55°C.65°D.75°7.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a和b.若ab=8,大正方形的边长为5,则小正方形的边长为()A.1B.2C.3D.48.如图,△ABC中∠ACB=90°,且CD∥AB.∠B=60°,则∠1等于()A.30°B.40°C.50°D.60°9.下列几组数中,能作为直角三角形三边长度的是()A.a=2,b=3.c=4B.a=5,b=6,c=8C.a=5,b=12,c=13D.a=7,b=15,c=1210.如图,在△ABC中,∠ACB=90°,过点C作CD∥AB交∠ABC的平分线于点D,若∠ABD=20°,则∠ACD的度数为()A.20°B.30°C.40°D.50°二.填空题11.如图所示的图案是我国汉代数学家赵爽在注解《周髀算经》中“赵爽弦图”经修饰后的图形,四边形ABCD与四边形EFGH均为正方形,点H是DE的中点,阴影部分的面积为24,则AD的长为.12.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.13.如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯米.14.如图,每个小正方形的边长为1,则∠ABC的度数为°.15.在Rt△ABC中,∠C=90°,∠A=65°,则∠B=.16.在Rt△ABC中,∠C=90°,∠A=70°,则∠B=.17.在直角三角形中,一个锐角是另一个锐角的4倍,则较小锐角的度数为度.18.把两个相同大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A,另外三角板的锐角顶点B,C,D在同一直线上,若AB=,则BD=.19.已知直角三角形的直角边长为a、b,斜边长为c,将满足a2+b2=c2的一组正整数称为“勾股数组”,记为(a,b,c),其中a≤b<c.事实上,早在公元前十一世纪,中国古代数学家商高就发现了“勾三、股四、弦五”,我们将其简记为(3,4,5).类似的勾股数组还有很多….例如:(5,12,13),(7,24,25),(9,40,41),(11,60,61),(13,84,85),….如果a=2n+1(n为正整数),那么b+c=.(用含n 的代数式表示)20.直角三角形中,以直角边为边长的两个正方形的面积分别为7cm2,8cm2,则以斜边为边长的正方形的面积为cm2.三.解答题21.如图,∠ACB=90°,CD⊥AB,垂足为D.求证:∠ACD=∠B.22.已知:如图,在Rt△ABC中,∠BAC=90°,D是BC延长线上一点,AD=AB,求证:∠BAD=2∠ACB.23.在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分线.(1)求∠DCE的度数.(2)若∠CEF=135°,求证:EF∥BC.24.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts.(1)当t为何值时,M、N两点重合;(2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化.①当t为何值时,△AMN是等边三角形;②当t为何值时,△AMN是直角三角形;(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值.25.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=;②b与c的关系为,a与d的关系为.26.如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C的距离的关系(不要求证明)(2)如果点M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请判断△OMN 的形状,请证明你的结论.27.定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=2,MN=4,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN 的长.参考答案与试题解析一.选择题1.解:由勾股定理得:斜边长为:=5.故选:B.2.解:设三个角的度数分别为x,2x,x,∴根据三角形内角和定理可求出三个角分别为45°,45°,90°,∴这个三角形是等腰直角三角形,∴斜边等于直角边的倍,∴相对应三边之比为1::1.故选:B.3.解:①设两个较小的角为x,则2x+2x=180°,则三角分别为45°,45°,90°,故是直角三角形;②设较小的角为3x,则其于两角为4x,5x,则三个角分别为45°,60°,75°,故不是直角三角形;③因为三边符合勾股定理的逆定理,故是直角三角形;④因为52+122=132符合勾股定理的逆定理,故是直角三角形.所以有三个直角三角形,故选:C.4.解:A、32+42=52,能构成直角三角形,是正整数,故是勾股数;B、1.52+22=2.52,能构成直角三角形,不是正整数,故不是勾股数;C、(32)2+(42)2≠(52)2,不能构成直角三角形,故不是勾股数;D、()2+()2=()2,不能构成直角三角形,不是正整数,故不是勾股数.故选:A.5.解:两只鼹鼠10分钟所走的路程分别为80cm,60cm,∵正北方向和正东方向构成直角,∴由勾股定理得=100,∴其距离为100cm.故选:A.6.解:∵在一个直角三角形中,有一个锐角等于25°,∴另一个锐角的度数是90°﹣25°=65°.故选:C.7.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=52,∴(a﹣b)2=25﹣16=9,∵正方形的边长a﹣b>0,∴a﹣b=3,故选:C.8.解:∵△ABC中,∠ACB=90°,∠B=60°,∴∠A=30°,∵CD∥AB,∴∠1=∠A,∴∠1=30°,故选:A.9.解:A、∵22+32≠42,∴不能构成直角三角形,故本选项不符合题意;B、∵52+62≠82,∴能构成直角三角形,故本选项不符合题意;C、∵52+122=132,∴能构成直角三角形,故本选项符合题意;D、∵72+122≠152,∴不能构成直角三角形,故本选项不符合题意.故选:C.10.解:∵BD平分∠ABC,∴∠ABD=∠DBC=20°,∴∠ABC=40°,∵∠ACB=90°,∴∠A=90°﹣∠ABC=90°﹣40°=50°,∵CD∥AB,∴∠ACD=∠A=50°,故选:D.二.填空题11.解:由四边形ABCD 与四边形EFGH 均为正方形,点H 是DE 的中点,可知E 、F 、G 分别为AF 、BG 、CH 的中点,且AE =EH =DH =HG =CG =FG =BF =EF =BE ,∴S △AEH =S △DHG =S △CGF =S △BFE =,∴S 阴影=3×S 正方形EFGH =24,∴S 正方形EFGH =8,∴EH =DH =, ∴DE =2EH =4, 又∠AED =90°, ∴===.故答案为:2. 12.解:设三边分别为5x ,12x ,13x ,则5x +12x +13x =60,∴x =2,∴三边分别为10cm ,24cm ,26cm ,∵102+242=262,∴三角形为直角三角形,∴S =10×24÷2=120cm 2.故答案为:120.13.解:根据勾股定理,楼梯水平长度为=12米,则红地毯至少要12+5=17米长,故答案为:17.14.解:连接AC ,由勾股定理得:AC 2=22+12=5,BC 2=22+12=5,AB 2=12+32=10,∴AC 2+BC 2=5+5=10=BA 2,∴△ABC 是等腰直角三角形,∠ACB =90°,∴∠ABC=45°,故答案为:45.15.解:∵∠C=90°,∠A=65°,∴∠B=90°﹣65°=25°.故答案为:25°.16.解:∵∠C=Rt∠,∠A=70°,∴∠B=90°﹣∠A=90°﹣70°=20°.故答案为:20°.17.解:设较小锐角为x度.由题意:4x+x=90,解得x=18,故答案为18.18.