火力发电厂除氧系统原理
- 格式:docx
- 大小:14.81 KB
- 文档页数:2
高压除氧器含氧量超标原因分析及调整措施总结作者:程乐威刘志辉张斌来源:《硅谷》2013年第18期摘要通过叙述除氧器的工作原理,结合热电厂除氧器的工作环境,对含氧量超标原因进行探讨、分析及改进,使得除氧器的出力达到设计水平,以获得应有的经济效益。
关键词除氧器;含氧量;超标中图分类号:TK2 文献标识码:A 文章编号:1671-7597(2013)18-0130-02除氧器是现代火力发电厂中不可缺少的设备,在热力循环中起着不可替代的作用,除氧器给水中含氧量大小对锅炉,压力管道等高温设备的使用寿命有着重要的影响,为了避免锅炉等高温设备的腐蚀,除氧器含氧量必须严格控制在工艺指标范围内。
1 除氧器分类及其工作原理根据其构造除氧器分为旋膜式除氧器、喷雾填料式除氧器,根据其外观分为有塔和无塔型除氧器,热电厂高压除氧器有三种类型,1#~4#除氧器为有塔型喷雾填料式除氧器,5#为有塔型旋膜式除氧器,6#为无塔型一体化除氧器。
根据亨利定律和道尔顿分压定律可知:高压除氧器内液体中氧气的含量与液面蒸汽中氧气的压力成正比,在除氧器液面上随着水蒸气的增多,水蒸汽压力越来越大,氧气压力越来越小,液体中的氧气也就逐步析出来,通过排汽口排入大气,达到除氧的效果,这就是除氧器的工作原理。
2 含氧量超标常见影响因素含氧量也叫溶氧量,就是水中氧气的溶解量。
在锅炉、压力管道等高温设备中,氧极易与之发生化学反应,将对锅炉、给水管道和其它附属设备腐蚀造成的严重损失,因此国家电力部对除氧器含氧量提出了部颁标准,即大气式除氧器给水含氧量应小于15ug/L,压力式除氧器给水含氧量应小于7ug/L。
影响含氧量因素很多,其主要原因有:1)蒸汽阀门开度不够,中继水温度过低且流量过大;2)凝结水水质运行中不合格。
3)除氧器过负荷,水位不稳;4)排气阀门开度太小;5)氧含量取样传感器故障;6)除氧器设备本身故障。
3 含氧量超标的调整措施及案例分析我们知道满足含氧量合格的两个主要因素:被加热液体一定要加热到饱和温度;液体中析出的氧气必须及时排出。
火力发电工作原理及主要设备介绍-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN火力发电工作原理及主要设备介绍火力发电一般是指利用石油、煤炭和天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气推动发电机来发电的方式的总称。
以煤、石油或天然气作为燃料的发电厂统称为火电厂。
火力发电站的主要设备系统包括:燃料供给系统、给水系统、蒸汽系统、冷却系统、电气系统及其他一些辅助处理设备。
火力发电系统主要由燃烧系统(以锅炉为核心)、汽水系统(主要由各类泵、给水加热器、凝汽器、管道、水冷壁等组成)、电气系统(以汽轮发电机、主变压器等为主)、控制系统等组成。
前二者产生高温高压蒸汽;电气系统实现由热能、机械能到电能的转变;控制系统保证各系统安全、合理、经济运行。
火力发电的重要问题是提高热效率,办法是提高锅炉的参数(蒸汽的压强和温度)。
90年代,世界最好的火电厂能把40%左右的热能转换为电能;大型供热电厂的热能利用率也只能达到60%~70%。
此外,火力发电大量燃煤、燃油,造成环境污染,也成为日益引人关注的问题。
热电厂为火力发电厂,采用煤炭作为一次能源,利用皮带传送技术,向锅炉输送经处理过的煤粉,煤粉燃烧加热锅炉使锅炉中的水变为水蒸汽,经一次加热之后,水蒸汽进入高压缸。
为了提高热效率,应对水蒸汽进行二次加热,水蒸汽进入中压缸。
通过利用中压缸的蒸汽去推动汽轮发电机发电。
从中压缸引出进入对称的低压缸。
已经作过功的蒸汽一部分从中间段抽出供给炼油、化肥等兄弟企业,其余部分流经凝汽器水冷,成为40度左右的饱和水作为再利用水。
40度左右的饱和水经过凝结水泵,经过低压加热器到除氧器中,此时为160度左右的饱和水,经过除氧器除氧,利用给水泵送入高压加热器中,其中高压加热器利用再加热蒸汽作为加热燃料,最后流入锅炉进行再次利用。
