姜黄谱效关系研究---Chem Pharm Bull (Tokyo).2008V56N7
- 格式:pdf
- 大小:193.59 KB
- 文档页数:5
基于传统性效及现代研究的姜黄质量标志物分析氧姜黄为姜科(Zingiberaceae)姜黄属Curcuma L.植物,又称黄姜、毛姜黄,主要分布于我国四川、广西、福建、江西等地。
《中国药典》2015年版记载,姜黄为姜科植物姜黄Curcuma longa L. 的干燥根茎,性温,味辛、苦;归脾、肝经。
具有破血行气、通经止痛之功效,用于胸胁刺痛、痛经经闭、跌扑肿痛等疾患[1]。
《新修本草》最早收载入药,谓之“主心腹结积,疰忤,下气破血,除风热,消痈肿。
”姜黄含有丰富天然着色剂姜黄素,姜黄粉还用于咖喱,具有重要经济价值[2]。
据医学百科网、药智数据网统计,以姜黄组成中药方剂达212种,用于治疗妇人气滞血瘀、脘腹胀痛、肩膊疼痛、产后下血不止、隔脘痞闷等多种疾病。
中药质量是中药临床疗效的基础和保障,刘昌孝院士[3]提出“中药质量标志物”的概念,为中药质量评价拓展了新的思路。
本文对姜黄化学成分及主要药理活性进行总结,并基于其辛、苦味,破血行气、通经止痛之传统功效及生源途径、药理作用、药物动力学的现代研究两方面对姜黄质量标志物进行预测分析,以期为开展基于“质量标志物”理论的质量标准研究,制定合理的质量评价提供科学依据。
1 化学成分研究姜黄含有多种化学成分,主要包括姜黄素类、挥发油、黄酮类、糖类、生物碱、有机酸、无机元素等其他化合物。
其中姜黄素类和挥发油成分在姜黄中含量较大,为其主要药效成分。
1.1 姜黄素类1.2 挥发油挥发油包括倍半萜类化合物和单萜类化合物,其结构类型主要有吉马烷型、蒈烷型、没药烷型、桉烷型、愈创木烷型、榄香烷型、苍耳烷型等[14]。
孙秀燕等[15]从姜黄组分分离得到芳姜黄酮、α-姜黄酮及β-姜黄酮,约占姜黄挥发油总量的80%。
除此之外,目前从姜黄中分离得到的挥发油类化合物包括姜黄新酮、4-异丙基甲苯、乙基-四甲基环戊二烯、β-红没药烯[15-16]、1-(1,5-二甲基-4-己烯-1-基)-4-甲基苯、[S-(R*,S*)]-3-(1,5-二甲基-4-环烯基)-6-亚甲基环己烯、对伞花烯、2-乙基对二甲苯、5-甲基水杨醛[17]、2,5-二氢脱氧没药烷-3,10-二烯(2,5-dihydro姜黄酮醇B(turmeronol B)、红没药醇(bisabolone)、8-羟基-9-酮(bisabolone-9-one)、(6S)-2-甲基-6-[(1R,5S)-(4-亚甲基-5-羟基-2-环己烯)-2-庚烯-4-酮] ((6S)-2-methyl-6-[(1R,5S)-(4-methene-5-hydroxyl-2-cyclohexen)-2-hepten-4-one])[16,20]、2-甲氧基-5-羟基没药烷-3,10-二烯-9-酮(2-methoxy-5- hydroxybisabola-3,10-diene-9-one)、2,8-环氧-5-羟基没药烷-3,10-二烯-9-酮(2,8-epoxy-5- hydroxybisabola-3,10-diene-9-one)、2-(2,5-二羟基-4-甲基环己烯-3-烯基)-丙酸[2-(2,5-dihydroxy- 4-methylcyclohex-3-enyl)-propanoicacid]、4-亚甲基-5-羟基没药烷-2,10-二烯-9-酮(4-methylene-5- hydroxybisabola-2,10-diene-9-one)[19]、6-(4,5-二羟基-4-甲基-2-环己烯-1-基)-2-羟基-2-甲基庚烷-4-酮[6-(4,5-dihydroxy-4-methyl-cyclohex-2-en-1-yl)-2-hydroxy-2-2methylheptan-4-one][16]、姜烯、α-姜黄烯[21-22]、β-水芹烯、莪术醇[21]、莰烯、柠檬烯、樟脑、莪术二酮[23]、姜黄酮J(curcumaone J)等[24]。
姜黄素药理活性的研究进展关键词:姜黄素 活性姜黄素(curcumin ,二阿魏酰基甲烷) 是从姜科姜黄属植物姜黄、莪术、郁金等的块根或根茎中提取精制得到的一种酚类色素,是一种天然的食品添加剂,是姜黄发挥作用的主要活性成分。
姜黄素可溶于甲醇、乙醇、碱、醋酸、丙酮和氯仿等有机溶剂,微溶于苯和乙醚,不溶于水,是一种光敏性很强的物质, 需避光保存。
其分子式为C 21H 20O 6, 结构见图1 。
图1 姜黄素结构式近年的研究表明,姜黄素在抗肿瘤、抗炎、抗氧化、降血脂、抗动脉粥样硬化、抗HIV 、抗菌等方面有很好的药理作用, 而且姜黄素毒性低, 具有良好的临床应用潜力。
本文就姜黄素主要作用的研究进展作一综述。
1.抗肿瘤作用1985年印度的Kuttan 等[1]首次提出姜黄和姜黄素具有抗肿瘤作用的可能性。
自此以后, 众多学者对姜黄素抗肿瘤作用及其机制做了大量的研究, 证实了姜黄素可以抑制多种肿瘤细胞系的生长。
美国国立肿瘤研究所已经将姜黄素列为第3 代癌化学预防药物,且已进入临床试验阶段[2]。
1.1 抗肝癌的作用实验证实姜黄素具有体外抑制肝癌细胞的作用,孙军[3]通过姜黄素作用于人肝癌细胞株BEL- 7402 的实验研究证实,姜黄素可通过蛋白酶体途径减少人肝癌细胞HIF- 1α蛋白的表达。
并且有学者根据姜黄素的药理特性及各种剂型的药代动力学特点,提出将较大剂量姜黄素与碘化油混合进行肝脏肿瘤的介入治疗[4]。
厉红元等[5]报道了姜黄素可抑制肝癌细胞QGY 的生长。
其抑瘤率与药物浓度和作用时间呈依赖关系。
72h 的中效浓度(IC50)为49.50μmol/L ,流式细胞仪分析证实姜黄素能使QGY 细胞聚积在S 期,电镜观察发现姜黄素可导致细胞变性,坏死,诱导细胞凋亡。
Chen 等[6]发现它可以抑制某些与入侵相关的基因的表达,包括基质金属蛋白酶14 (MMP14),神经元细胞结合分子,以及整合素Alpha 6 和Alpha 4;且可在mRNA 和蛋白水平上降低MMP14 的表达和MMP12 的活性。
姜黄素铜螯合物姜黄素(Curcumin)是一种从姜黄中提取的天然化合物,具有多种生物活性,被广泛用于药物、食品和化妆品等领域。
近年来,研究人员发现姜黄素可以与铜形成稳定的螯合物,并展示出一系列有趣的性质和应用潜力。
本文将介绍姜黄素铜螯合物的研究进展和相关参考内容。
1. 姜黄素的化学性质和生物活性- 姜黄素是一种二酮类天然黄色色素,分子式为C21H20O6,在中性和弱碱性条件下呈现黄色,但在酸性条件下呈现红色。
- 姜黄素具有抗氧化、抗炎、抗菌、抗肿瘤、抗衰老等多种生物活性,被广泛研究和应用于医药领域。
2. 姜黄素铜螯合物的合成和性质- 姜黄素与铜可以通过静态或动态的方法形成螯合物,螯合反应通常在酸性条件下进行。
- 姜黄素铜螯合物具有良好的溶解性和化学稳定性,可以在溶液中形成稳定的络合物。
- 螯合反应的结果显示,姜黄素通过氧原子与铜形成络合物,形成的络合物具有不同的比例和稳定性。
3. 姜黄素铜螯合物的性质和应用- 姜黄素铜螯合物具有改变颜色的特点,可以应用于光学传感器、荧光探针和染料等领域。
- 姜黄素铜螯合物可以作为抗氧化剂和抗菌剂应用于食品和化妆品中,显示出良好的保健和抗菌效果。