解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴△ABC是等腰直角三角形,∴BC=AB=2,BF=AF=BC=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴BD=BF+DF=1+,故答案为:1+.19.解:方法1:观察“勾股数组”(a,b,c),当a为奇数时,c=b+1,又a=2n+1(n为正整数),由勾股定理可得:c2﹣b2=(2n+1)2,即(b+1)2﹣b2=(2n+1)2,解得b=2n2+2n,∴c=2n2+2n+1,∴b+c=4n2+4n+1,故答案为:4n2+4n+1.方法2:观察“勾股数组”(a,b,c),当a为大于1的正奇数时,有如下规律:32=4+5,52=12+13,72=24+25,…,a2=b+c,∴当a=2n+1时,b+c=(2n+1)2.20.解:设直角三角形ABC的两直角边是a和b,斜边是c,则由勾股定理得:a2+b2=c2,则分别以ab为边长的两个正方形的面积之和是a2+b2=7cm2+8cm2=15cm2,以斜边c为边长的正方形的面积是S=c2=a2+b2=15cm2,故答案为:15.三.解答题21.证明:∵CD⊥AB,∠ACB=90°,∴∠ADC=90°=∠ACB.∵∠A+∠ACD+∠ADC=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠B.22.证明:∵AD=AB,∴∠B=∠D,设∠B=∠D=α,∴∠BAD=180°﹣∠B﹣∠D=180°﹣2α=2(90°﹣α),∵∠BAC=90°,∴∠ACB=90°﹣∠B=90°﹣α,∴∠BAD=2∠ACB.23.解:∵∠B=30°,CD⊥AB于D,∴∠DCB=90°﹣∠B=60°.∵CE平分∠ACB,∠ACB=90°,∴∠ECB=∠ACB=45°,∴∠DCE=∠DCB﹣∠ECB=60°﹣45°=15°;(2)∵∠CEF=135°,∠ECB=∠ACB=45°,∴∠CEF+∠ECB=180°,∴EF∥BC.24.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+6=2x,解得:x=6,即当M、N运动6秒时,点N追上点M;(2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1,AM=t,AN=6﹣2t,∵∠A=60°,当AM=AN时,△AMN是等边三角形∴t=6﹣2t,解得t=2,∴点M、N运动2秒后,可得到等边三角形△AMN.②当点N在AB上运动时,如图3,若∠AMN=90°,∵BN=2t,AM=t,∴AN=6﹣2t,∵∠A=60°,∴2AM=AN,即2t=6﹣2t,解得t=;如图3,若∠ANM=90°,由2AN=AM得2(6﹣2t)=t,解得t=.综上所述,当t为或s时,△AMN是直角三角形;(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知6秒时M、N两点重合,恰好在C处,如图4,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵∠AMC=∠ANB,∠C=∠B,AC=AB,∴△ACM≌△ABN(AAS),∴CM=BN,∴t﹣6=18﹣2t,解得t=8,符合题意.所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形.25.解:(1)①如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.(或者:在直角三角形中,两条直角边的平方和等于斜边的平方.)②证明:在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即c2=ab×4+(b﹣a)2,化简得:a2+b2=c2.在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即(a+b)2=c2+ab×4,化简得:a2+b2=c2.在图3中,梯形的面积等于三个直角三角形的面积的和.即(a+b)(a+b)=ab×2+c2,化简得:a2+b2=c2.(2)①三个图形中面积关系满足S1+S2=S3的有3个;故答案为3;②结论:S1+S2=S3.∵S1+S2=()2+()2+S3﹣()2,∴S1+S2=π(a2+b2﹣c2)+S3,∴a2+b2=c2.∴S1+S2=S3.(3)①a2+b2+c2+d2=m2;②b与c的关系为b=c,a与d的关系为a+d=m.故答案为:m2;b=c,a+d=m.26.解:(1)点O到△ABC的三个顶点A、B、C的距离的关系是OA=OB=OC;(2)△OMN的形状是等腰直角三角形,证明:∵△ABC中,AB=AC,∠BAC=90°,O为BC中点,∴OA=OB=OC,AO平分∠BAC,AO⊥BC,∴∠AOB=90°,∠B=∠C=45°,∠BAO=∠CAO=45°,∴∠CAO=∠B,在△BOM和△AON中∵,∴△BOM≌△AON(SAS),∴OM=ON,∠AON=∠BOM,∵∠AOB=∠BOM+∠AOM=90°,∴∠AON+∠AOM=90°,即∠MON=90°,∴△OMN是等腰直角三角形.27.解:(1)是.理由:∵AM2+BN2=22+(2)2=16,MN2=42=16,∴AM2+NB2=MN2,∴AM、MN、NB为边的三角形是一个直角三角形.故点M、N是线段AB的勾股分割点.(2)设BN=x,则MN=12﹣AM﹣BN=7﹣x,①当MN为最大线段时,依题意MN2=AM2+NB2,即(7﹣x)2=x2+25,解得x=;②当BN为最大线段时,依题意BN2=AM2+MN2.即x2=25+(7﹣x)2,解得x=.综上所述BN的长为或.。
3.1勾股定理强化卷一、单选题1.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是()A.13B.26C.34D.472.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.15 dm B.17 dm C.20 dm D.25 dm3.如图,正方形ABCD是由9个边长为1的小正方形组成,每个小正方形的顶点都叫格点,连接AE,AF,∠=()则EAFA.30B.45︒C.60︒D.75︒4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则这根芦苇的高度是()A .10尺B .11尺C .12尺D .13尺5.如图,正方形ABCD 中,DE⊥CE ,垂足为E ,且DE=3,CE=4,则阴影部分的面积是( )A .16B .18C .19D .216.等腰三角形的腰长为10,底边长为12,则这个等腰三角形的面积是( ) A .24B .48C .96D .367.在ABC ∆中,15AB =,13AC =,高12AD =,则三角形的周长是( ) A .42B .32C .42或32D .37或338.如图,在ABC ∆中,AB=AC, ⊥B=30°,AD⊥AB ,AD=4,则下列各式中正确的是( )A .AB=8B .BC=16C .DC=4D .BD=109.下列选项中(图中三角形都是直角三角形),不能用来验证勾股定理的是( )A .B .C .D .10.⊥ABC 中,AB=15,AC=13,高AD=12,则⊥ABC 的周长为( ) A .42B .32C .42或32D .37或33二、填空题11.如图,Rt⊥ABC 中,⊥C=90°,在⊥ABC 外取点D ,E ,使AD=AB ,AE=AC ,且α+β=⊥B ,连结DE .若AB =4,AC =3,则DE =__.12.在Rt ABC ∆中,90C ∠=︒,13AB =,5AC =,BC =______.13.如图,四边形ABCD 是正方形,AE ⊥BE 于点E ,且AE =3,BE =4,则阴影部分的面积是_____.14.如图,在Rt ABC △中,90B ∠=︒,3cm AB =,5cm AC =,将ABC 折叠,使点C 与点A 重合,得折痕DE ,则ABE △的周长等于____cm .15.