(完整版)热力学与统计学总结
- 格式:doc
- 大小:293.01 KB
- 文档页数:17
§3.1 热动平衡判据当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。
这些条件可以利用一些热力学函数作为平衡判据而求出。
下面先介绍几种常用的平衡判据。
oisd一、平衡判据1、熵判据熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。
于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。
孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。
如果只有体积变化功,孤立系条件相当与体积不变和内能不变。
因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。
在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。
如果将熵函数作泰勒展开,准确到二级有d因此孤立系统处在稳定平衡态的充分必要条件为既围绕某一状态发生的各种可能的虚变动引起的熵变,该状态的熵就具有极大值,是稳定的平衡状态。
如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。
亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。
如果对于某些变动,熵函数的数值不变,,这相当于中性平衡了。
熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。
不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。
2、自由能判据表示在等温等容条件下,系统的自由能永不增加。
这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。
我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。
这一判据称为自由能判据。
§2.1内能、焓、自由能和吉布斯函数的全微分热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。
焓:自由能:吉布斯函数:下面我们由热力学的基本方程(1)即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分•焓、自由能和吉布斯函数的全微分o焓的全微分由焓的定义式,求微分,得,将(1)式代入上式得(2)o自由能的全微分由得(3)o吉布斯函数的全微分(4)从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。
下面从这几个函数和它们的全微分方程来推出麦氏关系。
二、热力学(Maxwell)关系(麦克斯韦或麦氏)(1)U(S,V)利用全微分性质(5)用(1)式相比得(6)再利用求偏导数的次序可以交换的性质,即(6)式得(7)(2) H(S,P)同(2)式相比有由得(8)(3) F(T,V)同(3)式相比(9)(4) G(T,P)同(4)式相比有(10)(7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。
它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。
例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。
§2.2麦氏关系的简单应用证明1. 求选T,V为独立变量,则内能U(T,V)的全微分为(1)熵函数S(T,V)的全微分为( 2)又有热力学基本方程(3)由(2)代入(3)式得(4)•(4)相比可得(5)(6)由定容热容量的定义得(7)2. 求选T 、P为独立参量,焓的全微分为(8)焓的全微分方程为(9)以T、P为自变量时熵S(T、P)的全微分表达式为(10)将(10)代入(9)得(11)(8)式和(11)式相比较得(12)(13)(14)3求由(7) (14)式得(15) 把熵S看作T,V的函数,再把V看成T,P的函数,即对上式求全微分得∴代入(15)式得由麦氏关系得(16)即得证4、P,V,T三个变量之间存在偏导数关系而可证(17)§2.3气体的节流过程和绝热膨胀过程气体的节流过程(节流膨胀)和绝热膨胀是获得低温的两种常用方法,我们利用热力学函数来分析这两种过程的性质一,气体的节流(焦耳---汤姆逊效应)1、定义:如图所示有一由绝热材料制成的管子,中间用一多孔塞(节流阀)隔开,塞子一边维持较高的压强P,另一边维持较低的压强P,在压力的作用下,气体由高压的一边经过多孔塞流向低压的一边。
热力学知识:热力学与统计力学热力学与统计力学热力学和统计力学是两个重要的物理学分支,旨在研究物质的宏观性质和微观机制。
热力学是通过实验和理论研究物质宏观性质来探索物质本质,而统计力学则是通过统计物质微观结构来研究宏观行为。
本文将从热力学和统计力学的历史背景、概念、基本定理和应用角度分别进行探讨。
一、热力学热力学最早起源于热机和热能转换的研究,其基本观点是将物质看作是由许多宏观粒子组成的。
热力学对于理解物质的改变和转化过程,如物体的热传导、膨胀、相变等,具有重要的意义。
