当前位置:文档之家› 日产5000吨熟料预分解窑的预热器设计资料

日产5000吨熟料预分解窑的预热器设计资料

日产5000吨熟料预分解窑的预热器设计资料
日产5000吨熟料预分解窑的预热器设计资料

学号:0121001010520

课程设计

题目日产5000吨熟料预分解窑的预热器设计

学院材料学院

专业材料科学与工程

班级

姓名

指导教师

2013年6月14日

工程设计任务书

学生姓名:专业班级:

指导教师:工作单位:材料学院

题目: 日产 5000 吨熟料预分解窑的预热器系统设计

一初始条件:

1 原料的化学分析结果

2燃料煤的元素分析结果:

C ad H

ad

N

ad

O

ad

S

ad

A

ad

M

ad

63.59 4.20 1.16 7.62 0.31 22.11 1.01

3各种物料损失均按3%计算

4其它资料:本设计工厂有自己的矿山,其它条件均符合建厂要求,工厂气象条件符合设计要求。大气压强(夏季):720 mmHg 温度:- 4℃~ 40℃,相对湿度:70%~ 80%,地下水位:2m ~ 2.5 m

二要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求):

1) 设计计算说明书应包括以下内容:

配料计算,物料平衡计算和热量平衡计算、有关设备的选型计算或结构尺寸计算、附属设备的选型计算、耐火材料选材计算与散热计算,有关性能指标计算,设计及附属设备一览表、设计评述,参考资料。

2) 画出有关设备的工艺布置图和主要剖面图(A2图纸)

三设计要求:

1) 要求每个人独立完成,允许讨论,但不能抄袭,鼓励创新。

2) 说明书要求

①设计说明书必须包括有关计算部分的方法、步骤和结果。

②有关设备的选型,设计说明书中应说明其选取依据,有关经验数据的选取,亦应说明其来源。

3) 图纸的要求

①图纸必须按工程图标准绘制,鼓励用计算机绘图。

②图纸上必须注明设备主要尺寸及有关说明,图面应清洁、整齐。

四时间安排:

2013.6.17---- 2013.6.23 (第1周):查阅有关资料,进行有关设计计算;

2013.6.24---- 2013.6.31 (第2周):绘制相关的图纸;

2013.7.1—-- 2013.7.5 (第3周):整理提交计算说明书、图纸以及其它设计资料,答辩。

指导教师签名:2013年6月14日

系主任(或责任教师)签名:文进 2013年 6月14日

日产5000吨熟料预分解窑的预热器设计

目录

1.配料计算 (4)

1.1煤灰掺入量 (4)

1.1.2煤的低位发热量 (4)

1.2计算熟料成份 (5)

1.2.1 率值的选择 (5)

2.燃烧计算 (8)

3.物料与热量平衡计算 (9)

3.1物料平衡 (10)

3.1.1输入项目 (10)

3.1.2输出项目 (13)

3.2热量平衡计算 (15)

3.2.1输入项目 (15)

3.3主要热工技术参数 (18)

3.4物料平衡表 (18)

3.5 热量平衡表 (19)

4.悬浮预热器尺寸设计 (19)

4.1旋风筒尺寸 (19)

4.1.1各级旋风筒处理的气体量 (19)

4.1.2旋风筒的直径和高度 (21)

4.1.3旋风筒进风口尺寸 (22)

4.2排气管(内筒)尺寸 (23)

4.3旋风筒其他相关尺寸 (23)

4.4旋风筒结构尺寸表 (24)

5.耐火材料选材与散热计算 (24)

5.1耐火材料的设计理念 (24)

5.2 耐火材料的主要参数 (25)

5.3材料的厚度计算 (25)

5.3.1已知参数 (25)

5.3.2材料厚度计算 (26)

5.3.3散热量计算 (28)

5.4旋风筒尺寸的修正 (28)

6.参考文献 (29)

1.配料计算

由于:

1.1煤灰掺入量 1.1.2煤的低位发热量

,3391030109()25kJ /kg net ad ad ad ad ad ad Q C H O S M =+---()

,d 3390.635910300.0420109(0.07620.0031250.0116

25060.97

net a Q =?+?-?--?=)

1.1.2煤灰的掺入量

100kg 熟料中煤灰的掺入量可以按照下式进行计算([2]-P264):

,100ad a net ad

q A S

G Q ??=

?

Q :熟料的热耗,KJ/Kg 熟料; S :煤灰沉落率,%;

Q net,ar :煤的低位发热量,KJ/Kg ; A ar :煤的收到基灰分含量,% 采用的是预分解窑,参照表格中的数据,选择 S=100%([2]-62),q=2900KJ/Kg([2]-122,表5.7)。 100kg 熟料中煤灰的掺入量可以按照下式进行计算([2]-P70):

,d

100ad a net a q A S

G Q ??=

?