如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”,他们仅仅少走了________步路(假设2步为1米),却踩伤了花草.16.边长为6的等边三角形的面积是__________.17.如图,长为10cm 的弹性皮筋放置在直线l 上,固定两端A 和B ,然后把中点C 垂直向上拉升12cm 至D 点,则弹性皮筋被拉长了_____cm .18.如图,Rt ABC ∆中,90CAB ∠=︒,ABD ∆是等腰三角形,4AB BD ==,CB BD ⊥交AD 于E ,1BE =,则AC =_________.19.已知,在ABC ∆中,1513AB AC ==,,且BC 边上的高为12,边BC 的长为__________. 20.在⊥ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为_______________.三、解答题21.如图,在四边形ABCD 中,AB AD =,90BAD ACD ∠=∠=︒,BE AC ⊥于E , (1)求证:BE AC =;(2)若10AB =,6CD =,求四边形ABCD 的面积.22.如图,⊥ABC 中,⊥BAC =90°,AC =8cm ,DE 是BC 边上的垂直平分线,⊥ABD 的周长为14cm ,求BC 的长.23.如图,你能计算出各直角三角形中未知边的长吗?24.如图,一个宽1m ,高2.4m 的大门,需在相对角的顶点间加一块加固木板.求木板长.25.已知:整式()()22212A n n -=+,整式0B >.尝试: 化简整式A . 发现: 2A B =,求整式B .联想:由上可知,222212B n n +=(﹣)(),当n >1时2,1,2,n n B -为直角三角形的三边长,如图.填写下表中B 的值:26.(1)按规律填表:(2)上表中,每列三个数为一组,这组数有什么特点?(3)如果一个直角三角形的两条直角边长分别为20和99,你能很快得到斜边的长吗?27.在ABC ∆中,AB AC =,6BC =,ABC ∆面积212cm ,求腰长AB .28.如图,点C 在线段BD 上,AC BD ⊥,CA CD =,点E 在线段CA 上,且满足DE AB =,连接DE 并延长DE 交AB 于点F ,连接AD ,BE .(1)求证:DF AB ⊥;(2)若已知BC a =,AC b =,AB c =,设EF x =,则ABD △的面积用代数式可表示为()12ABDS c c x =+.你能借助本题提供的图形,证明勾股定理吗?试一试吧!29.已知:如图,在Rt ABC 中,90C ∠=︒,5AB cm =,3AC cm =,动点P 从点B 出发沿射线BC 以1/cm s 的速度移动,设运动的时间为t 秒. (1)求BC 边的长;(2)当ABP △为直角三角形时,求t 的值; (3)当ABP △为轴对称图形时,求t 的值.30.到三角形三条边距离相等的点,叫做此三角形的内心,由此我们引入如下定义:到三角形的两条边距离相等的点,叫做此三角形的准内心.举例:如图,若AD 平分⊥CAB ,则AD 上的点E 为⊥ABC 的准内心. 应用:(1)如图AD 为等边三角形ABC 的高,准内心P 在高AD 上,且 PD =12AB ,则⊥BPC 的度数为 度. (2)如图已知直角⊥ABC 中斜边AB =5,BC =3,准内心P 在BC 边上,求CP 的长.。
第三章勾股定理检测卷一、选择题(共6小题;共30分)1. 下列各组数据中的三个数作为三角形的边长,能构成直角三角形的一组是( )A. √3,√4,√5B. 1,√2,√3C. 6,7,8D. 2,3,42. 小强量得家里彩电屏幕的长为58cm,宽为46cm,则这台彩电的尺寸约为( )A. 9英寸(23cm)B. 21英寸(54cm)C. 29英寸(74cm)D. 34英寸(87cm)3. 在△ABC中,AB=15,AC=13,边BC上的高AD=12,则BC的长为( )A. 5B. 14C. 4或14D. 9或144. 如图,每个小正方形的边长都为1,则△ABC的三边长a,b,c的大小关系是( )A. a<c<bB. a<b<cC. c<a<bD. c<b<a5. 如图,在△ABC,△ADE中,∠BAC=∠DAE=90∘,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:① BD=CE;② BD⊥CE;③ ∠ACE+∠DBC=45∘;④ BE2=2(AD2+AB2).其中结论的个数是( )A. 1B. 2C. 3D. 46. 如图,在△ABC中,∠BAC=90∘,AB=3,AC=4,AD平分∠BAC,交BC于点D,则BD的长为( )A. 157B. 125C. 207D. 215二、填空题(共9小题;共54分)7. 若三角形的三边长之比为3:4:5,周长为24,则这个三角形的面积为.8. 如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为.9. 如图,每个小正方形的边长都是2,A,B,C是小正方形的顶点,则∠ABC=∘.10. 如图,在Rt△ABC中,∠B=90∘,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点,则CD的长为.11. 已知在△ABC中,∠BAC=45∘,AB=√2,要使满足条件的△ABC唯一确定,那么边BC的长x的取值范围为.12. 如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则BC的长为.13. 已知三角形的三边长分别为2n+1,2n2+2n,2n2+2n+1(n为正整数),则此三角形是三角形.14. 直角三角形两条直角边的长分别为3和4,三角形内某一点到各边的距离相等,那么这个距离为.15. 如图,一只蚂蚁沿着棱长为1的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,那么最短路径的长为.三、解答题(共3小题;共36分)16. 如图,在△ABC中,AB=AC=6,AB的垂直平分线交AB于点E,交BC于点D,连接AD,若AD=4,求DC的长.17. 如图,在△ABC中,∠ABC=45∘,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC的中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)线段BH与CA相等吗?若相等,请给予证明;若不相等,请说明理由.(2)求证:BG2−GE2=EA2.18. 如图,在△ABC中,∠C=90∘,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B的路径运动,且速度为1cm/s,设出发的时间为t s.问t为何值时,△BCP为等腰三角形?答案第一部分1. B2. C3. C4. C5. C6. A第二部分7. 248. √39. 4510. 25811. x=1或x≥√212. √713. 直角14. 115. √10第三部分16. 过点A作AF⊥BC于点F.∵AB=AC,BC.∴BF=CF=12∵AB的垂直平分线交AB于点E,AD=4,∴BD=AD=4.设DF=x,∴BF=4+x.在Rt△AFB,Rt△AFD中,由勾股定理,得AF2=AB2−BF2,AF2=AD2−DF2,∴42−x2=62−(4+x)2,.解得x=12∴DF=12.∴CD=CF+DF=BF+DF=BD+2DF=4+12×2= 5.17. (1)相等.∵CD⊥AB,BE⊥AC,∴∠BDC=∠BEA=∠CDA=90∘.又∵∠ABC=45∘,∴∠BCD=∠ABC=45∘,∠A+∠DCA=90∘,∠A+∠ABE=90∘.∴DB=DC,∠ABE=∠DCA.在△DBH和△DCA中,{∠DBH=∠DCA, DB=DC,∠BDH=∠CDA,∴△DBH≌△DCA(ASA).∴BH=CA.(2)连接CG.∵F为BC的中点,DB=DC,∴DF垂直平分BC.∴BG=CG.∵BE⊥AC,∴∠BEA=∠BEC=90∘.又∵∠ABE=∠CBE,BE=BE,∴△ABE≌△CBE(ASA).∴EA=EC.