1.基本概念热力学中的一些重要概念如下:(1)温度温度是物体热平衡状态的判定依据。
温度还有许多不同的概念,如热容量、热力学势、熵等。
(2)热力学系统热力学系统是指一个物理体系,包括物质及其所处的环境。
(3)热与功热是指由于温度梯度而产生的能量传递;功是指由于受力而产生的能量传递。
这两者均可以改变系统内能。
(4)热力学定律热力学第一定律指出了能量守恒原理,而热力学第二定律则是针对能量转换的方向性问题进行描述。
2.基本定理热力学的核心定理是能量守恒原理和熵增原理,下面分别进行介绍。
(1)能量守恒原理热力学第一定律指出了能量守恒原理,即在一个封闭系统中,热流、功、内能的变化量之和等于零。
也就是说,系统的总能量不会因为内部过程而减少或增加,只是转换了其形式。
例如,一个气体如果收到一定的热量,则可以使其温度升高,或者通过发生内部的化学反应来生成化学能,但总能量仍然不变。
(2)熵增原理热力学第二定律是熵增原理,它描述了一个封闭系统在不断发生熵增加的过程,也就是随着时间的推移,系统的混乱程度增加,最终趋向于混沌、无序状态。
二、统计力学统计力学是分析物质的微观结构,研究粒子的运动、能量和碰撞等,从而探寻宏观性质的物理学领域。
它将分布在一个具体状态的许多分子等拆开,通过统计的方法来研究物质的性质。
1.基本概念统计力学中的概念如下:(1)状态在统计力学中,系统所有的宏观和微观的信息都可用一个状态的几何表示来描述。
大学物理热力学与统计物理热力学与统计物理是大学物理中重要的分支,它研究了物质的热学性质以及微观粒子的统计规律。
本文将简要介绍热力学与统计物理的基本概念、原理和应用。
一、热力学基本概念热力学研究的是能量的转化与守恒,包括传热、传能和能量转换等方面的内容。
热力学基本定律包括能量守恒定律、熵增加原理等。
能量守恒定律指出能量在封闭系统中不会凭空产生或消失,只能通过各种形式的转化转移到其他物体或形式。
熵增加原理则是指随着时间的推移,封闭系统中的熵(系统无序程度)总是增加的。
二、热力学基本原理热力学基本原理包括热平衡、热力学第一定律和热力学第二定律。
热平衡是指系统内各部分之间的温度是相等的状态,这是热力学的基础概念。
热力学第一定律是能量守恒的表示,它表明系统的内能变化等于吸收的热量与对外做功的代数和。
热力学第二定律则是热力学的核心内容,它描述了自然界的不可逆性和熵增加的趋势。
三、统计物理基本原理统计物理是热力学的基础,它从微观角度研究了物质中微观粒子的统计规律。
统计物理主要利用统计学方法描述了大量微观粒子的行为,并推导出宏观热力学定律。
基于统计物理,我们可以计算系统的平均能量、熵以及其他宏观状态量。
四、热力学与统计物理的应用热力学和统计物理在各个领域具有广泛的应用,包括能源开发、材料科学、天体物理等。
在工程领域,热力学可以用来设计高效的能源转换系统,提高能源利用效率。
在材料科学领域,热力学对材料的相变、热膨胀等性质有着重要的解释和研究价值。
而在天体物理学中,热力学与统计物理的应用可以帮助我们理解星际物质的形成和演化过程。
总结:本文简要介绍了大学物理中的热力学与统计物理。
热力学是研究能量转化与守恒的学科,其基本定律包括能量守恒定律和熵增加原理。
统计物理是基于热力学的微观解释,通过统计学方法研究大量微观粒子的行为,推导出宏观热力学规律。
热力学与统计物理在能源、材料和天体等领域有着广泛的应用。
通过深入研究热力学与统计物理,我们能够更好地理解和解释自然界中的物质与能量转化过程。
热力学与统计物理总结简介热力学与统计物理是研究物质宏观性质与微观粒子行为之间关系的学科。
热力学研究物质的热学性质,如温度、压力、热量等,并给出了一系列基本定律;统计物理则通过对大量微观粒子的统计分布来揭示物质的宏观性质。
热力学基本定律热力学的基本定律是研究物质热学性质的基础,常用的有以下四个定律:1.第一定律:能量守恒定律。
能量在物理和化学变化过程中,既不能创造也不能消灭,只能由一种形式转化为另一种形式。
2.第二定律:熵增定律。
孤立的热力学系统中,熵不断增加,且在可逆过程中熵不变,可逆过程是指无摩擦、无阻力的过程。
3.第三定律:绝对零度不可达定律。
无限远温度下凝固的时候,熵趋于0,达到绝对零度是理论上不可达到的。
4.第零定律:温度的等温性。
当两个物体与一个第三物体都达到热平衡时,这两个物体之间也必定达到热平衡,即温度相等。
统计物理基本原理统计物理是通过对大量微观粒子的统计行为研究物质的宏观性质。
主要包括以下几个基本原理:1.统计假设:假设大量粒子的运动遵循统计规律,可用概率进行描述。
2.巨正则系综:描述粒子和热平衡与热脱平衡之间的关系。
3.等概率原理:在能量等概率的微观态中,一个系统在各个可能的微观态上出现的概率是相等的。
4.统计特性:研究粒子的统计性质,如分布函数、平均值等。
热力学与统计物理的关系热力学和统计物理是相辅相成的学科,热力学通过实验和观察,总结出了一系列定律和规律;而统计物理则通过对微观粒子的统计行为进行分析和计算,从微观层面揭示了这些定律和规律的产生机制。
热力学的基本定律是从宏观角度看待系统的性质,而统计物理则是从微观角度看待系统的性质。
统计物理给出了基本的统计规律,研究了粒子的分布函数、平均能量等,而热力学则从中总结出了熵增定律、能量守恒定律等基本定律。
可以说,热力学是统计物理的应用,而统计物理则是热力学的基础。
应用领域热力学与统计物理广泛应用于各个科学领域,主要包括以下几个方面:1.材料科学:热力学与统计物理研究材料的热学性质、相变等,对材料的设计和制备有重要指导作用。
