人教版高数必修五第5讲:等差数列前n项和公式(学生版)
- 格式:docx
- 大小:6.56 MB
- 文档页数:6
等差数列的前n 项和__________________________________________________________________________________ __________________________________________________________________________________教学重点: 掌握等差数列前项和通项公式及性质, 数列最值的求解, 与函数的关系教学难点: 数列最值的求解及与函数的关系1. 数列的前n 项和一般地, 我们称为数列的前项和, 用表示;记法: 显然, 当时, 有 所以与的关系为n a = ①1S ()1n =②______________2. 等差数列的前n 项和公式___________________3. 等差数列前n 项和公式性质(1) 等差数列中, 依次项之和仍然是等差数列, 即 成等差数列, 且公差为_______(2) n S n ⎧⎫⎨⎬⎩⎭是等差数列 (3) 等差数列中, 若, 则;若 则(4) 若和均为等差数列, 前项和分别是和, 则有4. 项数为的等差数列, 有有偶 -奇 =, 奇 /偶 =5. 等差数列前n 项和公式与函数的关系等差数列前n 项和公式()112n n n S na d -=+可以写成____________________若令1,,22d d A a B =-=类型一: 数列及等差数列的求和公式例1.已知数列{}n a 的前n 项和22,n S n n =+ 求{}n a练习1.已知数列的前项和求.练习2: 已知数列的前项和求例2.已知等差数列的前项和为 , 求及练习3.已知等差数列的前项和为,,求.....练习4.已知等差数列的前项和为, 求.(1) 例3.在等差数列中, 前项和为(2) 若81248,168,S S ==求1a 和公差d(3) 若499,6,a a ==-求满足54n S =的所有n 的值练习5.设 是等差数列的前项和, 则___________练习6.在等差数列中, 则的前5项和 ______________类型二: 等差数列前项和公式的性质(1) 例4.在等差数列中,(2) 若, 求(3) 若共有项, 且前四项之和为21, 后四项之和为67, 前项和 , 求(4) 若10100100,10S S ==求110S练习7.(2014山东淄博一中期中)设 是等差数列的前项和, 若, 则等于() A.19 B.13 C.310 D.18练习8.(2014山东青岛期中)已知等差数列的公差, 则 ()A.2014B.2013C.1007D.1006例5.已知等差数列和的前项和分别为和, 且则=()A..........B...........C..........D..练习9.已知是等差数列, 为其前项和, 若则的值为______练习10.已知等差数列的公差为2, 项数是偶数, 所有奇数项之和为15, 所有偶数项之和为35, 则这个数列的项数为______________类型三: 等差数列前项和公式的最值及与函数的关系例6.已知数列{}n a 的前项和为2230n S n n =-(1) 这个数列是等差数列吗? 求出它的通项公式(2) 求使得n S 最小的n 值练习11.已知等差数列的前项和为, 为数列的前项和, 求数列的通项公式练习12.等差数列中, 若, 求=_____________例7.已知等差数列中, 求使该数列前项和取得最小值的的值练习13.已知等差数列中, 则使前项和取得最小值的值为()A.7B.8C.7或8D.6或7练习14.数列满足, 则使得其前项和取得最大值的等于()A.4B.5C.6D.71.四个数成等差数列, S4=32, a2a3=13, 则公差d 等于( )A. 8B. 16C. 4D. 02.设{an}是等差数列,Sn 为其前n 项和,且S5<S6,S6=S7>S8,则下列结论错误的是( )A. d<0B. a7=0C. S9>S5D. S6与S7均为Sn 的最大值.3.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,Sn 是等差数列{an}的前n 项和,则使得Sn 达到最大值的n 是( )A. 21B. 20C. 19D. 184.已知等差数列{an}的前n 项和为Sn ,a5=5,S5=15,则数列{}的前100项和为( )A.100101B.99101C.99100D.1011005.在等差数列{an}中, 若S12=8S4, 且d ≠0, 则等于( )A. B. C. 2 D.6.设Sn 为等差数列{an}的前n 项和,若a1=1,公差d =2,Sk +2-Sk =24,则k =( )A. 8B. 7C. 6D. 57.(2014·福建理,3)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( )A. 8B. 10C. 12D. 14_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.等差数列{an}的前n项和为Sn, 已知am-1+am+1-a=0, S2m-1=38, 则m=( )A. 38B. 20C. 10D. 92.数列{an}是等差数列, a1+a2+a3=-24, a18+a19+a20=78, 则此数列的前20项和等于( )A. 160B. 180C. 200D. 2203.等差数列{an}的公差为d, 前n项和为Sn, 当首项a1和d变化时, a2+a8+a11是一个定值, 则下列各数中也为定值的是( )A. S7B. S8C. S13D. S154.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( )A. 5B. 4C. 3D. 25.