以上就是一次生产流程。
火力发电厂的基本生产过程火力发电厂的主要生产系统包括汽水系统、燃烧系统和电气系统,现分述如下:(一)汽水系统:火力发电厂的汽水系统是由锅炉、汽轮机、凝汽器、高低压加热器、凝结水泵和给水泵等组成,他包括汽水循环、化学水处理和冷却系统等。
火力发电厂汽水系统流程
火力发电厂的汽水系统流程包括以下步骤:
1. 化学制水系统供来的除盐水通过凝补水箱储存,凝补水泵将除盐水送往除氧器和凝汽器热井。
2. 汽机厂房外的凝补水箱中的除盐水经过凝补水泵(一般两台,一运一备)供往除氧器和凝汽器热井。
3. 除氧器中,给水被加热并除氧,水位高低是机组运行的重要指标。
4. 除盐水在除氧器中经过加热和除氧后,进入前置泵,前置泵的作用是提高给水泵入口的水流压力,防止给水泵发生汽蚀。
5. 前置泵出口连接给水泵入口,经给水泵加压后进入高压加热器,给水泵出口后一般称为主给水。
6. 高压加热器一般有三个,主给水依次经过3、2、1号高加。
高加设有旁路,方便高加发生泄漏及其他故障时方便解列隔离。
7. 高加出口进入锅炉省煤器,省煤器加热后进入锅炉汽水分离器,也称为汽包。
汽包水冷壁流程图显示汽包通过下降管把水供到水冷壁底部联箱,经水冷壁加热后蒸汽回到汽包,在汽包内汽水分离后蒸汽进入过热器。
8. 过热器加热后出口的蒸汽称为主蒸汽。
主蒸汽进入汽机房经过主汽门和高调门后进入汽轮机开始做功。
9. 主汽门前有高压旁路阀,在机组需要时开启。
主蒸汽经过高压缸做功后经过高排逆止门返回锅炉再热器,这段蒸汽称为冷段蒸汽。
10. 再热器加热后称为热段蒸汽,经过中主门和中调门后进入中压缸做功,中主门前有低压旁路阀,低旁与凝汽器相连,在需要时开启。
以上流程仅供参考,如需了解更多信息,建议查阅火力发电相关书籍或咨询专业人士。
火电厂的基本原理一)汽水系统:火力发电厂的汽水系统是由锅炉、汽轮机、凝汽器、高低压加热器、凝结水泵和给水泵等组成,他包括汽水循环、化学水处理和冷却系统等。
水在锅炉中被加热成蒸汽,经过热器进一步加热后变成过热的蒸汽,再通过主蒸汽管道进入汽轮机。
由于蒸汽不断膨胀,高速流动的蒸汽推动汽轮机的叶片转动从而带动发电机。
为了进一步提高其热效率,一般都从汽轮机的某些中间级后抽出作过功的部分蒸汽,用以加热给水。
在现代大型汽轮机组中都采用这种给水回热循环。
此外,在超高压机组中还采用再热循环,既把作过一段功的蒸汽从汽轮机的高压缸的出口将作过功的蒸汽全部抽出,送到锅炉的再热汽中加热后再引入气轮机的中压缸继续膨胀作功,从中压缸送出的蒸汽,再送入低压缸继续作功。
在蒸汽不断作功的过程中,蒸汽压力和温度不断降低,最后排入凝汽器并被冷却水冷却,凝结成水。
凝结水集中在凝汽器下部由凝结水泵打至低压加热再经过除氧气除氧,给水泵将预加热除氧后的水送至高压加热器,经过加热后的热水打入锅炉,再过热器中把水已经加热到过热的蒸汽,送至汽轮机作功,这样周而复始不断的作功。
在汽水系统中的蒸汽和凝结水,由于疏通管道很多并且还要经过许多的阀门设备,这样就难免产生跑、冒、滴、漏等现象,这些现象都会或多或少地造成水的损失,因此我们必须不断的向系统中补充经过化学处理过的软化水,这些补给水一般都补入除氧器中。
(二)燃烧系统燃烧系统是由输煤、磨煤、粗细分离、排粉、给粉、锅炉、除尘、脱流等组成。
是由皮带输送机从煤场,通过电磁铁、碎煤机然后送到煤仓间的煤斗内,再经过给煤机进入磨煤机进行磨粉,磨好的煤粉通过空气预热器来的热风,将煤粉打至粗细分离器,粗细分离器将合格的煤粉(不合格的煤粉送回磨煤机),经过排粉机送至粉仓,给粉机将煤粉打入喷燃器送到锅炉进行燃烧。
而烟气经过电除尘脱出粉尘再将烟气送至脱硫装置,通过石浆喷淋脱出流的气体经过吸风机送到烟筒排人天空。