1.热力学如何统计热力学理论是普遍性的理论,对一切物质都适用,这是它的优点,但它不能对某种特殊物质的具体性质作出推论。
例如讨论理想气体时,需要给出理想气体的状态方程;讨论电磁物质时,需要补充电磁物质的极化强度和场强的关系等。
这样才能从热力学的一般关系中,得出某种特定物质的具体知识。
平衡态热力学的理论已很完善,并有广泛的应用。
但在自然界中,处于非平衡态的热力学系统(物理的、化学的、生物的)和不可逆的热力学过程是大量存在的。
因此,这方面的研究工作十分重要,并已取得一些重要的进展。
2.热力学的定义与内容是什么3.热力学与统计物理学怎么学你好,热力学(thermodynamics)是自然科学的一个分支,主要研究热量和功之间的转化关系。
热力学是研究物质的平衡状态以及与准平衡态,以及状态发生变化时系统与外界相互作用(包括能量传递和转换)的物理、化学过程的学科。
热力学适用于许多科学领域和工程领域,如发动机,相变,化学反应,甚至黑洞等等。
热力学,全称热动力学,是研究热现象中物态转变和能量转换规律的学科;它着重研究物质的平衡状态以及与准平衡态的物理、化学过程。
热力学是热学理论的一个方面。
热力学主要是从能量转化的观点来研究物质的热性质,它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。
热力学是总结物质的宏观现象而得到的热学理论,不涉及物质的微观结构和微观粒子的相互作用。
因此它是一种唯象的宏观理论,具有高度的可靠性和普遍性。
热力学三定律是热力学的基本理论。
定律第零定律两个热力学系统均与第三个系统处于热平衡状态,此两个系统也必互相处于热平衡。
热力学第零定律的重要性在于它给出了温度的定义和温度的测量方法。
定律中所说的热力学系统是指由大量分子、原子组成的物体或物体系。
它为建立温度概念提供了实验基础。
这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。
热统期末知识点总结一、热力学基础知识1. 热力学系统:封闭系统、开放系统、孤立系统2. 热力学过程:等容过程、等压过程、等温过程、绝热过程3. 热力学第一定律:能量守恒定律4. 热力学第二定律:热力学不可逆定律5. 热力学第三定律:绝对零度不可达定律二、热力学状态方程1. 理想气体状态方程:PV=nRT2. 绝热方程:PV^γ=常数3. van der Waals方程:(P+a/V^2)(V-b)=RT三、热力学过程1. 等容过程:ΔU=Q,W=02. 等压过程:ΔU=Q-PΔV,W=PΔV3. 等温过程:Q=W,ΔU=04. 绝热过程:Q=0,ΔU=−W四、热力学循环1. 卡诺循环:由等温膨胀、绝热膨胀、等温压缩、绝热压缩四个过程组成的热力学循环2. 卡诺循环效率:η=1- T2/T13. 高效率循环:例如布雷顿循环、热力循环等五、熵和熵增原理1. 熵:系统的无序程度的度量2. 熵增原理:孤立系统的熵不会减少六、热力学定值1. 等温线:PV=常数2. 等容线:P/T=常数3. 等熵线:PV^(γ-1)=常数4. 绝热线:P*V^γ=常数七、不可逆循环1. 单级制冷机和热泵2. 制冷系数和制冷效率3. 制冷系统和热泵系统的效率八、传热1. 传热方式:导热、对流、辐射2. 热传导方程:Q=κAΔT/Δx3. 对流换热方程:Q=mcΔT4. 辐射换热:∈AσT^4九、热力学关系1. 准静态过程:在系统进行状态变化的过程中,系统每一瞬间的参数都可以近似看作平衡的过程2. 等压过程、等容过程、绝热过程的特点及实际应用3. 内能、焓、熵等热力学量的物理意义和计算公式十、热力学定律1. 卡诺定理:卡诺热机效率只与工作物质两个温度有关2. 克劳修斯不等式:任何两个热机无法达到或超过Carnot热机效率3. 热力学循环ΔS=0:卡诺循环4. 有用工作和抽取热5. 充分条件为ΔU=0十一、工程应用1. 蒸汽发动机2. 内燃机3. 空气压缩机总结:热态学是描述热力学性质以及热力学基本定律的一门学科,它研究热力学定态下物质的性质及其变化。
第一类知识点1.大量微观粒子的无规则运动称作物质的热运动.2.宏观物理量是微观物理量的统计平均值.3.熵增加原理可表述为:系统经绝热过程由初态变到终态,它的熵永不减小.系统经可逆绝热过程后熵不变.系统经不可逆绝热过程后熵增加.孤立系中所发生的不可逆过程总是朝着熵增加的方向进行.4.在某一过程中,系统内能的增量等于外界对系统所做的功与系统从外界吸收的热量之和.5.在等温等容条件下,系统的自由能永不增加.在等温等压条件下,系统的吉布斯函数永不增加.6.理想气体的内能只是温度的函数,与体积无关,这个结论称为焦耳定律. 8.户[/回(3 V ) T {d T ) V9.彦1 1(s P) I。