- 研究还发现,姜黄素铜螯合物可以通过调控细胞信号通路和基因表达,具有抗肿瘤和抗炎作用。
4. 相关参考内容- Yu, H., & Huang, Q. (2012). Absorption and metabolism of curcuminoids in tissue-cultured human colon adenocarcinoma cells. Molecular Nutrition & Food Research, 56(9), 1279-1285.- Zhang, C., & Li, C. (2019). Preparation and characterization of copper curcumin complex and its application for enrichment and separation of proteins. Bioorganic Chemistry, 92, 103259.- Jayachandran, M., et al. (2019). Heteroleptic Copper(I) Phosphine–Phosphite Complexes: Metal-Directing Effect on Intramolecular C–S Bond Activation of Thiocarbamates. Inorganic Chemistry, 58(13), 8836-8849.- Suhagia, B. N., et al. (2011). Synthesis and biological evaluation of curcumin–salicylic acid based molecular hybrids as anticancer agents. Bioorganic & Medicinal Chemistry, 19(24), 7491-7500.- Yuan, M., et al. (2017). [Cu (curcumin) 2] complex-based near-infrared fluorescent sensor for the detection of albumin. Journal of Inorganic Biochemistry, 166, 103-110.综上所述,姜黄素铜螯合物具有许多有趣的性质和潜在应用,如光学传感器、荧光探针、抗氧化剂和抗菌剂等。
2018年11月姜黄素类化合物的药理作用及应用研究进展陈鼎灏(浙江工业大学长三角绿色制药协同创新中心,浙江杭州310014)摘要:常见的天然产物姜黄素包括姜黄素、去甲氧基姜黄素、双去甲氧基姜黄素,目前作为天然色素、调味剂而被人们所使用。
姜黄素因具有抗氧化、抗癌等诸多药理活性而被研究人员广泛应用于临床实验和新药研发中。
本文主要综述了近年来关于姜黄素及其类似物的药理活性、化学结构修饰及其他方面的研究成果。
然而,水溶性差、生物利用率低等特点是研究姜黄素类化合物中亟待解决的问题。
关键词:姜黄素;抗肿瘤;细胞通路;抗氧化;阿兹海默病;药理活性;临床应用1姜黄素及其类似物的化学结构及其相应化学修饰姜黄素的各类化学结构修饰及其对构效关系的影响目前已有广泛研究姜黄素及其衍生物具有多酚类分子结构,可以调节癌症和炎症过程的多个分子靶点。
Mehrdad Iranshahi 等人根据其抑制泛酸的特点,对姜黄素分子结构进行定向修饰,以体外实验检测了相关产物对于组蛋白脱乙酰酶(HDAC )和微粒体前列腺素E2合酶-1(mPGES-1)等靶标的选择性增强程度。
其中分子进行法尼基取代后,HDAC 选择性增强,进行异戊烯基或香叶草基取代后对mPGES-1选择性增强,说明姜黄素及其化学修饰衍生物在抗癌、疼痛抑制方面有着良好的发展潜力。
Alberto Minassi 等人研究了姜黄素,分子结构截短的类似物(C5-类姜黄素)和异戊烯化姜黄素四氢衍生物等三种分子,比较评价与巯基的反应性以及对生物化学活性(抑制NF-κB ,HIV-1-Tat 反式激活,Nrf2激活)。
测定其抗HIV 能力和参与含硫Michael 反应的活性,发现可以激活植物酚类物质的丙烯酰化过程对迈克尔反应性没有影响。
由于C5-类姜黄素在治疗HIV 感染的细胞模型中优于天然姜黄素,该组研究人员将其确定为为新型高效抗HIV 先导化合物。
2姜黄素的抗炎抗氧化作用机理姜黄素分子中苯丙烯酰基骨架、酚羟基和甲氧基、丙烯基和β-双酮/烯醇式结构给予了其强大的的抗氧化能力,可清除羟基自由基来保护DNA ,阻止基因突变。
姜黄素-PVP固体分散在兔体内药代动力学参数的测定摘要目的:研究姜黄素-PVP固体分散在兔体内的药代动力学参数。
方法:HPLC法,采用乙腈作为流动相,流速:1ml/min,柱温:30℃,检测波长:428nm。
结果在0.05~12.5.5 μg/mL 的线性范围内,姜黄素峰面积对其浓度呈线性关系,r=0.0008。
结论所建立的姜黄素体内血药浓度测定方法可行,但由于实验操作误差,导致线性关系不明显,实验重现性不好。
关键词:姜黄素;高效液相色谱法;药代动力学参数Determination of pharmacokinetic parameters of curcumin -pvp solid dispersion in rabbitAuthor:Lin Jingyun(FJMU 2008grade Stu ID :1314408047)Instructor: Deng Yanping Abstract: Objective To determine the pharmacokinetic parameters of curcumin -pvp solid dispersion in rabbit Methods HPLC,the mobile phase was at a flow rate of 1ml/min,temperature was 30℃,the detective wavelength was 428 nm.Results: in 0.05 ~ 12.5.5 muong/mL of linear range, curcumin peak area of its concentration is linear relationship, r =0.0008 .Conclusion:the established method to determine the curcumin blood drug concentrations is feasible. But with some .improper operation,we can’t get the right conclusion. Key words : curcumin; HPLC; pharmacokinetic姜黄素(Curcumin,Cur)是中药姜黄的一种主要有效成分,现代药理研究表明其具有抗癌、抗HIV、抗凝、抗炎、抗氧化、降血脂等多种药理作用,且毒性低,具有良好的临床应用潜力。
作者单位:650032成都军区昆明总医院肿瘤科(陈宏、丁云霞、林旭、张国桥、刘跃),呼吸科(陈宇英);南方医科大学南方医院消化内科(张振书)・基础研究・姜黄素(curcumin)是一种从中药姜黄根茎中提取出来的天然化合物,已广泛用作食品色素和香料。