由此可得煤灰的参入量:

%

56.297

.25060100100

2211.02900100d ,d =???==

a net a a Q S qA G

1.2计算熟料成份(率值公式法)[2]p73-76

1.2.1 率值的选择

结合[2]P64,对于预分解窑大都是采用高硅率、高铝率、中饱和比的配料方案,即所谓的“两高一中”的配料方案,对于本次设计中我设计率值为KH=0.90±0.01,SM=2.575±0.1,IM=1.715±0.1

1.2.2计算的方法三组分配料率值公式来进行配料的计算

1)对于三组分配料率值公式:

方程组

A

G K K K y K K x K K )(100)()('

7'1'1'3'1'2'1+-=+++ ① A

G N N N y N N x N N )(100)()('7'1'1'3'1'2'1+-=+++ ②

式中: x -灼烧基粘土量[kg/(100kg 孰料)]; Y -灼烧基铁粉量[kg/(100kg 孰料)]; GA ——孰料中煤灰参入量(%);

'i

K 、

'i

N ——率值系数(i=1-7),各率值系数计算式如下:

)

35.065.18.2(100100

11111

1'F A S KH C L K --?--=

)

2235.0265.128.2(2

100100

'2

C F A S KH L K -++?-=

)

35.065.18.2(3100100

3333'3C F A S KH L K -++?-=

7

777'735.065.18.2C F A S KH K -++?=

)1(+=p n N

)

(100100

111

'1N F S L N --=

)

22(2

100100

'2

S N F L N --= )S N (F L 'N 333

100100

3

--=

7

7'

7S N F N -=

2)代入相应的数据进行计算如下:

60

.84)35.065.18.2(100100

11111

1

'

≡--?--=

F A S KH

C L K

87

.200)35.065.18.2(100100

22222

'2≡-++?-=

C F A S KH L K

40

.116)35.065.18.2(3100100

3333'3=-++?-=

C F A S KH L K

00.18935.065.18.27777'

7=-++?=C F A S KH K

()()N SM IM 1 2.5751.7151 6.99

=?+=?+=62

.0)(100100

111

'1-=--=

N F S L N 50.26-)(100100

222

'2=--=

S N

F L N

64

.3353

33

100100

3

=--=

)S N (F L 'N

87

.67

7

7

=-

=

S

N

F '

N

3)代入配料公式中

解得:

25.79[kg /100kg ]x =(灼烧粘土)(孰料) 1.85[kg /100kg ]y =(灼烧铁粉)(孰料)

100x y G 69.71[kg /100kg ]=---=灼烧石灰石(孰料)

4)将灼烧基原料换算成干燥基原料

100

69.71124.99[kg /100kg ]

10044.23

=

?=-干石灰石(孰料)

100

25.7927.13[kg /100kg ]

100 4.92

=

?=-干粘土(孰料)100

1.85 1.87[kg /100kg ]

100 1.01=

?=-干铁粉(孰料)

5)计算白生料即干燥基原料的配合比

124.99

100%81.17%

124.9927.13 1.87=?=++石灰石

27.13

100%17.62%

124.9927.13 1.87=

?=++粘土

1.87

100% 1.22%

124.9927.13 1.87=

?=++铁粉

计算率值:

232321.650.3567.96 1.65 5.600.35 3.27

0.900

2.8 2.822.84

CaO Al O Fe O KH SiO ---?-?=

==?2232322.84

5 2.575

5.60 3.27SiO SM Al O Fe O ===++

2323 5.60

1.715

3.27

Al O IM Fe O =

==

将验证得的率值与题意要求目标值相比,可以看出各率值的误差:

△KH=0.90-0.90=0.000 < 0.01; △SM=2.58-2.575=0.005 < 0.1 △p=1.71-1.715=0.005 < 0.1;

其误差值均在要求的范围之内且较小,即配料结果符合要求。 1.2.3配料结果

白生料 : 石灰石=81.1

粘土=17.62%

铁粉=1.22%

孰料: 灼烧基生料=97.44% 煤灰=2.56%

湿基成分:由[2]p62

w -?=

100100干基成分湿基成分

10081.17

81.99%

1001?==-石灰石

10017.62

17.80%

1001?=

=-粘土

27

.1410022

.1100铁粉=-?=

物料水分为:石灰石=1%,粘土=1%,铁粉=4%,求得湿物料配比为:

0.81990.010.17800.010.01270.04 1.0487%

=?+?+?=湿基中的含水量3000100/1003000(KJ /)

q kg =?=单位熟料烧成热耗:熟料3000/25060.970.119708Kg /(Kg )P ==单位熟料烧成煤耗:烟煤熟料

2.燃烧计算([1]-283-287)