S JS p10.户1 二—巨1(s P J T (s T J11. dU = TdS—pdV12. dH = TdS + Vdp13. dF = - SdT—pdV14. dG = - SdT + Vdp15.由dU = TdS - pdV可得,T =(吆'(s S JV16.由dH = TdS + Vdp可得,V =[里, (s P )S17.单元复相系达到平衡所要满足的热平衡条件为各相温度相等.18.单元复相系达到平衡所要满足的力学平衡条件为各相压强相等.19.单元复相系达到平衡所要满足的相变平衡条件为各相化学势相等.20.对于一级相变,在相变点两相的化学势相等.在相变点两相化学势的一阶偏导数不相等.21.对于二级相变,在相变点两相的化学势相等.在相变点两相化学势的一阶偏导数相等.在相变点两相化学势的二阶偏导数不相等.22.汽化线有一终止点c,称为临界点.汽化线、熔解线、升华线交于一点,名为三相点.23.根据能氏定理:lim]生]=0. lim]更]=0.T-0(S p ) T,S V )T T24.盐的水溶液单相存在时,其自由度数为3.25.盐的水溶液与水蒸气平衡时,该系统的自由度数为(2 ).5.盐的水溶液、水蒸气和冰三相平衡共存时,该系统的自由度数为1.26. k元甲相系的自由度数为(k—①+ 2).27.凝聚系的熵在等温过程中的改变随绝对温度趋于0.28.热力学第三定律可以表述为:不可能通过有限的步骤使一个物体冷却到绝对温度的零度.29.当两相用固定的半透膜隔开时,达到平衡时两相的温度必须相等.达到平衡时两相的压强不必相等.30.如果某一能级的量子状态不止一个,该能级就是简并的.一个能级的量子态数称为该能级的简并度.31.线性谐振子的能级是等间距的,相邻两能级的能量差取决于振子的圆频率.32.由玻色子组成的复合粒子是玻色子.33.由偶数个费米子组成的复合粒子是玻色子.34.由奇数个费米子组成的复合粒子是费米子.35.自然界中的〃基本”微观粒子可分为两类,称为玻色子和费米子.36.平衡态统计物理的基本假设是等概率原理.37.等概率原理认为,对于处在平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的.38.对于处在平衡状态的孤立系统,微观状态数最多的分布,出现的概率最大,称为最概然分布.39. 一般情形下气体满足经典极限条件,遵从玻耳兹曼分布.40.定域系统遵从玻耳兹曼分布.41.固体中原子的热运动可以看成3N个振子的振动.42.对于处在温度为T的平衡状态的经典系统,粒子能量中每一个平方项的平均值等于1 kT.243.由能量均分定理可知:温度为T的N个单原子分子组成的理想气体的内能是3— NkT.244.由能量均分定理可知:温度为T的N个刚性双原子分子组成的理想气体的内能是5 NkT.245.根据能量均分定理,温度为T时,单原子分子的平均能量为3kT .246.根据能量均分定理,温度为T时,刚性双原子分子的平均能量为5 kT .247.在无穷小的准静态过程中系统从外界吸收的热量等于粒子在各能级重新分布所增加的内能.48.顺磁性固体可以看作是由定域近独立的磁性离子组成的系统,遵从玻耳兹曼分布.49.光子气体遵从玻色分布.50.金属中的自由电子遵从费米分布.51.满足经典极限条件的玻色系统遵从玻耳兹曼分布.52.空腔内的电磁辐射可看作光子气体.53.玻耳兹曼关系表明,某个宏观状态对应的微观状态数愈多,它的混乱度就愈大,熵也愈大.54.满足经典极限条件的费米系统遵从玻耳兹曼分布.55.光子的能量动量关系为£= cp.56.光子的自旋量子数为1.57.平衡辐射的内能密度与绝对温度的四次方成正比.58.普朗克在推导普朗克公式时,第一次引入了能量量子化的概念,这是物理概念的革命性飞跃.普朗克公式的建立是量子物理学的起点.59.描写N个单原子分子组成的理想气体状态的4空间是6维的.60.描写N个单原子分子组成的理想气体状态的「空间是6 N维的.61.由N个单原子分子组成的理想气体,该系统任一微观状态在4空间由N个点表示.62.由N个单原子分子组成的理想气体,该系统任一微观状态在「空间由1个点表示.63.粒子在某一时刻的力学运动状态可以用R空间中的1个点表示.64.在统计物理学中,应用系综理论可以研究互作用粒子组成的系统.65.设想有大量结构完全相同的系统,处在相同的宏观条件下,我们把这大量系统的集合称为统计系综.66.具有确定的N,匕T值的系统的分布函数,这个分布称为正则分布.67.具有确定的匕T, R值的系统的分布函数,这个分布称为巨正则分布.68.具有确定的N,匕E值的系统的分布函数,这个分布称为微正则分布.第二类知识点1.体胀系数a为:L[空]V(S T)p2.压强系数p为:1 f^P]P(3T)V3.等温压缩系数上为—▲(空,T V(S p )T4.在只有体积变化功的条件下,当系统在准静态过程中有体积变化”时,外界对系统所作的功为-pdV5.热力学第二定律的数学表述为dS > dQ T6.焦耳系数为f空](3 V)U7.焦耳定律可用式子表示为f3U} = 0(3 V )T8. n摩尔理想气体的物态方程为pV = nRT9.n摩尔范氏气体的物态方程为(V _nb)= nRT10.摄氏温度/与热力学温度T之间的数值关系为t = T - 273.1511.可逆绝热过程中,系统温度随压强的变化,可用偏导数表示为[9[ s12.气体经节流过程H不变.13.节流过程的重要特点是焓不变.14.平衡辐射的辐射压强p与辐射能量密度u之间的关系为p = 1 u 315.均匀系统热动平衡的稳定性条件为C > 0 [2]< 0V(3 V )T16.对于均匀系统,有如下方程:dU = TdS—pdVdF =—SdT—pdVdH = TdS + VdpdG =—SdT + Vdp17.焦-汤系数为(空'13P人H18.熵判据的适用条件是:孤立系统19.自由能判据的适用条件是:温度和体积不变20.吉布斯函数判据的适用条件是:温度和压强不变21.对于单元系相图,其中OS段曲线为升华曲线,OC段曲线为汽化曲线,OL 段曲线为熔解曲线.卜p22.对于范氏气体的理论等温线,其中BN段为过饱和蒸气.AJ段为过热液体. OB段为气态.AR段为液态.23.不考虑粒子的自旋,在x f x + dx,y T y + dy,z - z + dz,p - p + dp,p y T p y+dp y,p z T p z+ dp z内,自由粒子可能的量子态数为dxdydzdp dp dph 324.