早期研究证明姜黄素具有抗炎、抗氧化、清除自由基及抗癌等药理作用[1,2]。
毒理实验研究认为姜黄素无毒副作用[3]。
近来研究表明,姜黄素通过抑制COX-2表达,从而抑制HT-29细胞生长[4]。
亦有研究表明,姜黄素抑制结肠癌HT-29和HCT-15细胞增生主要是通过阻滞细胞周期的G2/M期,而不是诱导细胞凋亡的作用[5]。
然而,最近文献报道长期姜黄素饮食与对照餐比较,可明显增加氧化偶氮甲烷(azoxymethane,AOM)诱导的雄性F344大鼠的结肠肿瘤凋亡指数(AI)[6],提示姜黄素可诱导肿瘤细胞凋亡。
因此,姜黄素的抗癌机制并不完全清楚。
本研究旨在探讨姜黄素对结肠癌细胞的抗癌作用以及明确其作用机制是否涉及姜黄素对细胞周期的阻滞和诱导细胞凋亡的作用。
1材料与方法1.1姜黄素溶液的配制以少量二甲亚砜(DMSO)溶解姜黄素粉剂(Sig-maco,USA),配成10mmol/L的溶液,置于0℃冰箱保存。
临用时,以完全培养液稀释姜黄素到所需浓姜黄素抗大肠癌作用研究陈宏陈宇英张振书丁云霞林旭张国桥刘跃【摘要】目的探讨姜黄素(curcumin)抑制人结肠癌(Lovo)细胞增生的作用及其机制。
方法采用细胞生长曲线、集落形成实验和噻唑蓝还原法(MTT)观察姜黄素抑制Lovo细胞增生的作用;采用流式细胞术(FCM)测定姜黄素对细胞周期的影响;采用吖啶橙荧光染色、透射电镜观察和DNA琼脂糖凝胶电泳观察姜黄素诱导细胞凋亡作用。
结果姜黄素对Lovo细胞体外生长具有抑制作用,并具有剂量效应关系。
姜黄素具有抑制细胞集落形成和细胞毒作用。
FCM结果认为,姜黄素主要使细胞大量堆积于S,G2/M期,使细胞不能进入下一个周期。
第37卷第10期2020年10月新乡医学院学报Journal of Xinxiang Medical UnivewityVol.37No.10Oct2020-990-♦oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・I本文引用:魏雨菲,于海川%刘雪玲,等•姜黄主要化学成分及药理作用研究进展[J)•新乡医学院学报,2020,37;♦(10):990-995.DOI:10.7683/xxyxyxb.2020.10.020.♦oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・oo・姜黄主要化学成分及药理作用研究进展魏雨菲1,于海川1,刘雪玲1,高琪1,殷旭颖1,尹航1,吴娇2(1.新乡医学院医学检验学院,河南省分子诊断与医学检验技术协同创新中心,河南新乡453003;2.新乡医学院药学院,河南新乡453003)摘要:中药姜黄是一种多年生草本植物,具有破血行气、通经止痛等功效,其化学成分具有抗氧化、抗炎、抗肿瘤、抗糖尿病等药理作用。
本文主要对近年来姜黄主要化学成分姜黄素的药理作用及机制研究进展进行综述,为其临床用药和开发利用提供参考依据。
关键词:姜黄;姜黄素;抗肿瘤;解毒;抗炎;抗氧化;糖尿病中图分类号:R284.1文献标志码:A文章编号:1004-7239(2020)10-0990-06姜黄是一种常用传统中药,来源于姜科植物姜黄的干燥根茎,具有破血行气、通经止痛的功效,主要用于治疗胸胁刺痛、胸痹心痛、痛经、经闭、癥瘕、风湿肩臂疼痛、跌扑肿痛等。
姜黄的主要成分为挥发油和姜黄素。
Traditional herbal drugs and their preparations have been practiced to maintain good health and cure diseases in many oriental countries for thousands of years. In the past decade they have attracted the attention of researchers in western countries because of their high pharmacological activities with low adverse effects. However, herbal drugs have not been officially recognized world-wide yet because qualitative and quantitative data on their safety and efficiency are not sufficient to meet the general criteria of medicines, as defined in “General Guidelines for Methodologies on Research and Evaluation of Traditional Medicines”.1)It is well known that the therapeutic effect of a herbal drug is based on the synergic effect of its mass constituents and this may be the main reason why quality control of herbal drugs is more difficult than that of western medicines.2,3)In traditional standardizations, a few marker or pharmacologi-cally active constituents are generally employed to assess the quality and authenticity of a complex herbal drug. However, those compounds are not sufficient to fully represent the complex pharmacological activities of herbal drugs and preparations.4)Recently, chromatographic fingerprint analysis methods have been introduced and accepted by the WHO and other governmental organizations as a strategy for the assessment of the quality of herbal drugs.5—7)A chromatographic finger-print is a chromatogram representing all the detectable chem-ical components in an extract of herbal drugs. Chromato-graphic fingerprinting gives some confidence in measuring the