粉煤燃烧 空气过剩系数1.05-1.25([2]-285.表6.12)取α=1.2 理论空气量:

0,d 3V 0.24110000.5

0.24125060.9710000.56.54 Nm /net a Q α=?÷+=?÷+=(㎏烟煤)

实际空气量:

03V V 6.541.27.848 Nm /ααα=?=?=(㎏烟煤)

理论烟气量:

0,d 3

V =0.2311000 1.05

0.23125060.971000 1.05=6.84Nm /net a Q ?÷+=?÷+(㎏烟煤)

实际烟气量:

浮头式换热器设计说明书

浮头式换热器设计说明书 设计者:徐凯 指导教师:张玲张亚男秦敏 系别:机械工程系 专业:热能与动力工程 日期:2009.11 宁夏理工学院

前言 换热器是非常重要的换热设备。在国民生产的各个领域得到了广泛的应用。本设计说明书主要介绍浮头式换热器的原理和设计思路及整个设计过程。 在浮头式换热器中,浮头式换热器的两端的管板,一端不与壳体相连,该端亦称浮头。管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。 浮头式换热器主要有如下特点:浮头式换热器的一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动,这个特点在现场就能清楚地看出来。这种换热器的壳体和管束的热膨胀是自由的,管束可以抽出,便于清洗管间和管内。其缺点是结构复杂造价高,一般比固定管板高20%左右,在运行中浮头处发生泄漏不易检查处理。浮头式换热器适应于壳体和管束温差较大或壳程介质易结垢的工作条件下。 本书内容系统、完整,理论与实际并重。书中对浮头式换热器设计中所需的各学科知识均有简要的介绍和解释。同时该书对换热器在编写时注重介绍的方法简明扼要,条理清楚,深入浅出,紧密结合工程实际。 期间得秦敏、张春兰、张亚男、张玲等老师的悉心指导。在此表示真挚的感谢!由于编者水平有限,其中难免不妥之处,恳请各位读者批评指正。 编者:徐凯 2009-11-26

目录 第一章绪论 第二章设计任务和设计条件 (1) 第三章确定设计方案 (3) 3.1 换热器类型的确定 (3) 3.2 管程及壳程的流体安排 (3) 第四章确定物性数据 (4) 4.1定性温度的确定 (4) 4.2列表 (6) 第五章传热面积的估算 (7) 第六章工艺结构尺寸的确定 (9) 6.1 管径和管内流速的确定 (9) 6.2 管程数和传热管数的确定 (9) 6.3 平均传热温差的校正 (10) 6.4 传热管排列和分程方法确定 (10) 6.5 壳体内径的确定 (11) 6.6 折流板的确定 (11) 6.7 其它附件的确定 (12) 第七章所设计换热器的校核算 (13) 7.1 传热热流量的核算 (13) 7.2 壁温的校核计算 (15) 7.3 换热器内流体的流动阻力的核算 (17) 参考文献 (19) 换热器原理课程设计心得体会 (21)

气液分离器选型

7.8气液分离器 7.8.1概述 气液分离器的作用是将气液两相通过重力的作用进行气液的分离。 7.8.2设计步骤 (1) 立式丝网分离器的尺寸设计 1) 气体流速(G u )的确定 气体流速对分离效率是一个重要因素。如果流速太大,气体在丝网的上部将把液滴破碎,并带出丝网,形成“液泛”状态,如果气速太低,由于达不到湍流状态,使许多液滴穿过丝网而没有与网接触,降低了丝网的效率。气速对分离效率的影响见下图: 图7-69 分离效率与气速的关系图 2) 计算方法 G u 5 .0)( G G L G K ρρρ-= 式中G u 为与丝网自由横截面积相关的气体流速,s m / L ρ、G ρ为分别为液体和气体的密度,3/m kg

G K 为常数,通常107.0=G K 3) 尺寸设计 丝网的直径为5 .0)( 0188.0G G G u V D = 式中 G u 为丝网自由截面积上的气体流速,s m / G D 为丝网直径,m 其余符号意义同前。 由于安装的原因(如支承环约为mm 1070/50?),容器直径须比丝网直径至少大l00mm,由图2.5.1-2可以快速求出丝网直径)(G D 4) 高度 容器高度分为气体空间高度和液体高度(指设备的圆柱体部分)。低液位(LL )和高液位(HL )之间的距离由下式计算: 2 1.47D t V H L L = 式中 D —容器直径,m ; L V —液体流量,h m /3; t —停留时间,min ; L H —低液位和高液位之间的距离,m ; 液体的停留时间(以分计)是用邻近控制点之间的停留时间来表示的,停留时间应根据工艺操作要求确定。 气体空间高度的尺寸见下图所示。丝网直径与容器直径有很大差别时,尺寸数据要从分离的角度来确定。