不考虑粒子的自旋,在体积v内,动量在p T p + dp,p T p+dp,p z T p^ + dp z内,自由粒子可能的量子态数为VdPx;3y dp25.不考虑粒子的自旋,在体积V内,动量大小在p T p + dp,动量方向在0T O+d6中一①+d①的范围内,自由粒子可能的量子态数为v2sin0即d0的h 3 26.不考虑粒子的自旋,在体积V内,动量大小在p T p + dp的范围内(动量方向为任意),自由粒子可能的量子态数为4n Vp 2即h 327 .不考虑粒子的自旋,在体积V 内,在£ -£ + d £的能量范围内,自由粒子可能的量子态数为需(2m )2 £ 2d28 .经典极限条件为e a >> 1玻色分布为aI费米分布为30 .对于玻耳兹曼系统,与分布a }相应的系统的微观状态数为YN-! n w^iI31 . Maxwe 〃速度分布律为-n (—m —)32e - 2kT 32+v2+ v2)dv dv dv2 冗 kTxy32 . Maxwell 速率分布律为(B ) f (v )dv - 4兀n (—m — )32e -2K kT33 .根据能量均分定理,在温度为T 时,刚性双原子分子的平均能量为5 3e - 5 kT ,单原子分子的平均能量为e - 3 kT ,非刚性双原子分子的平均能量2 2 为 £-7 kT2 34.由能量均分定理求得1摩尔单原子分子理想气体的内能为U - 3RT ,单原m 2子分子理想气体的定容摩尔热容为C - 3R .V , m 229.玻耳兹曼分布为 a =① e -a-Pe Im . 2kT Vv 2dv35.在量子统计理论中,理想气体熵函数的统计表达式为( S S )S = Nk In Z -P--In Z -k In N!I 1 S P 1J36.设爱因斯坦固体由N个原子组成,在高温极限情况下,该系统的热容量为37.对于玻色系统,与分布%}相应的系统的微观状态数为n皆" l l l38.对于费米系统,与分布蒋}相应的系统的微观状态数为n「Ji i a !(攻-a )!39.费米系统在最概然分布下,处在能量为s的量子态s上的平均粒子数为1e a+俄s +140.玻色系统在最概然分布下,处在能量为s的量子态s上的平均粒子数为e a+Ps s -141.玻耳兹曼系统在最概然分布下,处在能量为s的量子态s上的平均粒子数为s42 .在低频极限的情况下,辐射场的内能按频率的分布为V ,U (T ,3)d 3 = kT3 2 d 3兀 2 C 343.在高频极限的情况下,辐射场的内能按频率的分布为V 岫U (T, 3)d 3 = ------- 方 3 3 e一kT d 344.对于玻色系统,内能的表达式为:U = --ln己印兀 2 C 345.对于玻色系统,平均总粒子数N可通过ln己表示为N = --ln己S a46.对于玻色系统,广义力丫的表达式为y =—101口三P办47.含有氧气、一氧化碳和二氧化碳的混合气体是三元系.48.糖的水溶液和水蒸气共存是二元二相系.49.当温度趋于绝对零度时,物质的体膨胀系数a f 050.当温度趋于绝对零度时,物质的压强系数P t 051.根据多兀复相系的热力学方程dU - TdS - pdV + 2L \x dn可得:i i_( du\1 s ,V ,n j52.粒子数为N的玻耳兹曼系统,当外参量y改变时,外界对系统的广义作用力丫的表达式为Y = - —^-InZP dy i53.粒子数为N的玻耳兹曼系统,内能的表达式为U=-N — \nZ Sp 154.玻耳兹曼关系为S = —nQ55.对于费米系统,内能的表达式为° = —&1口己56.对于费米系统,燧的表达式为S = k InH - oi - p -^-InESa SBio。
热力学和统计物理一、基本概念1. 热力学- 系统与外界- 热力学研究的对象称为系统,系统以外与系统有相互作用的部分称为外界。
例如,研究气缸内气体的性质时,气缸内的气体就是系统,气缸壁、活塞以及周围的环境等就是外界。
- 平衡态- 一个孤立系统经过足够长的时间后,宏观性质不再随时间变化的状态称为平衡态。
例如,将一个盛有热水的容器放在绝热环境中,经过一段时间后,水的温度不再变化,水就达到了平衡态。
平衡态可以用一些宏观参量来描述,如压强p、体积V、温度T等。
- 状态参量- 用来描述系统平衡态的宏观物理量称为状态参量。
- 几何参量:如体积V,它描述了系统的几何大小。
对于理想气体,体积就是气体分子所能到达的空间范围。
- 力学参量:压强p是典型的力学参量,它是垂直作用于容器壁单位面积上的力。
- 热学参量:温度T是热学参量,它反映了物体的冷热程度。
从微观角度看,温度与分子热运动的剧烈程度有关。
2. 统计物理- 微观态与宏观态- 微观态是指系统内每个粒子的微观状态(如每个粒子的位置、动量等)都确定的状态。
而宏观态是指由一些宏观参量(如压强、体积、温度等)确定的状态。
一个宏观态往往包含大量的微观态。
例如,对于一个由N个粒子组成的气体系统,给定气体的压强、体积和温度,这就是一个宏观态,但这些粒子的具体位置和动量有多种可能组合,每一种组合就是一个微观态。
- 等概率原理- 对于处于平衡态的孤立系统,系统各个可能的微观态出现的概率相等。
这是统计物理的一个基本假设。
二、热力学定律1. 热力学第零定律- 如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则这两个系统彼此也必定处于热平衡。