在Rt△CGE中,由勾股定理,得CG2−GE2=EC2,∴BG2−GE2=EA2.18. 在△ACB中,∠C=90∘,AB=5cm,BC=3cm,根据勾股定理,得AC=4cm.(1)当CP=CB时,①若点P在CA上,CP=t=3cm,∴t=3;②若点P在AB上,CP=CB=3cm,AP=(t−4)cm.作 CH ⊥AB 于点 H ,则 PB =2BH ,如图①.由 3×4=5CH ,得 CH =125 cm .在 Rt △BCH 中,BH =√32−(125)2=95(cm ),∴ PB =2BH =185 cm .由 AP +PB =AB ,得 t −4+185=5,解得 t =275.(2)当 PC =PB 时,点 P 只能在 AB 上,AP =(t −4)cm . 如图②.∵ PC =PB ,∴ ∠PCB =∠B .∵ ∠ACB =90∘,∴ ∠A +∠B =90∘,∠ACP +∠PCB =90∘.∴ ∠A =∠ACP .∴ AP =PC .∴ AP =PB ,即 AP =12AB .∴ t −4=12×5.∴ t =132.(3)当 BP =BC =3 cm 时,则 AP =AB −BP =2 cm , 点 P 只能在 AB 上.∵AP=(t−4)cm,∴t−4=2.∴t=6.综上所述,t为3或275或132或6时,△BCP为等腰三角形.1、三人行,必有我师。
3.2《勾股定理的逆定理》一、选择题1.在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( )A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形B .如果a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠C =90°C .如果∠A :∠B :∠C =1:3:2,那么△ABC 是直角三角形D .如果a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形2.适合下列条件的△ABC 中, 直角三角形的个数为 ①111345a b c ,,;===②6a =,∠A =45°;③∠A =32°, ∠B =58°; ④72425a b c ===,,;⑤22 4.a b c ===,,⑥::3:4:5a b c =⑦::12:13:15A B C ∠∠∠=⑹5,12,13a b c ===A .2个B .3个C .4个D .5个3.下列各组数中,是勾股数的为( )A .111345,, B .0.6,0.8,1.0 C .1,2,3 D .9,40,414.下列命题:①如果3、4、5为一组勾股数,那么3k 、4k 、5k 仍是勾股数;②含有45°角的直角三角形的三边长之比是1∶是9,12,13,那么此三角形是直角三角形;④一个直角三角形的两边长是3和4,它的斜边是5.其中正确的个数是 ( )A .1个B .2个C .3个D .4个二、填空题1.如图,点P 是等边三角形ABC 内一点,且PA=3,PB=4, PC=5,若将△APB 绕着点B 逆时针旋转后得到△CQB,则∠APB 的度数______.2.如图,点M ,N 把线段AB 分割成三条线段AM ,MN 和NB ,若以AM ,MN 和NB 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点.若2AM =,3MN =,则NB 的长的平方为____.3.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.三、解答题1.如图,90ADC ∠=︒,4=AD m ,3CD =m , 13AB =m ,12BC =m .(1)试判断以点A ,B ,C 为顶点的三角形的形状,并说明理由;(2)求该图的面积.2.如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠ADC是否是直角,并说明理由;(2)试求四边形草坪ABCD的面积.3.下图是由边长为1的小正方形组成的网格.(1)求四边形ABCD的面积(2)判断AD与CD的关系,并说明理由.4.如图,一个零件的形状如图所示,按规定这个零件中∠A与∠DBC都应为直角.工人师傅量的这个零件各边的尺寸如图所示.(1)这个零件符合要求吗?(2)求这个四边形的面积.5.如图,AB=AD.AC=AE,∠BAD=∠CAE.(1)求证:△ABC≌△ADE;(2)若AC=9,AD=12,BE=15,请你判断△ABE的形状并说明理由.6.在ABC ∆中,BC a =,AC b =,AB c =.设c 为最长边.当222+=a b c 时,ABC ∆是直角三角形;当222a b c +≠时,利用代数式22a b +和2c 的大小关系,探究ABC ∆的形状(按角分类).(1)当ABC ∆三边分别为6、8、9时,ABC ∆为______三角形;当ABC ∆三边分别为6、8、11时,ABC ∆为______三角形.(2)猜想,当22a b +______2c 时,ABC ∆为锐角三角形;当22a b +______2c 时,ABC ∆为钝角三角形.(3)判断当2a =,4b =时,ABC ∆的形状,并求出对应的c 的取值范围.7.如图,在正方形ABCD 中,E 是AD 的中点,F 是 AB 上一点,且AF =14AB . 求证:CE ⊥EF .8.问题背景:在△ABC中,AB、BC、AC个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你利用上述方法求出△ABC的面积.(2)在图2中画△DEF,DE、EF、DF.①判断三角形的形状,说明理由.②求这个三角形的面积.(直接写出答案)9.(问题背景)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC =90°,点E、F分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使GD =BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.(探索延伸)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F 分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(学以致用)如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为.10.(问题原型)如图1,在等腰直角三形ABC中,∠ACB=90°,BC=8.将边AB 绕点B顺时针旋转90°得到线段BD,连结CD,过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为.(初步探究)如图2.在Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积并说明理由.(简单应用)如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连续CD,求△BCD的面积(用含a的代数式表示).11.在△ABC中,∠BAC=90°,AB=AC.点D从点B出发沿射线BC移动,以AD 为边在AB的右侧作△ADE,且∠DAE=90°,AD=AE.连接CE.(1)如图1,若点D在BC边上,则∠BCE=°;(2)如图2,若点D在BC的延长线上运动.①∠BCE的度数是否发生变化?请说明理由;②若BC=3,CD=6,则△ADE的面积为.12.在直角三角形中,两直角边的平方和等于斜边的平方.如图1,若在△ABC中,∠C=90°,则AC2+BC2=AB2.我们定义为“商高定理”.(1)如图1,在△ABC中,∠C=90°中,BC=4,AB=5,试求AC=__________;(2)如图2,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)如图3,分别以Rt△ACB的直角边BC和斜边AB为边向外作正方形BCFG和正方形ABED,连结CE、AG、GE.已知BC=4,AB=5,求GE2的值.