化工原理课程设计(原料预热器①)

目录 一、设计题目_________________ 1 二、设计依据_________________ 1 三、设计要求_________________ 1第1节:物料衡算、热量衡算 ____________________________________________ 1 1.精馏塔物料衡算 ______________________________________________________________ 1 2.冷凝器物料衡算及热量衡算 ___________________________________________________ 10 3.产品冷却器物料衡算及热量衡算 _______________________________________________ 12 4.原料预热器(1)的物料衡算及热量衡算________________________________________ 13 5.原料预热器(2)的物料衡算及热量衡算________________________________________ 14 6.再沸器的物料衡算及热量衡算 _________________________________________________ 15 7.物料衡算汇总表 _____________________________________________________________ 16 8.热量衡算及换热器要求汇总表 _________________________________________________ 17第2节:列管式换热器选型及校核(原料预热器①)________________________ 18 1.初选原料预热器(1)规格 ____________________________________________________ 18 2.核算总传热系数 _____________________________________________________________ 25第3节:所选固定管板式换热器的结构说明_______________________________ 27 1.管程结构 ___________________________________________________________________ 27 2.壳体结构 ___________________________________________________________________ 28 3.其他主要附件 _______________________________________________________________ 29第4节:换热器的主要结构和计算结果___________________________________ 29第5节:参考文献及资料 _______________________________________________ 30附___________________________ 31

化工原理课程设计管壳式换热器汇总

化工原理课程设计管壳式换热器汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

设计一台换热器 目录 化工原理课程设计任务书 设计概述 试算并初选换热器规格 1. 流体流动途径的确定 2. 物性参数及其选型 3. 计算热负荷及冷却水流量 4. 计算两流体的平均温度差 5. 初选换热器的规格 工艺计算 1. 核算总传热系数 2. 核算压强降 经验公式 设备及工艺流程图 设计结果一览表 设计评述 参考文献 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件: 1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 99000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。 4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 1.设计概述 热量传递的概念与意义 1.热量传递的概念 热量传递是指由于温度差引起的能量转移,简称传热。由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 2. 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为

浮头式换热器(过程设备设计课程设计说明书)

目录 设计题目及工艺参数---------------------------------------------------1 一、换热器的分类及特点---------------------------------------------------2 二、结构设计-------------------------------------------------------------5 1、管径及管长的选择---------------------------------------------------5 2、初步确定换热管的根数n和管子排列方式-------------------------------5 3、筒体内径确定-------------------------------------------------------5 4、浮头管板及钩圈法兰结构设计-----------------------------------------6 5、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------7 6、外头盖法兰、外头盖侧法兰设计---------------------------------------7 7、外头盖结构设计-----------------------------------------------------8 8、接管的选择--------------------------------------------------------------------------------------8 9、管箱结构设计-------------------------------------------------------8 10、管箱结构设计------------------------------------------------------8 11、垫片选择----------------------------------------------------------9 12、折流板------------------------------------------------------------------------------------------9 13、支座选取----------------------------------------------------------10 14、拉杆的选择--------------------------------------------------------13 15、接管高度(伸出长度)确定------------------------------------------13 16、防冲板------------------------------------------------------------13 17、设备总长的确定----------------------------------------------------13 18、浮头法兰---------------------------------------------------------------------------------------14 19、浮头管板及钩圈----------------------------------------------------14 三、强度计算--------------------------------------------------------------14 1、筒体壁厚的计算-----------------------------------------------------14 2、外头盖短节,封头厚度计算-------------------------------------------15 3、管箱短节、封头厚度计算 --------------------------------------------16 4、管箱短节开孔补强的核校 --------------------------------------------16 5、壳体压力试验的应力校核---------------------------------------------16 6、壳体接管开孔补强校核-----------------------------------------------17 7、固定管板计算-------------------------------------------------------18 8、无折边球封头计算 --------------------------------------------------19 9、管子拉脱力计算-----------------------------------------------------20 四、设计汇总-----------------------------------------------------21 五、设计体会--------------------------------------------------------------21 参考文献--------------------------------------------------------------22

化工原理课程设计原料预热器

目录

设计任务书 一、 设计题目:乙醇水精馏系统换热器设计 二、 设计依据: 1、产量:7万吨 2、年工作时间:330天 3、原料乙醇:浓度50%(质量),出库温度25℃ 4、产品乙醇:浓度95%(质量),入库温度≤45℃ 5、乙醇回收率:% 6、原料乙醇泡点进料,回流比R= 7、循环冷却水进口温度:30℃ 8、再沸器饱和水蒸气温度:150℃ 9、系统散热损失:不考虑系统散热损失 10、换热器KA 值裕度:20~40% 11、原料预热器(2)设计 三、设计要求: 第1节:物料衡算、热量衡算 1.精馏塔物料衡算 乙醇、水的相对分子质量为M 乙醇=mol ,M 水=mol 由原料乙醇质量浓度为50%得原料乙醇的摩尔分率为:

F= 50%/M X 50%/M M 50%/46.07 =50%/46.07+50%/18.02=0.2812乙醇 乙醇水 +50%/ 由产品乙醇质量浓度为95%得产品乙醇的摩尔分率为: D 95%/X = 95%/95%/46.07 95%/46.075%/18.020.8814M M = +=乙醇 乙醇水 +5%/M 原料F 、塔顶馏出液D 的平均相对分子质量: F X M /F F M X g mol =?M +??46.07+?18.02=25.91乙醇水(1-)=0.2812(1-0.2812) D D D X M 8814881442.74/M X g mol =?M +??46.07+?18.02=乙醇水(1-)=0.(1-0.) 塔顶产品流率D : (33024)D M D M h = ?? ()7 371042.7433024206.79/8.83810/h kmol h kg h ?= ??==? 由乙醇回收率99.5%D F DX FX η= =得:

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (2) 第二章管壳式换热器简介 (3) 第三章设计方法及设计步骤 (5) 第四章工艺计算 (6) 4.1 物性参数的确定 (6) 4.2核算换热器传热面积 (7) 4.2.1传热量及平均温差 (7) 4.2.2估算传热面积 (9) 第五章管壳式换热器结构计算 (11) 5.1换热管计算及排布方式 (11) 5.2壳体内径的估算 (13) 5.3进出口连接管直径的计算 (14) 5.4折流板 (14) 第六章换热系数的计算 (20) 6.1管程换热系数 (20) 6.2 壳程换热系数 (20) 第七章需用传热面积 (23) 第八章流动阻力计算 (25) 8.1 管程阻力计算 (25) 8.2 壳程阻力计算 (26) 总结 (28)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

c1级预热器课程设计解析

课程设计说明书 日产2500吨水泥熟料预分解窑生产线C1级预热器设计 院、部:材料与化学工程学院 课程名称:材料工艺设计概论 学生姓名:程想 指导教师:袁龙华 专业:无机非金属材料工程 班级:材料1301 完成时间:201 6年12月

目录 设计任务书 (3) 摘要 (4) 引言 (5) 1.配料计算 (8) 1.1、原始数据 (8) 1.2、标定熟料化学成分 (8) 1.3、生料配合量计算 (9) 1.4、率值检验 (10) 2、生料消耗定额计算 (11) 2.1、实际消耗定额计算 (2) 2.2、各物料的湿消耗定额 (3) 2.3、烧成用干煤消耗定额 (4) 3、年产熟料计算 (5) 3.1、窑尺寸标定 (6) 3.2、熟料日产量 (1) 3.3、熟料年产量 (2) 3.4、窑台数 (3) 4、窑尾预热器系统废气量 (1) 4.1、窑尾排出废气量 (2) 4.2、分解炉内废气量 (3) 4.3、 C5废气量 (4) 4.4、 C4废气量 (5) 4.5、 C3废气量 (1) 4.6、 C2废气量 (2) 4.7、 C1废气量 (3)

任务书 一、设计题目 日产2500吨水泥熟料预分解窑生产线C1级预热器设计。 二、原始资料 1、原材料化学成份 (1)石灰质、粘土质、铁质原料(%) 名称Loss SiO 2Al 2 O 3 Fe 2 O 3 CaO MgO SO 3 Σ 石灰石39.58 3.39 1.43 0.69 51.30 1.21 97.54 粘土 5.43 66.36 15.41 7.11 2.34 2.72 98.37 铁粉 2.45 36.12 2.72 54.03 0.72 96.04 (2)煤的工业分析(%)及发热量 Mt Mad Aad Vad Fcad Qnetad Qnetar 7.0 1.08 27.94 13.32 57.66 5599 5232 (3)煤灰的化学成份(%) SiO 2Al 2 O 3 Fe 2 O 3 CaO MgO SO 3 其它Σ 43.42 28.99 8.35 6.12 1.06 7.10 4.96 100 2、料耗及热耗 实际料耗:生产损失为2-6%(具体自行拟定); 烧成热耗:3100-3170KJ/kg熟料(具体自行拟定); 3、原、燃料水份(%) 煤石灰石粘土铁粉 8.5 2 11 12 4、当地自然条件