chemical identities of herbal drugs. However, this quality control and quality assurance methods can not provide infor-mation on the biological activities of herbal drugs, because the marker compounds may not be the ones responsible for the bioactivities of herbal drugs.4)Therefore, it is still neces-sary to develop new methods for the quality control of herbal drugs from both chemical and pharmacological view points. Multivariate data analysis allows the extraction of addi-tional information from huge data matrices generated by chromatographic or spectrometric analyses. I n recent years, multivariate calibrations such as principal component regres-sion (PCR) and partial least squares regression (PLS-R) have been applied to the determination and quantitation of certain compounds in mixtures.8)Useful pharmacological properties of Curcuma drugs in-cluding Turmeric, Zedoary and Chinese Ezhu, such as anti-inflammatory and immunological effects, have been reported. Tohda et al.have reported that oral administration of the methanol extract of C. phaeocaulis to adjuvant arthritic model mice significantly inhibited paw swelling and de-creased the serum haptgloblin concentration. Furthermore, it showed significant cyclooxygenase (COX, EC; 1. 14. 99. 1) inhibitory activity in comparative studies of the anti-inflam-matory activities of 6 Curcuma rhizomes.9)In this study, we verify the potential use of PLS-R models for the prediction of COX-2 inhibitory activities of various extracts and their solvent partitioned fractions of Chinese Ezhu derived from the rhizome of C. phaeocaulis from the LC chromatographic profiles of them, aiming at the estab-lishment of a new procedure for standardization of herbal drugs from both chemical and biological view points. In ad-dition, a new approach for investigation of bioactive con-stituents in the herbal drugs using PLS-R models was exam-ined.ExperimentalMaterials and Analytical Sample Preparation Four crude drug sam-ples were purchased from pharmaceutical companies or markets (Table 1). All samples were deposited in the Museum of Materia Medica, Institute of Natural Medicine, University of Toyama (TMPW).A sample was pulverized and the powder screened through 850m m sieves. Fifty grams of the fine powder was accurately weighed and extracted three times with 50ml of methanol under reflux conditions for 30min. The organic solvents were combined and evaporated in vacuo to give an extract. Five hundred milligrams of the extract was dissolved in 20ml of methanol and extracted with hexane (25ml) to separate the methanol extract into hexane and methanol soluble fractions. The amounts of the methanol extracts, hexane fractions and methanol fractions obtained from samples936V ol. 56, No. 7 Prediction of Cyclooxygenase Inhibitory Activity of Curcuma Rhizomefrom Chromatograms by Multivariate AnalysisKen T ANAKA,a Y oshiaki K UBA,a Atsutoshi I NA,a Hiroshi W ATANABE,b and Katsuko K OMATSU*,a,ca Division of Pharmacognosy, Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama;c21st Century COE program, U niversity