答案一、选择题1.B.2.C.3.D .4.A二、填空题1.150°2.5或133.13,84,85三、解答题1. 解:(1)连接AC ,由勾股定理可知,5AC ==, 又22222251213AC BC AB +=+==, ABC ∆∴是直角三角形(2)该图的面积ABC ACD S S ∆∆=-,115123422=⨯⨯-⨯⨯, 224(m )=. 答:该图的面积为24 2m .2.(1)∠D 是直角,理由如下:连接AC ,∵∠B=90°,AB=24m ,BC=7m ,∴AC 2=AB 2+BC 2=242+72=625,∴AC=25(m ).又∵CD=15m ,AD=20m ,152+202=252,即AD 2+DC 2=AC 2,∴△ACD 是直角三角形,或∠D 是直角;(2)S 四边形ABCD =S △ABC +S △ADC =12AB ⋅BC +12AD ⋅DC, =234(m 2).3.解:(1)由题意可知四边形ABCD 的面积=大正方形的面积-四个小直角三角形的面积111125551242332322222=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯=(2)AD ⊥CD ,理由如下:22125AD DC AC =+====,∴AD 2+DC 2=AC 2=25,∴△ADC 是直角三角形,∴AD ⊥CD ,4.解:∵AD=12,AB=9,DC=17,BC=8,BD=15,∴AB 2+AD 2=BD 2,BD 2+BC 2=DC 2.∴△ABD 、△BDC 是直角三角形.∴∠A=90°,∠DBC=90°.故这个零件符合要求.S 四边形=11292⨯⨯+18152⨯⨯=114.5.(1)证明:∵∠BAD =∠CAE ,∴∠BAC =∠DAE ,在△ABC 和△ADE 中,,∴△ABC ≌△ADE (SAS ).(2)解:结论△ABE 是直角三角形.理由:∵AB =AD =12,AE =AC =9,BE =15,∴AB 2+AE 2=122+92=225,BE 2=225,∴AB 2+AE 2=BE 2,∴∠BAE =90°,∴△BAE 是直角三角形.6.(1)锐角,钝角.(2)>,<. (3)c 为最长边,46c ∴<≤.当222a b c +>,220c <,即4c <≤ABC ∆为锐角三角形;当222+=a b c ,220c =,即c =ABC ∆为直角三角形;当222a b c +<,220c >,即6c <<时,ABC ∆为钝角三角形.7.连接CF ,∵ABCD 为正方形 ∴AB BC CD DA ===,90A B BCD D ∠=∠=∠=∠=︒. 设AB BC CD DA a ====∵E 是AD 的中点,且14AF AB = ∴12AE ED a ==,14AF a =∴34BF a . 在Rt CDE △中,由勾股定理可得2222221524CE CD DE a a a ⎛⎫=+=+= ⎪⎝⎭ 同理可得:2222221152416EF AE AF a a a ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭ 222222325416CF BF BC a a a ⎛⎫=+=+= ⎪⎝⎭. ∵222EF CE CF +=∴CEF △为直角三角形 ∴90CEF ∠=︒ ∴CE EF ⊥.8.(1)S △ABC =3×3﹣12×1×2﹣12×2×3﹣12×1×3=72; (2)如图所示:∵DE EF DF ,∴DE 2+EF 2=DF 2,∴△DEF 是直角三角形. △DEF 的面积=111231122132222⨯-⨯⨯-⨯⨯-⨯⨯=.9. [问题背景】解:如图1,在△ABE和△ADG中,∵DG BEB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案为:EF=BE+FD.[探索延伸]解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,∵DG BEB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;[学以致用]如图3,过点C作CG⊥AD,交AD的延长线于点G,由【探索延伸】和题设知:DE=DG+BE,设DG=x,则AD=6﹣x,DE=x+3,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6﹣x)2+32=(x+3)2,解得x=2.∴DE=2+3=5.故答案是:5.10.问题原型:如图1中,,,如图2中,过点D作BC的垂线,与BC的延长线交于点E,∴∠BED=∠ACB=90°.∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°,∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°,∴∠A=∠DBE.在△ABC和△BDE中,ACB BEDA DBEAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△BDE(AAS),∴BC=DE=8.∵S△BCD12=BC•DE,∴S△BCD=32.故答案为:32.初步探究:△BCD的面积为12a2.理由:如图2中,过点D作BC的垂线,与BC的延长线交于点E.∴∠BED=∠ACB=90°∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°,∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°,∴∠A=∠DBE.在△ABC和△BDE中,ACB BEDA DBEAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△BDE(AAS),∴BC=DE=a.∵S△BCD12=BC•DE,∴S△BCD12=a2;简单应用:如图3中,过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E , ∴∠AFB =∠E =90°,BF 12=BC 12=a ,∴∠FAB +∠ABF =90°. ∵∠ABD =90°,∴∠ABF +∠DBE =90°,∴∠FAB =∠EBD .∵线段BD 是由线段AB 旋转得到的,∴AB =BD .在△AFB 和△BED 中,AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFB ≌△BED (AAS),∴BF =DE 12=a . ∵S △BCD 12=BC •DE ,∴S △BCD 12=•12a •a 14=a 2,∴△BCD 的面积为14a 2. 11.解:(1)∵△ABC 和△ADE 都是等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =90°,∴∠BAD =∠CAE .在△ACE 和△ABD 中,AC=AB CAE=BAD AE=AD ⎧⎪∠∠⎨⎪⎩,∴△ACE ≌△ABD (SAS ); ∴∠ACE =∠ABD =45°,∴∠BCE =∠BCA +∠ACE =45°+45°=90°;故答案为:90;(2)①不发生变化.∵AB =AC ,∠BAC =90°∴∠ABC =∠ACB =45°, ∵∠BAC =∠DAE =90°∴∠BAC +∠DAC =∠DAE +∠DAC ∴∠BAD =∠CAE ,在△ACE 和△ABD 中AC=AB CAE=BAD AE=AD ⎧⎪∠∠⎨⎪⎩∴△ACE ≌△ABD (SAS )∴∠ACE =∠ABD =45°∴∠BCE =∠BCA +∠ACE =45°+45°=90°∴∠BCE 的度数不变,为90°; ②∵BC =3,CD =6,∴BD =9,∵△ACE ≌△ABD ,∴CE =BD =9,在Rt △ECD 中,222DE =CD +CE =117,在Rt △ADE 中,∵AD=AE ∴222AD +AE =DE =117,22117AD =AE =2, ∴△ADE 的面积=2111117117AE AD=AD ==22224⋅⨯;故答案为:1174.12.