在等差数列{an}中, a1>0, d=, an=3, Sn=, 则a1=________, n=________.6.设Sn是等差数列{an}(n∈N*)的前n项和, 且a1=1, a4=7, 则S5=________.7.设{an}是公差为-2的等差数列,若a1+a4+a7+…+a97=50,则a3+a6+a9+…+a99的值为________.8.若等差数列{an}满足a7+a8+a9>0, a7+a10<0, 则当n=________时, {an}的前n项和最大.9.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{a n}的通项公式;(2)求数列{}的前n项和.10.设{an}是等差数列,前n项和记为Sn,已知a10=30,a20=50.(1)求通项a n;(2)若Sn=242, 求n的值.能力提升11.在等差数列{an}和{bn}中, a1=25, b1=15, a100+b100=139, 则数列{an+bn}的前100项的和为( )A. 0B. 4 475C. 8 950D. 10 00012.等差数列{an}中,a1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值为4,则抽取的项是( )A. a8B. a9C. a10D. a1113.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 等于( )A. 12B. 16C. 9D. 16或914.已知一个等差数列的前四项之和为21,末四项之和为67,前n 项和为286,则项数n 为( )A. 24B. 26C. 27D. 2815.设Sn 为等差数列{an}的前n 项和,S3=4a3,a7=-2,则a9=( )A. -6B. -4C. -2D. 216.设Sn 是等差数列{an}的前n 项和,若=,则等于( )A.310B.13C.18D.1917.已知等差数列{an}的前n 项和为Sn, 若=a1+a200, 且A.B.C 三点共线(该直线不过点O), 则S200=( )A. 100B. 101C. 200D. 20118.已知等差数列{an}的前n 项和为18, 若S3=1, an +an -1+an -2=3, 则n =________.19.已知数列{an}的前n 项和Sn =n2-8,则通项公式an =________.20.设{an}是递减的等差数列, 前三项的和是15, 前三项的积是105, 当该数列的前n 项和最大时, n 等于( )A. 4B. 5C. 6D. 721.等差数列{an}中, d<0, 若|a3|=|a9|, 则数列{an}的前n 项和取最大值时, n 的值为______________.22.设等差数列的前n 项和为Sn.已知a3=12,S12>0,S13<0.(1)求公差d 的取值范围;(2)指出S1, S2, …, S12中哪一个值最大, 并说明理由.23.已知等差数列{an}中, a1=1, a3=-3.(1)求数列{a n }的通项公式;(2)若数列{an}的前k 项和Sk =-35, 求k 的值.24.在等差数列{an}中:(1)已知a5+a10=58, a4+a9=50, 求S10;(2)已知S7=42, Sn =510, an -3=45, 求n.25.已知等差数列{an}的前n 项和Sn =-n2+n, 求数列{|an|}的前n 项和Tn.课程顾问签字: 教学主管签字:。
人教版高二数学必修 5 第二章等差数列的前n项和知识点2019-2019 新学期学习必定注意知识点的累积,为此查词典数学网整理了数学必修 5 第二章等差数列的前n 项和知识点,希望帮助大家学习。
乞降公式若一个等差数列的首项为a1,末项为 an 那么该等差数列和表达式为:S=(a1+an)n2即(首项 +末项 )项数 2前 n 项和公式注意: n 是正整数 (相当于 n 个等差中项之和 ) 等差数列前 N 项乞降,实质就是梯形公式的妙用:上底为: a1 首项,下底为 a1+(n-1)d ,高为 n。
即[a1+a1+(n-1)d]* n/2=a1 n+ n (n-1)d /2.小故事编写高斯是德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,共享盛名。
课本、报刊杂志中的成语、名言警语等俯首皆是 ,但学生写作文运用到文章中的甚少 ,即便运用也很难做到恰到好处。
为什么?仍是没有完全“记死”的缘由。
要解决这个问题,方法很简单,每天花 3-5 分钟左右的时间记一条成语、一则名言警语即可。
能够写在后黑板的“累积专栏”上每天一换,能够在每天课前的 3 分钟让学生轮番解说,也可让学生个人采集,每天往笔记本上抄写 ,教师按期检查等等。
这样,一年即可记300 多条成语、300 多则名言警语,与日俱增,终归会成为一笔不小的财产。
这些成语典故“储藏”在学生脑中 ,自然会下笔成章 ,写作时便会为所欲为地“提取”出来 ,使文章添色添辉。
高斯 1777 年 4 月 30 日生于不伦瑞克的一个工匠家庭,1855年 2 月 23 日卒于格丁根。
幼时家境贫穷,但聪敏异样,受一贵族资助才进学校受教育。
1795~ 1798 年在格丁根大学学习,1798 年转入黑尔姆施泰特大学,翌年因证明朝数基本定理获博士学位。
从 1807 年起担当格丁根大学教授兼格丁根天文台台长直至去世。
这个工作可让学生疏组负责采集整理 ,登在小黑板上 ,每周一换。