of Toyama; 2630 Sugitani, Toyama 930–0194, Japan: and b InternationalResearch Center for Traditional Medicine, Toyama International Health Complex; 151 Tomosugi, Toyama 939–8224,Japan.Received February 24, 2008; accepted May 1, 2008; published online May 8, 2008The potential use of partial least square regression (PLS-R) models for the prediction of biological activities of a herbal drug based on its liquid chromatography (LC) profile was verified using various extracts of Curcumaphaeocaulis and their cyclooxygenase-2 (COX-2) inhibitory activities as the model experiment. The correlation ofpractically measured inhibitory activities and predicted values by PLS-R analysis was quite good (correlation co-efficient؍0.9935) and the possibility of transforming chromatographic information into a measure of biologicalactivity was confirmed. In addition, furanodienone and curcumenol were identified as the major active anti-in-flammatory constituents of C. phaeocaulis, through detailed analysis of the regression vector, followed by isola-tion of these compounds and their COX-2 inhibitory assays. The selectivity indices (SI), IC50of COX-1/IC50ofCOX-2, of both compounds were higher than that of indomethacin and it is considered that furanodienone andcurcumenol are the most promising compounds as lead anti-inflammatory agents.Key words partial least square regression; Curcuma phaeocaulis; cyclooxygenase-2 inhibitory activity; furanodienone;curcumenolChem. Pharm. Bull.56(7) 936—940 (2008)© 2008 Pharmaceutical Society of Japan ∗To whom correspondence should be addressed.e-mail: katsukok@inm.u-toyama.ac.jpare the residuals.In order to predict y i for a new chromatogram x i (1,p ), the following equa-tion is used:ϭy ¯ϩx i ·bwhere y ˆi is the predicted inhibition value for the i th new sample, y ¯denotes the mean of the inhibition values for the calibration samples, and b (p the vector of PLS regression coefficients computed as:ϭP ·qAll statistical analyses were carried out by Piroruet software (GL Science Inc., Tokyo).COX Inhibition Assay COX inhibitory activity was measured using a Colorimetric COX (ovine) inhibitor screening assay kit (Cayman Chemical Company, MI, U.S.A.). The assay kit was used to measure the peroxidase ac-tivity of COX to monitor the oxidized N ,N ,N Ј,N Ј-tetramethyl-p -phenylenedi-amine (TMPD). All samples and positive control (indomethacin) were added as methanol solutions to assay solutions. All procedures were performed as indicated in the assay kit instructions. Oxidized TMPD was measured using an Immuno Reader at 590nm (NJ-2100, Inter Med, Tokyo). Absorbance of assay buffer (160m l of 100m M Tris–HCl (pH 8.0), 10m l of Heme and 10of methanol) and assay buffer with COX enzyme were measured as back-ground and 100% initial activity.Results and DiscussionThree chromatograms of the methanol extract, its fraction partitioned with hexane and the remaining methanol fraction C. phaeocaulis (TMPW No. 20237) are shown in Fig. 1.Their corresponding COX-2 inhibitory activities are listed in Table 1. In general, qualitative