(三)发电系统发电是由副励磁机(永磁机)发出高频电流,副励磁机发出的电流经过励磁盘整流,再送到主励磁机,主励磁机发出电后经过调压器以及灭磁开关经过碳刷送到发电机转子,当发电机转子通过旋转其定子线圈便感应出电流,强大的电流通过发电机出线分两路,一路送至厂用电变压器,另一路则送到SF6高压断路器,由SF6高压断路器送至电网。
除氧器工作原理(1)初级除氧过程在初级除氧阶段,凝结水经过高压喷嘴形成发散的锥形水膜向下进入初级除氧区,水膜在这个区域内与上行的过热蒸汽充分接触,迅速将水加热到除氧器压力下的饱和温度,大部分氧气从水中析出,在每个喷嘴的周围设有四个排气口,以及时排出析出的氧气。
(2)深度除氧过程经过初步除氧的水落入水空间流向出水口;加热蒸汽通过排管从水下送入,与水混合加热,同时对水流进行扰动,并将水中的溶解氧及其它不凝结气体从水中带出水面,达到对凝结水进行深度除氧的目的。
水在除氧器中的流程越长,则对水进行深度除氧的效果越好。
二、卧式无头喷雾式除氧器结构1、总体结构:其主要部件由壳体、恒速喷嘴、加热蒸汽管、挡板、蒸汽平衡管、排氧口、出水管及安全门、测量装置、人孔等组成。
三、除氧器的特点适应能力强:除氧器的最大出力不小于锅炉BMCR工况蒸发量105%时所需给水量,且在低压加热器工作不正常时,除氧器应能适应此时对给水温度和流量要求,保证给水的含氧量符合要求。
防超压:配置排汽能力足够大的安全阀(不应少于4只全启式弹簧安全阀);设计压力一般不小于汽轮机额定负荷工况时回热抽汽压力的1.25倍防汽机进水:配置完善的水位检测装置一一磁性翻转水位计;水位开关;水位变送器,有三级保护信号,另有溢流管。
高水位报警;高高水位,自动开启溢流阀;超高水位,3号高压加热器疏水排疏水扩容器,强制关闭四段抽汽电动截止阀和逆止阀。
防蒸汽倒流:进汽管和汽平衡管均设置逆止阀。
四、除氧器的运行除氧器采用滑压运行方式设有两路汽源:本机四段抽汽和辅汽。
在四抽管路上只设防止汽轮机进水的截止阀和逆止门,不设调节阀,为滑压运行。
而辅汽供汽管路上设压力调节阀,用于除氧器定压运行时的压力调节。
正常运行时,除氧器的储水量能维持BMCR工况运行6.3分钟。
除氧器工作原理
除氧器是一种用于去除水中氧气的设备,它在许多工业和生活领域中都有重要的应用。
它的工作原理主要是利用特定的物理或化学方法,将水中的氧气去除,以达到净化水质的目的。
首先,除氧器的工作原理涉及到氧气的溶解和去除。
在水中,氧气是以分子形式溶解的,它会影响水的化学性质和微生物的生长。
因此,除氧器的首要任务就是将水中的氧气去除,以保证水的纯净度和卫生安全。
其次,除氧器的工作原理可以通过物理方法实现。
其中一种常见的方法是通过通入氮气或其他惰性气体,将水中的氧气置换出去。
这样可以有效地减少水中氧气的含量,从而达到去除氧气的目的。
另外,除氧器的工作原理也可以通过化学方法实现。
例如,可以利用还原剂将水中的氧气还原成水,然后将水和氧气分离,从而实现去除氧气的效果。
除氧器的工作原理还涉及到一些物理和化学参数的控制。
例如,除氧器需要根据水的特性和使用环境来选择合适的工作温度、压力和流速等参数,以确保除氧效果的稳定和可靠。
总的来说,除氧器的工作原理是基于物理和化学方法来去除水中的氧气,以保证水的纯净度和卫生安全。
它在工业生产、饮用水处理、游泳池维护等领域都有重要的应用,对保障水质起着至关重要的作用。
通过了解除氧器的工作原理,可以更好地理解其在实际应用中的作用和意义。
除氧器的工作原理一、引言除氧器是一种用于去除水中溶解氧的装置。
在许多工业和实验室应用中,溶解氧的存在会对水质造成不良影响,因此需要使用除氧器来去除溶解氧。
本文将详细介绍除氧器的工作原理。
二、工作原理除氧器的工作原理基于气体溶解度与温度的关系。
溶解氧的溶解度随着温度的升高而降低,因此通过加热水体可以促使溶解氧释放出来。
除氧器通常包括一个加热器和一个气体收集器。
1. 加热器加热器是除氧器中的关键部件,其作用是将水体加热至一定温度,以降低溶解氧的溶解度。
加热器通常采用电加热或蒸汽加热的方式,通过加热器加热后的水体进入气体收集器。