等差数列的前n 项和__________________________________________________________________________________ __________________________________________________________________________________教学重点: 掌握等差数列前n 项和通项公式及性质,数列最值的求解,与函数的关系 教学难点: 数列最值的求解及与函数的关系1. 数列的前n 项和一般地,我们称312...n a a a a ++++为数列{}n a 的前n 项和,用n S 表示;记法:123...n n S a a a a =++++ 显然,当2n ≥时,有1n n n a S S -=- 所以n a 与n S 的关系为 n a = 1S ()1n =②______________2. 等差数列的前n 项和公式___________________3. 等差数列前n 项和公式性质(1) 等差数列中,依次()2,k k k N +≥∈项之和仍然是等差数列,即23243,,,,...k k k k k k k S S S S S S S --- 成等差数列,且公差为_______(2) n S n ⎧⎫⎨⎬⎩⎭是等差数列 (3) 等差数列{}n a 中,若(),n m a m a n m n ==≠,则0m n a +=;若(),,n m S m S n m n ==≠则()m n S m n +=-+(4) 若{}n a 和{}n b 均为等差数列,前n 项和分别是n S 和n T ,则有2121n n n n a S b T --= (5) 项数为2n 的等差数列{}n a ,有()1,n n n S n a a +=+有S 偶 -S 奇 =nd ,S S 奇 /偶 =1n n a a + 4. 等差数列前n 项和公式与函数的关系等差数列前n 项和公式()112n n n S na d -=+可以写成____________________若令1,,22d d A a B =-=类型一: 数列及等差数列的求和公式例1.已知数列{}n a 的前n 项和22,n S n n =+ 求{}n a练习1. 已知数列{}n a 的前n 项和22,n S n n =+求2a练习2:已知数列{}n a 的前n 项和22,n S n n =+求10a例2.已知等差数列{}n a 的前n 项和为n S ,131,,15,22m a d S ==-=-求m 及m a 练习3. 已知等差数列{}n a 的前n 项和为n S ,11,512,1022n n a a S ==-=-,求d练习4. 已知等差数列{}n a 的前n 项和为n S ,524,S =求24a a +例3.在等差数列{}n a 中,前n 项和为n S(1) 若81248,168,S S ==求1a 和公差d(2) 若499,6,a a ==-求满足54n S =的所有n 的值练习5.设n S 是等差数列{}n a 的前项和,1532,3,a a a ==则9S =___________练习6.在等差数列{}n a 中,241,5,a a ==则{}n a 的前5项和 5S = ______________类型二: 等差数列前n 项和公式的性质例4.在等差数列{}n a 中,(1) 若41720a a +=,求20S(2) 若共有n 项,且前四项之和为21,后四项之和为67,前n 项和286n S = ,求n(3) 若10100100,10S S ==求110S练习7.(2014山东淄博一中期中)设n S 是等差数列{}n a 的前n 项和,若4813S S =,则816S S 等于() A.19 B.13 C.310 D.18练习8.(2014山东青岛期中)已知等差数列{}n a 的公差0d >,()122013...2013t a a a a t N ++++=∈ 则t = ()A.2014B.2013C.1007D.1006例5.已知等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且21n n S n T n =+则33a b =() A.32 B.43 C.53 D. 127练习9.已知是{}n a 等差数列,n S 为其前n 项和,n N +∈若32016,20a S ==则10S 的值为______ 练习10.已知等差数列{}n a 的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为35,则这个数列的项数为______________类型三:等差数列前n 项和公式的最值及与函数的关系例6.已知数列{}n a 的前项和为2230n S n n =-(1) 这个数列是等差数列吗?求出它的通项公式(2) 求使得n S 最小的n 值练习11.已知等差数列{}n a 的前n 项和为715,7,75n S S S ==,n T 为数列n S n ⎧⎫⎨⎬⎩⎭的前n 项和,求数列{}n T 的通项公式练习12.等差数列{}n a 中,若61024,120S S ==,求15S =_____________例7.已知等差数列{}n a 中,19120,,a S S <=求使该数列前n 项和n S 取得最小值的n 的值练习13.已知等差数列{}n a 中,128,4a d =-=则使前n 项和n S 取得最小值的n 值为()A.7B.8C.7或8D.6或7练习14.数列{}n a 满足211n a n =-+,则使得其前n 项和取得最大值的n 等于()A.4B.5C.6D.71. 四个数成等差数列,S 4=32,a 2 a 3=13,则公差d 等于( )A .8B .16C .4D .02. 设{a n }是等差数列,S n 为其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值.3. 已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,S n 是等差数列{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .184. 