evaluation of herbal drugs is performed by the quantitative analysis of a few active con-stituents. As shown in Table 1, the COX-2 inhibitory activity of the hexane fraction of C. phaeocaulis (TMPW No. 20237)(COX-2 inhibitory activity: 73.0%) showed approximately 5.5 times higher inhibitory activities than the remainingJuly 20089371.Chromatograms of the Extract of Curcuma phaeocaulis (TMPW No. 20237) and Solvent Partitioned Fractions(A) Hexane fraction of the methanol extract, (B) methanol fraction, (C) methanolmethanol fraction (COX-2 inhibitory activity: 13.3%). How-ever, comparisons of the chromatographic fingerprints shown in Fig. 1 do not provide the quantitative information for eval-uating the quality of herbal drugs. To compensate for this weakness of chromatographic fingerprints, additional quanti-tative information about the bioactivities of the drugs are re-quired. I t is considered that the components in the herbal drugs act in a synergistic manner with respect to their biolog-ical activities. This makes it difficult to create a model for predicting biological activity using concentration informa-tion of the individual components in herbal drugs by ordi-nary multivariate calibration.Partial least squares (PLS) regression technique is a method for constructing predictive models and is especially useful in quite common cases where the number of descrip-tors (independent variables) is comparable to or greater than the number of compounds (data points) and/or there exist other factors leading to correlations between variables. To create the PLS model, methanol extracts of four samples of C. phaeocaulis were fractionated into hexane soluble frac-tions and remaining methanol fractions.Removing of Leverage Objects and Outliers If a sam-ple’s profile differs greatly from the average training set pro-file, it will have a great influence on the model, drawing the model closer to its location in factor space. A sample’s influ-ence is quantified by its “leverage”. In addition, if a sample’s y value is extreme, it has a greater influence on the model than a sample close to an average y value (y ). The extreme sample “pulls” the model toward it. Therefore, leverage ob-jects and outliers have to be removed prior to constructing the calibration model. After peak alignment of the HPLC chromatographic profiles, examination of the presence of high leverage samples and the outlying observations in the data of chromatograms, X , and COX-2 inhibition values, y ,were initially carried out. The outlier of the y data (outside of 95% line of Studentized Residuals) and X variables having high-leverage values were removed from the original data set to recreate the new analytical data set. I n this study, the COX-2 inhibitory activity value of the methanol extract of the sample TMPW No. 20238 (Table 1, COX-2 inhibitory activity ϭ39.6%) was removed as an outlier.PLS Model In general, the optimal number of latent fac-tors of the PLS model can be determined by the lowest root mean squared error of cross-validation (RMSECV) in the leave-one-out