气液分离器

气液分离器 气液分离器在热泵或制冷系统中的基本作用是分离出并保存回气管里的液体以防止压缩机液击。因此,它可以暂时储存多余的制冷剂液体,并且也防止了多余制冷剂流到压缩机曲轴箱造成油的稀释。因为在分离过程中,冷冻油也会被分离出来并积存在底部,所以在气液分离器出口管和底部会有一个油孔,保证冷冻油可以回到压缩,从而避免压缩机缺油。气液分离器的基本结构见图F.1,主要分为立式,卧式和带回热装置,在一些小系统如冰箱,会用一些铜管做一个简单的气液分离器,如图F.1右下角。气液分离器的工作原理是带液制冷剂进入到气液分器时由于膨胀速度下降使液体分离或打在一块挡板上,从而分离出液体。 F.1 气液分离器的设计和使用必须遵循以下原则: 1.气液分离器必须有足够的容量来储存多余的液态制冷剂。 特别是热泵系统,最好不要少于充注量的50%,如果有条件最好做试验验证一下,因为用节流孔板或毛细管在制热时节流,可能会有70%的液态制冷剂回到气液分离器。还有高排气压力,低吸气压力也会让更多的液态制冷剂进入气液分离器。用热力膨胀阀会少一些,但也可能会有50%流到气液分离器,主要是在除霜开始后,外平衡感温包还是热的,所以制冷剂会大量流过蒸发器而不蒸发从而进入气液分离器。在停机时,气液分离器是系统中最冷的部件,所以制冷剂会迁移到这里,所以要保证气分有足够的容量来储存这些液态制冷剂。 2.适当的回油孔及过滤网保证冷冻油和制冷剂回到压缩机。 回油孔的尺寸要尽量保证没液态制冷剂回流到压缩机,但也要保证冷冻油尽量可以回到压缩机。 如果是运行中气液分离器中存有的液态制冷剂,推荐使用直径0.040 in (1.02mm),,如果是因为停机制冷剂迁移到气液分离器推荐使用0.055 in (1.4mm)(谷轮的应用工程手册是直接给出

气液分离器的原理

气液分离器采用的分离结构很多,其分离方法也有: 1、重力沉降; 2、折流分离; 3、离心力分离; 4、丝网分离; 5、超滤分离; 6、填料分离等。 但综合起来分离原理只有两种: 一、利用组分质量(重量)不同对混合物进行分离(如分离方法 1、2、3、6)。气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以气体粒子比液体粒子小些。 一、重力沉降 1、重力沉降的原理简述 由于气体与液体的密度不同,液体在与气体一起流动时,液体会受到重力的作用,产生一个向下的速度,而气体仍然朝着原来的方向流动,也就是说液体与气体在重力场中有分离的倾向,向下的液体附着在壁面上汇集在一起通过排放管排出。 2、重力沉降的优缺点 优点: 1)设计简单。 2)设备制作简单。

3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。 1)设计简单。 2)设备制作简单。 3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。

优点:4、由于气液混合物总是处在重力场中,所以重力沉降也广泛存在。由于重力沉降固有的缺陷,使科研人员不得不开发更高效的气液分离器,于是折流分离与离心分离就出现了。 二、折流分离 1、折流分离的原理简述 由于气体与液体的密度不同,液体与气体混合一起流动时,如果遇到阻挡,气体会折流而走,而液体由于惯性,继续有一个向前的速度,向前的液体附着在阻挡壁面上由于重力的作用向下汇集到一起,通过排放管排出。 2、折流分离的优缺点 优点: 1)分离效率比重力沉降高。 2)体积比重力沉降减小很多,所以折流分离结构可以用在(高)压力容器内。 3)工作稳定。 缺点: 1)分离负荷范围窄,超过气液混合物规定流速后,分离效率急剧下降。 2)阻力比重力沉降大。 3、改进 从折流分离的原理来说,气液混合物流速越快,其惯性越大,也就是说气液分离的倾向越大,应该是分离效率越高,而实际情况却恰恰相反,为什么呢? 究其原因: 1)在气液比一定的情况下,气液混合物流速越大,说明单位时间内分离负荷越重,混合物在分离器内停留的时间越短。 2)气体在折流的同时也推动着已经着壁的液体向着气体流动的方向流动,如果液体流到收集壁的边缘时还没有脱离气体的这种推动力,那么已经着壁的液体将被气体重新带走。在气液比一定的情况下,气液混合物流速越大,气体这种继续推动液体的力将越大,液体将会在更短的时间内

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:1320103090 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度32.5℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 1.1热量传递的概念与意义 1.1.1热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