解:(1)在△ABC 中,∠C=90°中,BC =4,AB =5 ∴AC=3(2)在Rt △DOA 中,∠DOA =900,∴OD 2+OA 2=AD 2 同理:OD 2+OC 2=CD 2 OB 2+OC 2=BC 2 OA 2+OB 2=AB 2∵AB 2+ CD 2=OA 2+OB 2+ OD 2+OC 2 AD 2+ BC 2=OD 2+OA 2+ OB 2+OC 2 ∴AB 2+ CD 2=AD 2+ BC 2(3)∵∠GBC=∠EBA=900 ∴∠GBC+∠CBA=∠EBA+∠CBA∴∠ABG=∠EBC 如图1,在△ABG 和△EBC 中 AB BE ABG EBC BC BG =⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△EBC (SAS ) ∴如图2,∠1=∠2 ,∠3=∠4∴∠5=∠AIJ =900 ∴AG ⊥CB 连接CG 、AE ,由(2)可知 AC 2+GE 2=CG 2+AE 2 在Rt △CBG 中,CG 2=BC 2+BG 2 CG 2=42+42=32在Rt △ABE 中,AE 2=BE 2+AB 2 AE 2=52+52=50在Rt △ABC 中,AB 2=AC 2+BC 2 52=AC 2+42 AC 2=9∴AC 2+GE 2=CG 2+AE 2 9+ GE 2=32+50 GE 2=73。
x=______①x 86②y=______
y
6.56③m=______m 4140④
n=______n 1512第二章 勾股定理与平方根
2.1.1勾股定理(1)
目标与方法
1、能依据勾股定理进行简单的计算、
2、能利用度量与计算的方法验法勾股定理的正确性、
此外,通过定理的学习感受勾股定理的悠久历史,激发学习数学的热情、 基础与巩固 1、(1)如图,在下列横线上填上适当的值:
(2)在Rt △ABC 中,∠C=90°,BC=12,AC=16,则AB=________、 2、在直角三角形中,两直角边的长分别为33cm 、44cm ,求斜边的长、
3、求出下列各图中阴影部分的面积(单位:cm 2)、
0.640.36
(1)
225
144(2)
2cm
1(3)
4、如图,△ABC 中,已知∠C=90°,CD ⊥AB 于D ,AC=9,BC=12,求CD 的长、
D
C
B
拓展与延伸
5、已知一个直角三角形的斜边与一条直角边的和为8,差为2,试求这个直角三角形三边的长、
6、在如图的方格纸上有一个Rt △ABC ,试着计算一下:•是否一定有某两边的平方和等于第三边的平方?
C
A B
答案 1、(1)①10;②2、5;③9;④9 (2)20 2、55cm
3、1cm2,81cm2,5cm2
4、36
5
5、三边长分别为3,4,5
6、不一定。
八年级数学上册3.3 勾股定理的简单应用例析方程思想在勾股定理中的应用素材(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册3.3 勾股定理的简单应用例析方程思想在勾股定理中的应用素材(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册3.3 勾股定理的简单应用例析方程思想在勾股定理中的应用素材(新版)苏科版的全部内容。
例析方程思想在勾股定理中的应用数学思想是数学知识的精髓,它在学习和运用数学知识的过程中,起着观念性的指导作用.方程思想在勾股定理这部分知识中有着广泛的应用,下面举例说明:一、直接利用勾股定理列方程:例1:小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度。
解析:设旗杆的高度AC为x米,那么绳子的长度AB为(1+x)米,根据题意得到△ABC为直角三角形,∠C=90°,根据勾股定理得到:()2212x,解得x=12。
+x5+=答:旗杆的高度为12米。
【总结】在实际问题中,通常直接利用勾股定理建立相等关系列出方程.二、两次利用勾股定理列方程:例2:在锐角∆A BC中,AB=15,AC=13,BC=14, AD⊥BC垂足为D,计算DA的长度。
解析:设DB=x,CD=x-14,在Rt∆ABD中,∠ADB=90°,根据勾股定理得:AD 2=A B2—BD 2,即AD 2=;2215x - 在Rt ∆A CD中,∠ADC=90°,根据勾股定理得:AD 2=A C2—C D2,即AD 2=();221413x -- ∴2215x -=();221413x --解得9=x在Rt ∆AB D中,∠ADB =90°,根据勾股定理得:AD 2=AB 2-BD 2,即AD 2=,=-=222221291515x - ∴(负值舍去)。
第三章《勾股定理》实际应用综合训练(二)1.某校机器人兴趣小组在如图所示的三角形场地上开展训练.已知:AB=10,BC=6,AC=8;机器人从点C出发,沿着△ABC边按C→B→A→C的方向匀速移动到点C停止;机器人移动速度为每秒2个单位,移动至拐角处调整方向需要1秒(即在B、A处拐弯时分别用时1秒).设机器人所用时间为t秒时,其所在位置用点P表示(机器人大小不计).(1)点C到AB边的距离是;(2)是否存在这样的时刻,使△PBC为等腰三角形?若存在,求出t的值;若不存在,请说明理由.2.如图,学校操场边有一块四边形空地ABCD,其中AB⊥AC,AB=CD=4m,BC=9m,AD=7m.为了美化校园环境,创建绿色校园,学校计划将这块四边形空地进行绿化整理.(1)求需要绿化的空地ABCD的面积;(2)为方便师生出入,设计了过点A的小路AE,且AE⊥BC于点E,试求小路AE的长.3.如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB =AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H,(A、H、B在同一条直线上),并新修一条路CH,已知CB=千米,CH=2千米,HB=1千米.(1)CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求新路CH比原路CA少多少千米?4.某中学A,B两栋教学楼之间有一块如图所示的四边形空地ABCD,学校为了绿化环境,计划在空地上种植花草,经测量∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)求出四边形空地ABCD的面积;(2)若每种植1平方米的花草需要投入120元,求学校共需投入多少元.5.今有竹高一丈,末折抵地,去根三尺,问折者高几何?意思是:有一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?6.我国明朝数学著作《直指算法统宗》中有一道关于勾股定理的问题:“平地秋千为起,踏板一尺高地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.二公高士好争,算出索长有几?(注:二步=10尺).”大意是:“当秋千静止时,它的踏板离地的距离为1尺,将秋千的踏板往前推2步(这里的每1步合5尺),它的踏板与人一样高,这个人的身高为5尺,秋千的绳索始终是呈直线状态的,现在问:这个秋千的绳索有多长?”请解答上述问题.7.如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m以内都会受到噪音的影响,请你算出该学校受影响的时间多长?8.如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)9.我市某中学有一块四边形的空地ABCD(如图所示),为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,CD=13m,BC=12m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?10.为了绿化环境,我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量,∠ADC=90°,CD=6m,AD=8m,AB=26m,BC=24m,(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?11.