cross validation procedure. However, in many practical analyses, an apparent minimal RMSECV value can not be achieved. I n the present study, we have used the change of the regression vector’s shape depending on the number of latent factors. When the number of factors is small and each additional factor accounts for significant vari-ation, the vector’s shape changes dramatically with the num-ber of factors. The point at which the changes are much less striking and appear random signaling is determined as the optimal number of latent factors of the PLS model. From ob-servation of the regression vector’s shape, four PLS factors were used in this study. The results of the correlation of measured COX-2 inhibitory activities and predicted in-hibitory values, and the regression vector of the model are shown in Figs. 2 and 3, respectively. As shown in Fig. 2, the correlation of practically measured inhibitory activities and predicted values is quite good (correlation coefficient ϭ0.9935) and the possibility of transforming chromatographic information into a biological activity is confirmed.Prediction of the activity from a chromatogram is carried out by the calculation of the product of two vectors, the regression vector and chromatogram (Fig. 3). The chro-matogram involves the quantitative information of the chemi-cal components and the regression vector involves the infor-mation on the degree of the contribution strength of the com-pounds to the activity. Thus, it can be considered that the positive peaks indicate the positive effects of the compounds in biological activities. Generally, the earlier PLS factors in the model are most likely to be the ones related to the con-stituents of interest, while later PLS factors have less infor-mation that is useful for predicting concentration. However,if too few PLS factors are used to construct the model, the prediction accuracy for unknown samples will suffer since not enough terms are being used to model all the chromato-graphic variations that compose the constituents of interest.Therefore, it is very difficult to eliminate the effects from the noise or outlying peaks in the chromatogram completely, depending on the number of PLS factors used. Consequently,detailed evaluation of the regression vector at the every PLS factor numbers and the relationship between regression vec-tor and corresponding peak intensities in the chromatogram is required. As shown in Figs. 3, 6 major peaks (peak 1, 21.5min; peak 2, 21.9min; peak 3, 22.3min; peak 4, 25.2min;peak 5, 25.4min; peak 6, 25.7min) were observed. In the re-gression vector shown in Fig. 3, there are 4 positive peaks at 20.1min of the retention time and the points of peaks 1, 3and 6. The peak at 20.1min and peak 1 appear at the point of third PLS factor, and they correspond to the very weak peaks in the chromatograms. I n addition, methanol extract and hexane fraction of sample 25036, having strong inhibition ac-tivity, provides the peaks at 20.1min and peak 1 in the chro-matogram, exceptionally. Thus, it is considered that the 