这一定律为温度的测量提供了依据。
例如,我们可以用温度计(第三个系统)去测量不同物体(两个系统)的温度,当温度计与物体达到热平衡时,就可以确定物体的温度,并且如果两个物体与同一温度计达到热平衡,那么这两个物体之间也处于热平衡,它们具有相同的温度。
热力学与统计物理热力学与统计学的研究任务:研究热运动的规律,研究与热运动有关的物质及宏观物质系统的演化。
热力学的局限性:不考虑物质的微观结构,把物质看作连续体,用连续函数表达物质的性质,不能解释涨落现象。
热力学部分第一章 热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换又有物质交换的系统。
2、弛豫时间:系统由初始状态达到平衡态所经历的时间(时间长短由趋向平衡的性质决定),取最长的弛豫时间为系统的弛豫时间3、热力学平衡态:一个系统不论其初始状态如何复杂,经过足够长的时间后,将会达到这样的状态,即系统的各种宏观性质在长时间内不发生任何变化。
4、准静态过程:进行得非常缓慢的过程,系统在过程中经历的每一个状态都可以看成平衡态5、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量6、简单系统:只要体积和压强两个状态参量就可以确定的系统7、单相系(均匀系):如果一个系统各个部分的性质完全一样,则该系统称为单相系; 复相系:如果整个系统是不均匀的,但可以分成若干个均匀的部分,称为复相系8、热平衡定律:如果物体A 和物体B 各自与处于同一状态的物体C 达到热平衡,若令A 与B 进行热接触,它们也将处于热平衡状态。
(得出温度的概念,比较温度的方法)9、物态方程:给出温度与状态函数之间参数的方程10、理想气体:符合玻意耳定律、阿氏定律和理想气体温标的气体11、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =12、玻意耳定律:对于固定质量的气体,在温度不变时,压强和体积的乘积为常数13、阿氏定律:在相同的温度压强下,相同体积所含的各种气体的物质的量相同14、范德瓦尔斯方程:考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程15、广延量:热力学量与系统的n 、m 成正比强度量:热力学量与n 、m 无关(广延量除以n 、m 、V 变成强度量)16、能量守恒定律:自然界中一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种;从一个物体传递到另一个物体,在传递和转化中能量的数量不变。
热力学和统计物理学热力学和统计物理学是研究物质的宏观性质和微观规律的重要学科。
热力学研究热现象与能量转换的规律,以及系统热力学性质的描述和分析;统计物理学则利用统计学方法分析微观粒子的行为,从而推导出热力学现象的统计规律。
本文将分别介绍热力学和统计物理学的基本概念和应用。
一、热力学热力学研究物质的宏观性质和能量转化方式,其中包括能量、温度、熵等基本概念。
能量是物质的一种基本属性,在热力学中,能量可以分为内能、外能和总能量。
内能是物质微观粒子的平均动能,外能是物质相对于外界能量的变化,总能量则是内能和外能的总和。
温度是物质内能和热平衡状态的度量,其单位为开尔文(K)。
根据热动力学第零定律,如果两个物体分别与第三个物体处于热平衡状态,那么它们之间也处于热平衡状态,即它们的温度相等。
热平衡是热力学中的基本概念,也是温度测量的基础。
熵是热力学中衡量系统无序程度的物理量,通常用S表示。
熵的增加与系统的无序程度增加有关,根据热力学第二定律,孤立系统熵不断增加,而逆过程是不可能的。
热力学第二定律是热力学的核心定律,揭示了能量转化过程的方向性。
热力学应用广泛,例如在能量转化方面,热力学可以解释传热、传质和传动过程;在化学反应方面,热力学可以研究反应热和平衡常数;在生物系统中,热力学可以分析生物能量转化等。
二、统计物理学统计物理学研究微观粒子的运动规律,通过统计学方法来推导宏观热力学性质。
统计物理学的基本理论是统计力学,其中包括平衡统计力学和非平衡统计力学。
平衡统计力学是研究物质在热平衡状态下的统计规律。
根据统计力学的基本假设,系统的微观状态对应不同的能量和位置,系统在宏观上处于产生最大熵的状态。
平衡态下的宏观物理量可以通过统计平均值来计算,例如平均能量、平均温度等。
非平衡统计力学则研究物质在非平衡状态下的行为,例如输运过程和涨落等。
非平衡态下的系统通常无法通过统计平均值来描述,需要考虑系统的动态演化和微观涨落。
第一章概念1.系统:孤立系统、闭系、开系与其她物体既没有物质交换也没有能量交换的系统称为孤立系;与外界没有物质交换,但有能量交换的系统称为闭系;与外界既有物质交换,又有能量交换的系统称为开系;2.平衡态平衡态的特点:1、系统的各种宏观性质都不随时间变化;2、热力学的平衡状态就是一种动的平衡,常称为热动平衡;3、在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4、对于非孤立系,可以把系统与外界合起来瞧做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统就是否处在平衡状态。
3.准静态过程与非准静态过程准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以瞧做平衡态。
非准静态过程,系统的平衡态受到破坏4.内能、焓与熵内能就是状态函数。