如图,在一次夏令营活动中,小明从营地A出发,沿北偏东60°方向走了80m到达点B,然后再沿北偏西30°方向走了60m到达目的地C.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的北偏东多少度方向.12.数学综合实验课上,同学们在测量学校旗杆的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开8米后,下端刚好接触地面,如图,根据以上数据,同学们准确求出了旗杆的高度,你知道他们是如何计算出来的吗?13.如图1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.(1)这个云梯的底端离墙多远?(2)如图2,如果梯子的顶端下滑了8m,那么梯子的底部在水平方向滑动了多少米?14.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支14cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为多少?15.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,2017年第21号台风“兰恩”的中心从A点以速度为20千米/小时,沿AB方向移动,以台风中心为圆心周围250km以内为受影响区域.已知点C 为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB=500km,请问海港C受台风影响吗?若受到影响,台风影响该海港的时间有多长?若不会受到影响,请说明理由.16.一架梯子AB长25米,如图所示,斜靠在一面上,此时梯子底端B离墙7米;如果梯子的顶端A下滑了4米至点A',那么梯子的底端水平滑动的距离BB'是多少米?17.如图,已知某山的高度AC为800米,从山上A处与上下B处各建一个索道口,且BC=1500米,欢欢从山下索道口坐缆车到山顶,已知缆车每分钟走50米,那么大约多少分钟后,欢欢才能达到山顶?18.如图,市政部门计划在一块三角形空地ABC内部种植草坪,并紧靠AB边外侧修建宽3m,长17m的硬化甬路(阴影图形为长方形).已知AC=8cm,BC=15cm,经过市政部门市场调研,种植草坪的费用为每平米600元,硬化甬路的费用为每平米800元,求此项工程的预计总费用.19.如图,MN是一条东西朝向的笔直的公路,C是位于该公路上的一个检测点,一辆长为9m的小货车BD行驶在该公路上.小王位于检测点C正西北方向的点A处观察小货车,某时刻他发现车头D与车尾B分别距离他10m与17m.(1)过点A向MN引垂线,垂足为E,请利用勾股定理找出线段AE、DE与AE、BE 之间所满足的数量关系;(2)在上一问的提示下,继续完成下列问题:①求线段DE的长度;②该小货车的车头D距离检测点C还有多少米?20.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了避免走散,他们用两部对话机联系,已知对话机的有效距离为15千米,早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?。
3.3勾股定理的简单应用基础卷一、单选题1.一架5m的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m,若梯子的顶端下滑1m,则梯足将滑动()A.0m B.1m C.2m D.3m【答案】B【解析】在Rt△ACB中,△C=90°,AB=5 m,BC=3 m.由勾股定理,得AB2=AC2+BC2.△AC2=AB2-BC2=52-32=42.△AC=4.在Rt△A'CB'中,△C=90°,A'C=AC-AA'=4-1=3,A'B'=5.由勾股定理,得A'B'2=A'C2+B'C2.△B'C2=A'B'2-A'C2=52-32=42.△B'C=4.△BB'=B'C-BC=4-3=1(m).故选B.2.如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是()A.13米B.12米C.5米D米【答案】A【解析】如图所示,过D点作DE△AB,垂足为E,△AB=13,CD=8,又△BE=CD ,DE=BC ,△AE=AB−BE=AB−CD=13−8=5,△在Rt△ADE 中,DE=BC=12,△22222512169,AD AE DE =+=+=△AD=13(负值舍去),故小鸟飞行的最短路程为13m,故选A.3.“折竹抵地”问题源自《九章算术》,即今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是一根竹子,原高1丈(1丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断处离地面的高度为( )A .5.8尺B .4.2尺C .3尺D .7尺【答案】B【解析】设竹子折断处离地面的高度为x 尺,则斜边长为()10x -尺.根据勾股定理,得()222410x x +=-,解得 4.2x =,△折断处离地面的高度为4.2尺.故选B .4.将一根长为17cm 的筷子,置于内半径为3cm 、高为8cm 的圆柱形水杯中.设筷子露在杯子外面的长度为cm x ,则x 的取值范围是( )A .68x ≤≤B .79x ≤≤C .810x ≤≤D .911x ≤≤ 【答案】B【解析】如图,当筷子的底端在D 点时,筷子露在杯子外面的长度最长,此时1789cm x =-=();当筷子的底端在A 点时,筷子露在杯子外面的长度最短在Rt △ABD 中,6cm AD =,8cm BD =,所以2222226810AB AD BD =+=+=,则10cm AB =,此时17107cm x =-=(),所以x 的取值范围是79x ≤≤.故选B .5.小亮想知道学校旗杆的高度,他发现旗杆上的绳子从顶端垂到地面还多2米,当他把绳子的下端拉开8米后,下端刚好接触地面,那么学校旗杆的高度为( )A.8米B.10米C.15米D.17米【答案】C【解析】解:设旗杆高为xm,由勾股定理得:x2+82=(x+2)2解得x=15.故旗杆的高为15m.故选:C6.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则△NOF的度数为()A.50°B.60°C.70°D.80°【答案】C【解析】解:△OM=60海里,ON=80海里,MN=100海里,△OM2+ON2=MN2,△△MON=90°,△△EOM=20°,△△NOF=180°﹣20°﹣90°=70°.故选C.7.如图,测得楼梯的长为5米,高为3米,计划在楼梯表面铺地毯,地毯的长度至少是()A.4米B.5米C.7米D.10米【答案】C【解析】解:楼梯长为5米,高为3米,由勾股定理可知,其水平宽为4米.因为地毯铺满楼梯应该是楼梯的水平宽度与垂直高度的和,所以地毯的长度至少是3+4=7(米).故选:C.8.如图,铁路MN和公路PQ在点O处交汇,△QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.12秒B.16秒C.20秒D.24秒【答案】B【解析】解:如图:过点A作AC△ON,AB=AD=200米,△△QON=30°,OA=240米,△AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,△AB=200米,AC=120米,△由勾股定理得:BC=160米,CD=160米,即BD=320米,△72千米/小时=20米/秒,△影响时间应是:320÷20=16秒.故选B.二、填空题9.如图,在东西走向的铁路上有A、B两站(视为直线上的两点)相距36千米,在A、B的正北分别有C、D两个蔬菜基地,其中C到A站的距离为24千米,D到B站的距离为12千米,现要在铁路AB上建一个蔬菜加工厂E,使蔬菜基地C、D到E的距离相等,则E站应建在距A站_____千米的地方.