2. 气体收集器气体收集器是除氧器中的另一个重要组成部分,其作用是收集从加热器中释放出的溶解氧。
气体收集器通常是一个密封的容器,内部设置有气体排放口和水体排放口。
加热后的水体进入气体收集器后,溶解氧会逐渐从水中释放出来,并上升到气体收集器的顶部。
3. 溶解氧的排放溶解氧在气体收集器中上升到顶部后,通过气体排放口排出。
通常,除氧器会设置一个排气管道,将排出的溶解氧导入到外部环境中。
排气管道通常会设置一定的高度,以确保溶解氧完全排出。
三、应用领域除氧器广泛应用于许多领域,包括工业生产、实验室研究和水处理等。
以下是一些常见的应用领域:1. 锅炉水处理在锅炉中,溶解氧会导致腐蚀和氧化,从而降低锅炉的效率和寿命。
因此,在锅炉水处理中,除氧器被广泛应用于去除水中的溶解氧,以保护锅炉的正常运行。
2. 饮用水处理在饮用水处理中,溶解氧会对水质造成不良影响,例如影响水的味道和气味,同时还会促使细菌和藻类的生长。
因此,除氧器在饮用水处理中被用于去除水中的溶解氧,以提高水的质量和口感。
3. 实验室研究在实验室研究中,溶解氧的存在会对实验结果产生干扰。
因此,除氧器常常被用于实验室中的实验设备,以去除水中的溶解氧,确保实验结果的准确性。
四、总结除氧器是一种用于去除水中溶解氧的装置,其工作原理基于气体溶解度与温度的关系。
火力发电厂除氧系统原理
火力发电厂运行过程中,给水会不断地溶解入气体,主要是由补充水带入空气,从系统中处于真空下工作的设备(如凝汽器及部分低压加热器)和管道附件的不严密处漏入空气。
溶于水中的氧,对钢铁构成的热力设备及管道会产生强烈的腐蚀作用,二氧化碳将加剧氧的腐蚀。
而所有不凝结的气体在换热设备中均会使热阻增加、传热效果恶化,从而导致机组热经济性下降。
水的碱性较弱和高温将使腐蚀速度加快,所以火电厂在对给水除氧的同时还通过加药使水保持一定的碱性:PH值大于71而高温下工作的给水管道和省煤器,只要给水中溶有少量的氧(如0.03mg∕L),在短时期内就会造成腐蚀穿孔,引起漏泻或爆管。
除氧器就是完成除氧任务的设备。
给水除氧有化学除氧和物理除氧两种方法。
化学除氧可以彻底除氧,但只能去除一种气体,且需要昂贵的加药费用,还会生成盐类,故电厂中较少单独采用这种方法。
物理除氧即热力除氧采用加热方法,它能够去除水中的大部分气体。
对于亚临界压力机组,热力除氧已能够基本满足要求;对于超临界压力机组,则在热力除氧的基础上,再做补充化学除氧,这样加药量少,生成的盐类也少,影响不大。
热力除氧原理建立在亨利定律和道尔顿定律基础上。
基本原理如下:气体在水中的溶解度正比于该气体在水面的分压力。
水中各种气体分压力的总和与水面的混合压力的总压力相平衡。
当水加热至沸腾时,水面处蒸汽的分压力接近其混合气体的总压力,其他气体的分压力接近于零,故水中溶解的其他
气体几乎全部被排除出水面。
但是,气体排到水面需要路径和时间,而且水面的气体必须及时排到远离水面处。
此外,能够形成较大气泡的气体才能逸出水面,而水中尚存的分子状气体,则需要更强的驱动力才能排出水面。
为了满足上述这些条件,在进行除氧器的结构设计时,必须注意满足下述条件:
(1)水与蒸汽要有足够大的接触表面;
(2)迅速把逸出水面的气体排走;
(3)加热蒸汽与需要除氧的水之间有足够长的逆向流动途径,即有足够大的传热面积和足够大的传热、传质时间。
也就是说,除氧器中必须构成初步除氧和深度除氧下这样两个除氧过程。
从压力方面分,除氧器有三种类型,真空式、大气式和高压式;从内部结构方面分,有淋水盘式和喷雾填料式两种类型;从除氧部分的布置方式分,有立式和卧式两种。
采用高压式除氧器的好处,可以减少造价昂贵、运行时条件苛刻的高压加热器的台数,而且在高压加热器旁路时,仍然可以使给水温度有较高水平,还容易避免除氧器的自生沸腾现象。
提高压力也就是提高水的温度,使气体在水中的溶解度降低,对提高除氧效果更有利。
采用喷雾填料式除氧器,可以布置多个排汽口和凝结水喷嘴,使气体能够更快排除,也使凝结水的除氧效果大大提高,并且使其更能够适应机组的变负荷运行。