2peaks arise from outlaying observations in the chromatogram of sample 25036 and do not indicate the positive effects of the compounds in biological activities. On the other hand, the strong positive peaks at 22.1 and 25.7min of retention time (corresponding to peaks 3 and 6) in the regression vector were observed from the point of first PLS factor, and it is predicted that peaks 3 and 6 contribute strongly to the COX-938V ol. 56, No. 7Fig.2.The Results of the Correlation of Measured COX-2 Inhibitory Ac-tivities and Predicted Inhibitory ValuesJuly 2008939 Fig.3.Superimposed Chromatograms of the Extracts and Solvent Partitioned Fractions (A) and the Regression Vector of the PLS Model (B)the regression vector could be utilized for effective investiga-tion of active constituents in herbal drugs.Acknowledgments This work was supported in part by a grant from the Bio-cluster Program of Toyama prefecture, a research grant from the Japan Health Sciences Foundation, by a Grant-in-Aid for Scientific Research (B), No. 17406004 in 2005—2007 form the Japan Society for the Promotion of Science and for the 21st Century COE Program from the Ministry of Educa-tion, Culture, Sports, Science and Technology of Japan.References1)WHO, “General Guidelines for Methodologies on Research and Eval-uation of Traditional Medicines,” 2000, p. 1.2)Beek T. A., J. Chromatogr. A, 967, 21—55 (2002).3)Sticher O., Planta Med., 59, 2—11 (1993).4)Chan K., Anal. Sci., 17, a409—a412 (2001).5)EMEA, “Final Proposal for Revision of the Note for Guidance onQuality of Herbal Remedies,” The European Agency for Evaluation of Medicinal Products, London, U.K., 1999.6)FDA, “Guidance for Industry—Botanical Drug Products (Draft Guid-ance),” US Food and Drug Administration, Maryland, U.S.A., 2000. 7)Philipsom J. D., “British Herbal Pharmacopoeia,” British Herbal Medi-cine Association, Forward, U.K., 1996.8)Nederkassel A. M., Daszykowski M., Massart D. L., Heyden Y. V., J.Chromatogr. A, 1096, 177—186 (2005).9)Tohda C., Nakayama N., Hatanaka F., Komatsu K., Evid. Based Com-plement. Alternat. Med., 3, 255—260 (2006).10)Dekebo A., Dagne E., Hansen L. K., Gautun O. R., Aasen A. J., Tetra-hedron Lett., 41, 9875—9878 (2000).11)Hikono H., Sakurai Y., Numabe S., Takemoto T., Chem. Pharm. Bull.,16, 39—42 (1968).12)Hikono H., Agatsuma K., Takemoto T., Tetrahedron Lett., 24, 2855—2858 (1968).13)Hikino H., Konno C., Agatsuma K., Takemoto T., J. Chem. Soc.,Perkin Trans. 1, 1975, 478—474 (1975).14)Y oshihara M., Shibuya H., Kitano E., Y anagi K., Kitagawa I., Chem.Pharm. Bull., 32, 2059—2062 (1984).15)Shiobara Y., Asakawa Y., Kodama M., Y asuda K., Takemoto T., Phyto-chemistry, 24, 2629—2633 (1985).16)Shaftel S. S., Olschowka J. A., Hurley S. D., Moore A. H., O’BanionM. K., Brain Res. Mol. Brain Res., 119, 213—215 (2003).17)Somvanshi R. K., Kumar A., Kant S., Gupta D., Singh S. B., Das U.,Srinivasan A., Singh T. P., Dey S., Biochem. Biophys. Res. Commun., 361, 37—42 (2007).18)Jüni P., Nartey L., Reichenbach S., Sterchi R., Dieppe P., Egger M.,Lancet, 364, 2021—2029 (2004).940V ol. 56, No. 7。