热力学与统计物理课件 热力学部分 第五章 不可逆过程热力学简介
- 格式:pdf
- 大小:149.04 KB
- 文档页数:16
热力学和统计物理一、基本概念1. 热力学- 系统与外界- 热力学研究的对象称为系统,系统以外与系统有相互作用的部分称为外界。
例如,研究气缸内气体的性质时,气缸内的气体就是系统,气缸壁、活塞以及周围的环境等就是外界。
- 平衡态- 一个孤立系统经过足够长的时间后,宏观性质不再随时间变化的状态称为平衡态。
例如,将一个盛有热水的容器放在绝热环境中,经过一段时间后,水的温度不再变化,水就达到了平衡态。
平衡态可以用一些宏观参量来描述,如压强p、体积V、温度T等。
- 状态参量- 用来描述系统平衡态的宏观物理量称为状态参量。
- 几何参量:如体积V,它描述了系统的几何大小。
对于理想气体,体积就是气体分子所能到达的空间范围。
- 力学参量:压强p是典型的力学参量,它是垂直作用于容器壁单位面积上的力。
- 热学参量:温度T是热学参量,它反映了物体的冷热程度。
从微观角度看,温度与分子热运动的剧烈程度有关。
2. 统计物理- 微观态与宏观态- 微观态是指系统内每个粒子的微观状态(如每个粒子的位置、动量等)都确定的状态。
而宏观态是指由一些宏观参量(如压强、体积、温度等)确定的状态。
一个宏观态往往包含大量的微观态。
例如,对于一个由N个粒子组成的气体系统,给定气体的压强、体积和温度,这就是一个宏观态,但这些粒子的具体位置和动量有多种可能组合,每一种组合就是一个微观态。
- 等概率原理- 对于处于平衡态的孤立系统,系统各个可能的微观态出现的概率相等。
这是统计物理的一个基本假设。
二、热力学定律1. 热力学第零定律- 如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则这两个系统彼此也必定处于热平衡。
这一定律为温度的测量提供了依据。
例如,我们可以用温度计(第三个系统)去测量不同物体(两个系统)的温度,当温度计与物体达到热平衡时,就可以确定物体的温度,并且如果两个物体与同一温度计达到热平衡,那么这两个物体之间也处于热平衡,它们具有相同的温度。
热力学与统计物理热力学与统计学的研究任务:研究热运动的规律,研究与热运动有关的物质及宏观物质系统的演化。
热力学的局限性:不考虑物质的微观结构,把物质看作连续体,用连续函数表达物质的性质,不能解释涨落现象。
热力学部分第一章 热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换又有物质交换的系统。
2、弛豫时间:系统由初始状态达到平衡态所经历的时间(时间长短由趋向平衡的性质决定),取最长的弛豫时间为系统的弛豫时间3、热力学平衡态:一个系统不论其初始状态如何复杂,经过足够长的时间后,将会达到这样的状态,即系统的各种宏观性质在长时间内不发生任何变化。
4、准静态过程:进行得非常缓慢的过程,系统在过程中经历的每一个状态都可以看成平衡态5、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量6、简单系统:只要体积和压强两个状态参量就可以确定的系统7、单相系(均匀系):如果一个系统各个部分的性质完全一样,则该系统称为单相系; 复相系:如果整个系统是不均匀的,但可以分成若干个均匀的部分,称为复相系8、热平衡定律:如果物体A 和物体B 各自与处于同一状态的物体C 达到热平衡,若令A 与B 进行热接触,它们也将处于热平衡状态。
(得出温度的概念,比较温度的方法)9、物态方程:给出温度与状态函数之间参数的方程10、理想气体:符合玻意耳定律、阿氏定律和理想气体温标的气体11、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =12、玻意耳定律:对于固定质量的气体,在温度不变时,压强和体积的乘积为常数13、阿氏定律:在相同的温度压强下,相同体积所含的各种气体的物质的量相同14、范德瓦尔斯方程:考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程15、广延量:热力学量与系统的n 、m 成正比强度量:热力学量与n 、m 无关(广延量除以n 、m 、V 变成强度量)16、能量守恒定律:自然界中一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种;从一个物体传递到另一个物体,在传递和转化中能量的数量不变。
第五章不可逆过程热力学简介§5.1 局域平衡熵流密度与局域熵产生率
§5.2 线性与非线性过程昂萨格关系
§5.1 局域平衡熵流密度与局域熵产生率
对不可逆过程,如果初态和终态仍然是平衡
态,则可以通过初态与终态之间热力学函数之间的关系求得整个过程的总效应。
自然界中存在大量的不过逆过程:热传导、扩散、化学反应、生命等
因而有必要将热力学方法推广到非平衡情形
除以局域体积,并不考虑项后有:
局域平衡假设:如果将一个处于非平衡态的系统分成许多宏观小、微观大的子系统,那么每一个子系统仍然处于热力学平衡态。
∑−+=i i
i dN PdV dU TdS μi i
N μpdV −:一个分子的化学势:第i 组元的分子数
∑−=i i
i dn du Tds μ假设在不可逆热力学中对局域量仍然成立。
动理系数
(线性唯象律)
推广为:
:kl l l
kl k L X L J LX
J ∑==在各向同性物体中上述各种输运过程的经验规律都可表述为“流量与动力成正比”,即
lk kl k
k
k L L X J ==Θ∑则动理系数满足关系:
统计物理学可以证明:适当选择流量和动力,使局域熵产生率表达为:
昂萨格关系
昂萨格关系表述第l 种力对第k 种流与第k 种力对第l 种流所产生的线性效应的对称性。
这关系是微观可逆性在宏观规律上的表现.它不可能根据热力学理论推导出来,在不可逆过程热力学中我们将直接引用这个公式。
讨论对动理系数的限制。
0≥Θ0≥Θ=Θ∑l
kl
k hl X X L 意味着上式是正定二次型
讨论存在两个耦合的不可逆过程的情形,此时:
2
2222121122111)(X L X X L L X L +++=Θ。