浮头式换热器设计

大学 生物工程专业《化工原理课程设计》说明书 题目名称浮头式换热器的设计 专业班级 学号 学生姓名 指导教师 2012 年06 月08 日

目录 1、设计方案................................................................................ 错误!未定义书签。 2、衡算........................................................................................ 错误!未定义书签。 2.1确定设计方案 ................................................................... 错误!未定义书签。 2.1.1换热器的类型.............................................................. 错误!未定义书签。 2.1.2 管程安排..................................................................... 错误!未定义书签。 2.2确定物性数据 ................................................................... 错误!未定义书签。 2.3估算传热面积 ................................................................... 错误!未定义书签。 2.3.1 热负荷......................................................................... 错误!未定义书签。 2.3.2 热流体用量................................................................. 错误!未定义书签。 2.3.3 平均传热温差......................................................... 错误!未定义书签。 2.3.4 初算传热面积............................................................. 错误!未定义书签。 2.4换热器工艺结构尺寸设计 ............................................... 错误!未定义书签。 2.4.1 管径和管内流速......................................................... 错误!未定义书签。 2.4.2管程数和传热管数..................................................... 错误!未定义书签。 2.4.3 平均传热温差校正..................................................... 错误!未定义书签。 2.4.4 传热管排列................................................................. 错误!未定义书签。 2.4.5 壳体直径..................................................................... 错误!未定义书签。 2.4.6 折流板......................................................................... 错误!未定义书签。 2.4.7接管............................................................................. 错误!未定义书签。 3、换热器核算............................................................................ 错误!未定义书签。 3.1传热面积校核.................................................................... 错误!未定义书签。 3.1.1管程传热膜系数.......................................................... 错误!未定义书签。 3.1.2 壳程传热膜系数......................................................... 错误!未定义书签。 3.1.3 总传热系数................................................................. 错误!未定义书签。 3.1.4 传热面积校核............................................................. 错误!未定义书签。 3.2换热器内压降的核算...................................................... 错误!未定义书签。 3.2.1 管程阻力..................................................................... 错误!未定义书签。 3.2.2 壳程阻力..................................................................... 错误!未定义书签。 4、设备选型................................................................................ 错误!未定义书签。 4.1管子排列方式的选择 ....................................................... 错误!未定义书签。 4.2折流板的选择 ................................................................... 错误!未定义书签。 4.3除污垢措施的选择 ........................................................... 错误!未定义书签。 4.4材料的选择 ....................................................................... 错误!未定义书签。 5、附录及图表............................................................................ 错误!未定义书签。 6、设计总结................................................................................ 错误!未定义书签。 7、参考文献................................................................................ 错误!未定义书签。

气-液分离器设计[1]

标准 T/ES220020-2005 中国石化集团宁波工程有限公司 气—液分离器设计 2005-04-15 发布 2005-05-01 实施

中国石化宁波工程有限公 司 目次 1 总则 1.1 目的 1.2 范围 1.3 编制本标准的依据 2 立式和卧式重力分离器设计 2.1应用范围 2.2 立式重力分离器的尺寸设计 2.3 卧式重力分离器的尺寸设计 2.4 立式分离器(重力式)计算举例 2.5附图 3 立式和卧式丝网分离器设计 3.1 应用范围 3.2 立式丝网分离器的尺寸设计 3.3 卧式丝网分离器的尺寸设计 3.4 计算举例 3.5 附图 4 符号说明

1 总则 1.1 目的 本标准适用于工艺设计人员对两种类型的气—液分离器设计,即立式、卧式重力 分离器设计和立式、卧式丝网分离器设计。并在填写石油化工装置的气—液分离器数据表时使用。 1.2 范围 本标准适用于国内所有化工和石油化工装置中的气-液分离器的工程设计。 1.3 编制本标准的依据: 化学工程学会《工艺系统工程设计技术规定》HG/T20570.8-1995第8篇气—液分离器设计。 2 立式和卧式重力分离器设计 2.1 应用范围 2.1.1 重力分离器适用于分离液滴直径大于200μm 的气液分离。 2.1.2 为提高分离效率,应尽量避免直接在重力分离器前设置阀件、加料及引起物料的转向。 2.1.3 液体量较多,在高液面和低液面间的停留时间在6~9min ,应采用卧式重力分离器。 2.1.4 液体量较少,液面高度不是由停留时间来确定,而是通过各个调节点间的最小距离100mm 来加以限制的,应采用立式重力分离器。 2.2 立式重力分离器的尺寸设计 2.2.1 分离器内的气速 2.2.1.1 近似估算法 5 .0ρρρ=G G L s t K V (2.2.1—1) 式中 V t ——浮动(沉降)流速,m/s ; ρL 、ρG ——液体密度和气体密度,kg/m 3; K S ——系数 d * =200μm 时,K S =0.0512; d *=350μm 时,K S =0.0675。