当系统的初态A与终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关;表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。
这就是态函数焓的重要特性克劳修斯引进态函数熵。
定义:5.热容量:等容热容量与等压热容量及比值定容热容量:定压热容量:6.循环过程与卡诺循环循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。
系统经历一个循环后,其内能不变。
理想气体卡诺循环就是以理想气体为工作物质、由两个等温过程与两个绝热过程构成的可逆循环过程。
7.可逆过程与不可逆过程不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。
可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。
8.自由能:F与G定义态函数:自由能F,F=U-TS定义态函数:吉布斯函数G,G=U-TS+PV,可得GA-GB-W1定律及推论1.热力学第零定律-温标如果物体A与物体B各自与外在同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡。
热力学讲稿(云南师范大学物理与电子信息学院)伍林李明导言1、热运动:人们把组成宏观物质的大量微观粒子的无规则运动称为热运动。
热力学和统计物理的任务:研究热运动的规律、与热运动有关的物性及宏观物质系统的演化。
热力学方法的特点:热力学是热运动的宏观理论。
通过对热现象的观测、实验和分析,总结出热现象的基本规律。
这些实验规律是无数经验的总结,适用于一切宏观系统。
热力学的结论和所依据的定律一样,具有普遍性和可靠性。
然而热力学也有明确的局限性,主要表现在,它不能揭示热力学基本规律及其结论的微观本质和不能解释涨落现象。
统计物理方法的特点:统计物理学是热运动的微观理论。
统计物理从物质的微观结构和粒子所遵从的力学规律出发,运用概率统计的方法来研究宏观系统的性质和规律,包括涨落现象。
统计物理的优点是它可以深入问题的本质,使我们对于热力学定律及其结论获得更深刻的认识。
但统计物理中对物质微观结构所提出的模型只是实际情况的近似,因而理论预言和试验观测不可能完全一致,必须不断修正。
热力学统计物理的应用温度在宇宙演化中的作用:简介大爆炸宇宙模型;3k宇宙微波背景辐射。
温度在生物演化中的作用:恐龙灭绝新说2、参考书(1)汪志诚,《热力学·统计物理》(第三版),高等教育出版社,2003(2)龚昌德,《热力学与统计物理学》,高等教育出版社,1982(3)朗道,栗弗席兹,《统计物理学》,人民教育出版社1979(4)王竹溪,《热力学教程》,《统计物理学导论》,人民教育出版社,1979(5)熊吟涛,《热力学》,《统计物理学》,人民教育出版社,1979(6)马本昆,《热力学与统计物理学》,高等教育出版社,1995(7)自编讲义作者介绍:汪志诚、钱伯初、郭敦仁为王竹溪的研究生(1956);西南联大才子:杨振宁、李政道、邓稼先、黄昆、朱光亚;中国近代物理奠基人:饶毓泰、叶企孙、周培源、王竹溪、吴大猷:中国物理学会五项物理奖:胡刚复、饶毓泰、叶企孙、吴有训、王淦昌。
01热力学与统计物理大总结范文
热力学与统计物理是研究物质尤其是宏观系统的宏观性质和微观行为
的学科,这个学科不仅是物理学的重要分支,同时也是化学、材料学等学
科的基础。
本文将从热力学的基本概念、熵的概念和统计物理的基本原理
三个方面对热力学与统计物理进行总结。
热力学是描述宏观系统平衡状态的学科。
宏观系统通常包含大量的微
观粒子,根据这些粒子的状态可以知道系统的宏观状态。
热力学的基本概
念包括温度、压强、体积和能量等。
温度是描述物体热平衡状态的量,单
位是开尔文。
压强是单位面积上施加的力的大小,单位是帕斯卡。
体积是
物体所占据的空间大小,单位是立方米。
能量是物体所具有的用于产生物
理和化学变化的属性,单位是焦耳。
热力学中有两个重要的定律,即热力学第一定律和第二定律。
热力学
第一定律是能量守恒定律,它描述了系统的内能变化等于系统吸收的热量
减去对外做功的量。
热力学第二定律是热量的自然流动方向不可逆的定律,它将热力学第一定律推广到更广泛的情况。
根据热力学第二定律可以推出
熵的概念。
统计力学的基本原理包括正则系综和巨正则系综两种。
正则系综适用
于系统与热源接触而保持恒温的情况,它采用了玻尔兹曼分布来描述粒子
的状态。
巨正则系综适用于系统与热源和粒子源接触的情况,它采用了巨
正则分布来描述粒子的状态。
这些分布可以通过统计力学的方法进行推导,并通过与实验结果的比较来验证。
(完整版)(完整版)热⼒学统计物理概念概括_总复习热⼒学?统计物理(汪志诚)概念部分汇总复习热⼒学部分第⼀章热⼒学的基本规律1、热⼒学与统计物理学所研究的对象:由⼤量微观粒⼦组成的宏观物质系统其中所要研究的系统可分为三类孤⽴系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换⼜有物质交换的系统。
2、热⼒学系统平衡状态的四种参量:⼏何参量、⼒学参量、化学参量和电磁参量。
3、⼀个物理性质均匀的热⼒学系统称为⼀个相;根据相的数量,可以分为单相系和复相系。
4、热平衡定律(热⼒学第零定律):如果两个物体各⾃与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意⽿定律、阿⽒定律和理想⽓体温标的⽓体称为理想⽓体。