【答案】12【解析】设AE=x千米,则BE=(36-x)千米,在Rt△AEC中,CE2=AE2+AC2=x2+242,在Rt△BED中,DE2=BE2+BD2=2(-)+122,36x△CE=ED,△x2+242=2(-)+122,解得x=12,所以E站应建在距A站12千米的地方,能使蔬菜基地C,D到E36x的距离相等,故答案为12.10.如图所示,一只小鸟在一棵高20米的大树树梢上觅食,它的伙伴在离该树12米,高4米的一棵小树树梢上发出叫声,它立刻以4米/秒的速度飞向它的伙伴,那么这只水上鸟________秒后能与它的伙伴在一起.【答案】5【解析】如图所示,根据题意,得AC=20−4=16,BC=12.根据勾股定理,得AB=20.则小鸟所用的时间是20÷4=5(s).11.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为_____m.【答案】2.2【解析】解:如图,在Rt△ACB中,△△ACB=90°,BC=0.7米,AC=2.4米,△AB2=0.72+2.42=6.25,在Rt△A'BD中,△A'DB=90°, A'D=2米,BD2+A'D2=A'B2,△BD2+22=6.25,△BD2=2.25,△BD>0,△BD=1.5米,△CD=BC+BD=0.7+1.5=2.2米.12.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为__________米.【答案】12.【解析】如图,△△BAC=30°,△BCA=90°,△AB=2CB,而BC=4米,△AB=8米,△这棵大树在折断前的高度为AB+BC=12米.故答案为12.13.有—个长为12cm,宽为4cm,高为3cm的长方形铁盒,在其内部要放一根笔直的铅笔,则铅笔长度不应超过_______cm.【答案】13【解析】由题意知:AD=12cm,CD=4cm,BC=3cm△222=+,AB AC BC=+,222AC AD CD△22221243169=++=,=++222AB AD CD BC△AB=13(cm),(负值舍去),答:铅笔长度不应超过13cm.故答案为:13.14.如图所示,在一个高BC为6米,长AC为10米,宽为2.5米的楼梯表面铺地毯.若每平方米地毯50元铺满整个楼梯至少需_________元.【答案】1750∆中根据勾股定理【解析】在Rt ABC22222=-=-=,AB AC BC10664△AB=8△AB+BC=14(米),△14×2.5×50=1750(元).答:铺设地毯至少需要花费1750元.三、解答题15.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA△AB于点A,CB△AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E 的距离相等,则收购站E应建在离A点多远处?【答案】收购站E应建在离A点10km处.【解析】解:△使得C,D两村到E站的距离相等.△DE=CE.△DA△AB于A,CB△AB于B,△△A=△B=90°,△AE2+AD2=DE2,BE2+BC2=EC2,△AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x).△DA=15km,CB=10km,△x2+152=(25﹣x)2+102,解得:x=10,△AE=10km,△收购站E应建在离A点10km处.16.(古代数学问题)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”,该问题是:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;“渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.【答案】水深3.75尺.【解析】解:设水深x尺,则荷花茎的长度为x+0.5,根据勾股定理得:(x+0.5)2=x2+4解得:x=3.75.答:湖水深3.75尺.17.在甲村至乙村的公路上有一块山地正在开发,现有一C 处需要爆破.已知点C 与公路上的停靠站A 的距离为300米,与公路上的另一停靠站B 的距离为400米,且CA CB ⊥,如图所示为了安全起见,爆破点C 周围半径250米范围内不得进入,问在进行爆破时,公路AB 段是否因为有危险而需要暂时封锁?请说明理由.【答案】公路AB 段需要暂时封锁.理由见解析.【解析】公路AB 段需要暂时封锁.理由如下:如图,过点C 作CD AB ⊥于点D .因为400BC =米,300AC =米,90ACB ∠=︒,所以由勾股定理知222AB BC AC =+,即500AB =米. 因为1122ABC S AB CD BC AC =⋅=⋅, 所以400300240500BC AC CD AB ⋅⨯===(米). 由于240米<250米,故有危险,因此公路AB 段需要暂时封锁.18.如图,居民楼A 与公路a 相距60米,在距离汽车100米处就会受到汽车噪音影响,在公路上以20米/秒的速度行驶的汽车,会给A 楼的居民带来多长时间的噪音影响?【答案】8秒.【解析】如图所示,假设汽车行至点P 时,居民恰好受到噪音影响,行至点P '时,居民恰好脱离噪音影响.根据题意,得100AP AP '==米.又因为AB PP '⊥.所以ABP ∆和ABP '∆均为直角三角形.根据勾股定理,得22222100606400BP AP AB =-=-=.所以80BP =米.同理,得80BP '=米.因此汽车从点P 行至点P '所需时间为8080820+=(秒). 即会给A 楼居民带来8秒的噪音影响.19.有一个小朋友拿着一根竹竿通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜入就恰好等于门的对角线长,已知门宽4尺,请求竹竿的长度.【答案】竹竿的长度为8.5尺.【解析】解:设竹竿的长度为x 尺,由题意知(x -1)2+42=x 2整理得2x -17=0解得x=8.5答:竹竿的长度为8.5尺.20.一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动距台风中心100 海里的圆形区域(包括边界)都属于台风区,测得台风中心此时位于轮船正南方向200海里处,如果这艘轮船继续航行,3小时后,会不会遇到台风?请说明理由.【答案】会遇到台风.【解析】会遇到台风.理由如下:如图所示,线段AD 表示台风中心经过的路径,线段BC 表示轮船航行的路径.由题意,得20034080BD =-⨯=(海里),20360BC =⨯=(海里), 在Rt BCD ∆中,根据勾股定理,得22222806010000DC BD BC =+=+=,即100DC =海里.所以轮船会遇到台风.21.如图,一根旗杆原有8米,一次“台风”过后,旗杆被台风吹断,倒下的旗杆的顶端落在离旗杆底部4米处,那么这根旗杆被台风吹断处离地面多高?【答案】3米【解析】设旗杆未折断部分长为x 米,则折断部分的长为(8-x )m ,根据勾股定理得:x 2+42=(8-x )2,可得:x=3m ,即距离地面3米处断裂.22.在一条东西走向河的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB =AC ,由于种种原因,由C 到A 的路现在已经不通了,某村为方便村民取水决定在河边新建一个取水点H (A ,H ,B 在一条直线上),并新修一条路CH ,测得CB =3千米,CH =2.4千米,HB =1.8千米.(1)问CH 是不是从村庄C 到河边的最近路,请通过计算加以说明;(2)求原来的路线AC 的长.【答案】(1)是,理由见解析;(2)2.5米.【解析】(1)△2221.8 2.43+=,即222+=BH CH BC , △Rt△CHB 是直角三角形,即CH△BH ,△CH 是从村庄C 到河边的最近路(点到直线的距离中,垂线段最短); (2)设AC =AB =x ,则AH =x -1.8,△在Rt△ACH ,△222CH AH AC +=,即 2222.4 1.8)x x -=+(,解得x =2.5, △原来的路线AC 的长为2.5米.。