浮头式换热器课程设计

目录 一设计任务书 (2) 二设计计算 (2) 2.1确定设计方案 (2) 2.11 选择换热器类型 (2) 2.12 管程安排 (2) 2.2 确定物性数据 (2) 2.3 估计传热面积 (3) 2.31 热流量(忽略热损失) (3) 2.32 冷却水的用量 (3) 2.33 平均传热温差 (3) 2.34 初算传热面积 (3) 2.4 工艺结构尺寸 (4) 2.41 管径和管内流速 (4) 2.42 管程数和传热管数 (4) 2.44 传热管排列和分程方法 (5) 2.45 壳体直径 (5) 2.46 折流板 (5) 2.47 接管 (5) 2.5 换热器核算 (6) 2.51 传热面积校核 (6) 2.52 换热器内压降的核算 (8) 三设计结果汇总表及图 (9)

一 设计任务书 某生产过程中,需将6000kg/h 的原油从175℃冷却至130℃,压力为0.4MPa ;冷却介质采用循环水,循环冷却水的压力为0.3MPa ,循环水进口温度25℃,出口温度为55℃。试设计一台列管式换热器,完成该生产任务。 二 设计计算 2.1确定设计方案 2.11 选择换热器类型 两流体的温度变化情况: 原油进口温度175℃,出口温度130℃; 循环冷却水进口温度25℃,出口温度55℃。 考虑到换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。 2.12 管程安排 由于循环冷却水较易结垢,若其流速太低,将会加速污垢增长速度,使换热器的热流量下降,故总体考虑,应使循环冷却水走管程,原油走壳程。 2.2 确定物性数据 定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。 故 壳程原油的定性温度为: 5.1522 ) 130175(=+= T ℃ 管程循环冷却水的定性温度为:

LPG气液分离器原理

气液分离器的工作原理 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 汽液分离罐是利用丝网除沫,或折流挡板之类的内部构件,将气体中夹带的液体进一步凝结,排放,以去除液体的效果。 基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。 QQ截图未命名.gif (93.74 KB) 分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风除尘器原理是利用离心力分离气体中的固体. 气液分离器,根据分离器的类型不同,有旋涡分离,折留板分离,丝网除沫器, 旋涡分离主要是根据气体和液体的密度,做离心运动时,液体遇到器壁冷凝分离。 基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的. 使用气液分离器一般跟后系统有关,因为气体降温减压后会出现部分冷凝而后系统设备处理需要纯气相或液相,所以

主反应后装一个气液分离器静止分离出气相和液相给后系统创造条件。。。 工厂里常见的气液分离器是利用闪蒸的原理,闪蒸就是介质进入一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水,而游离的水和比重大的液滴会由于重力作用分离出来,另外分离器一般带捕雾网,通过捕雾网可将气相中部分大的液滴脱除。 气液分离器无非就是让互相混杂的气相液相各自聚合成股,液滴碰撞聚结,气体除去液滴后上升,从而达到分离的目的。 原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。算过一个气液分离器就是一个简单的压力容器,里面有相应的除沫器一清除雾滴。 气液分离器其基本原理是利用惯性碰撞作用,将气相中夹带的液滴或固体颗粒捕集下来,进而净化气相或获得液相及固相。其为物理过程,常见的形式有丝网除雾器、旋流板除雾器、折板除雾器等。 单纯的气液分离并不涉及温度和压力的关系,而是对高速气流(相对概念)夹带的液体进行拦截、吸收等从而实习分离,旋流挡板等在导流的同时,为液体的附着提供凭借,就好像空气中的灰尘要有物体凭借才能停留下来一样。而不同分离器在设计时,还优化了分离性能,如改变温度、压力、流速等 气液分离是利用在制定条件下,气液的密度不同而造成的分离。 我觉得较好的方法是利用不同的成分其在不同的温度或压力下熔沸点的差异,使其发生相变,再通过不同相的物理性质的差异进行分离 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 化工厂中的分离器大都是丝网滤分离气液,这种方法属于机械式分离,原理就是气体分子小可以通过丝网空隙,而液态分子大,被阻分离开, 还有一种属于螺旋式分离,气体夹带的液体由分离器底部螺旋式上升,液体被碰撞“长大”最终依靠重力下降,有时依靠降液管引至分离器底部 气液分离器,出气端一般在上,因为比重低,内部空气被抽离,或在出气端连气泵 而液体经旋转,再次冷凝下降从下部排出 利用气体与液体的密度不同。。从而将气体与液体进行隔离开来 1、气液分离器有多种形式。 2、主要原理是:根据气液比重不同,在较大空间随流速变化,在主流体转向的过程中,气相中细微的液滴

相关主题
文本预览
相关文档 最新文档