已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( ) A.100101 B.99101 C.99100 D.1011005. 在等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于( ) A.910 B.109 C .2 D.236. 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( )A .8B .7C .6D .57. (2014·福建理,3)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14_________________________________________________________________________________ _________________________________________________________________________________基础巩固1. 等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =( )A .38B .20C .10D .92.数列{a n }是等差数列,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列的前20项和等于( )A .160B .180C .200D .2203.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 2+a 8+a 11是一个定值,则下列各数中也为定值的是( )A .S 7B .S 8C .S 13D .S 154. 已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( )A .5B .4C .3D .25. 在等差数列{a n }中,a 1>0,d =12,a n =3,S n =152,则a 1=________,n =________. 6. 设S n 是等差数列{a n }(n ∈N *)的前n 项和,且a 1=1,a 4=7,则S 5=________.7. 设{a n }是公差为-2的等差数列,若a 1+a 4+a 7+…+a 97=50,则a 3+a 6+a 9+…+a 99的值为________.8.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.9. 已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列{1a 2n -1a 2n +1}的前n 项和. 10. 设{a n }是等差数列,前n 项和记为S n ,已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n 的值.能力提升11. 在等差数列{a n }和{b n }中,a 1=25,b 1=15,a 100+b 100=139,则数列{a n +b n }的前100项的和为( )A .0B .4 475C .8 950D .10 00012. 等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值为4,则抽取的项是( )A .a 8B .a 9C .a 10D .a 1113. 一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 等于( )A .12B .16C .9D .16或914. 已知一个等差数列的前四项之和为21,末四项之和为67,前n 项和为286,则项数n 为( )A .24B .26C .27D .2815. 设S n 为等差数列{a n }的前n 项和,S 3=4a 3,a 7=-2,则a 9=( )A .-6B .-4C .-2D .216. 设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( ) A.310 B.13 C.18 D.1917. 已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200OC →,且A 、B 、C 三点共线(该直线不过点O ),则S 200=( )A .100B .101C .200D .20118. 已知等差数列{a n }的前n 项和为18,若S 3=1,a n +a n -1+a n -2=3,则n =________.19. 已知数列{a n }的前n 项和S n =n 2-8,则通项公式a n =________.20. 设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n 等于( )A .4B .5C .6D .721. 等差数列{a n }中,d <0,若|a 3|=|a 9|,则数列{a n }的前n 项和取最大值时,n 的值为______________.22. 设等差数列的前n 项和为S n .已知a 3=12,S 12>0,S 13<0.(1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由.23. 已知等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.24. 在等差数列{a n }中:(1)已知a 5+a 10=58,a 4+a 9=50,求S 10;(2)已知S 7=42,S n =510,a n -3=45,求n .25.已知等差数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n .课程顾问签字: 教学主管签字:。