6、范德⽡尔斯⽅程是考虑了⽓体分⼦之间的相互作⽤⼒(排斥⼒和吸引⼒),对理想⽓体状态⽅程作了修正之后的实际⽓体的物态⽅程。
7、准静态过程:过程由⽆限靠近的平衡态组成,过程进⾏的每⼀步,系统都处于平衡态。
8、准静态过程外界对⽓体所作的功:,外界对⽓体所作的功是个过程量。
9、绝热过程:系统状态的变化完全是机械作⽤或电磁作⽤的结果⽽没有受到其他影响。
绝热过程中内能U 是⼀个态函数:A B U U W -=10、热⼒学第⼀定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从⼀种形式转换成另⼀种形式,在转换过程中能量的总量保持恒定;热⼒学表达式:Q W U U A B +=-;微分形式:W Q U d d d +=11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热⼒学第⼀定律的公式⼀⽐较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。
12、焦⽿定律:⽓体的内能只是温度的函数,与体积⽆关,即)(T U U =。
13.定压热容⽐:pp T H C ??? ????=;定容热容⽐:V V T U C ??? ????= 迈耶公式:nR C C V p =- 14、绝热过程的状态⽅程:const =γpV ;const =γTV ;const 1=-γγT p 。
§5.1 热力学量的统计表达式我们根据Bolzman分布推导热力学量的统计表达式一、配分函数粒子的总数为令(1)名为配分函数,则系统的总粒子数为(2)二、热力学量1、内能(是系统中粒子无规则运动的总能量的统计平均值)由(1)(2)得(3)此即内能的统计表达式2、广义力,广义功由理论力学知取广义坐标为y时,外界施于处于能级上的一个粒子的力为则外界对整个系统的广义作用力y为(4)此式即广义作用力的统计表达式。
一个特例是(5)在无穷小的准静态过程中,当外参量有dy的改变时,外界对系统所做的功为(6)对内能求全微分,可得(7)(7)式表明,内能的改变分为两项:第一项是粒子的分布不变时,由于能级的改变而引起的内能变化;地二项是粒子能级不变时,由于粒子分布发生变化而引起的内能变化。
在热力学中我们讲过,在无穷小过程中,系统在过程前后内能的变化dU等于在过程中外界对系统所作的功及系统从外界吸收的热量之和:(8)与(6)(7)式相比可知,第一项代表在准静态过程中外界对系统所作的功,第二项代表在准静态过程中系统从外界吸收的热量。
这就是说,在准静态过程中,系统从外界吸收的热量等于粒子在其能级上重新分布所增加的内能。
热量是在热现象中所特有的宏观量,它与内能U和广义力Y不同。
3、熵1)熵的统计表达式由熵的定义和热力学第二定律可知(9)由和可得用乘上式,得由于引进的配分函数是,的函数。
是y的函数,所以Z是,y的函数。
LnZ的全微分为:因此得(10)从上式可看出:也是的积分因子,既然与都是的积分因子,我们可令(11)根据微分方程关于积分因子的理论,当微分式有一个积分因子时,它就有无穷多个积分因子,任意两个积分因子之比是S的函数(dS是用积分因子乘微分式后所得的全微分)比较(9)、(10)式我们有积分后得(12)我们把积分常数选为零,此即熵的统计表达式。
2)熵函数的统计意义由配分函数的定义及得由玻耳兹曼分布得所以(13)此式称为Boltzman关系,表明某宏观状态的熵等于玻耳兹曼k乘以相应的微观状态数的对数。
热力学统计物理复习总结首先,我们来回顾一下热力学的基本概念。
热力学是研究能量转化和宏观物质性质的学科,通过引入一些基本宏观物理量,如温度、压强、体积等,建立了一套描述系统性质的定律。
其中,最重要的是热力学第一定律和第二定律。
热力学第一定律表达了能量守恒的原理,即能量既不能被创造也不能被破坏,只能从一个物体传递到另一个物体或在物体内部转化。
热力学第二定律则规定了自然界的一些不可逆过程不能自发地逆转,即熵的增加原理。
熵是描述系统的无序程度的物理量,它的增加是热力学过程不可逆的本质原因。
接下来,我们来看一下统计物理的基本概念。
统计物理是研究微观粒子的统计规律和宏观物质性质的学科。
它基于统计学的方法,通过对大量微观粒子的集体行为进行平均和统计,推导出一些宏观物理量的统计规律。
统计物理中最重要的概念是微观状态、宏观状态和分布函数。
微观状态是指系统中每个粒子的具体状态,包括位置、动量等信息;宏观状态则是指宏观物理量的取值,如温度、压强等;分布函数则是描述系统微观状态的概率分布函数,可以通过对分布函数的积分平均得到宏观物理量。
在统计物理中,最基本的理论是正则系综理论。
正则系综理论通过引入系统的配分函数和Boltzmann分布来描述系统的统计行为。
配分函数是描述系统所有可能微观状态的重要物理量,它的对数称为Helmholtz自由能,与热力学中的自由能概念相对应。
Boltzmann分布则给出了系统处于一些微观状态的概率与该状态的能量有关。
通过对配分函数和Boltzmann分布的计算和分析,我们可以得到系统的各种宏观物理量的表达式,如平均能量、熵、温度等。
除了正则系综理论,还有其他一些重要的统计物理理论,如巨正则系综理论和配分函数的统计定义。
巨正则系综理论是用来描述开放系统的统计行为的理论,其中引入了化学势和粒子数的概念。
配分函数的统计定义是一种基于信息论的方法,通过量子力学的观点重新定义了配分函数和微观状态的概念,对于处理量子系统和非平衡态问题非常有用。