三角函数的值域与最值 (学生版)
- 格式:doc
- 大小:295.50 KB
- 文档页数:6
高中数学总复习-三角函数第5课 三角函数的图像和性质(一)【考点导读】1. 能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦 函数在[0,2 ],正切函数在(一,一)上的性质;2 22. 了解函数y Asin( x )的实际意义,能画出y A si n( x )的图像;3. 了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】动的最小正周期T _____L_;初相 —-2.三角方程2sin(_ - x)=1的解集为4. 要得到函数y sinx 的图象,只需将函数 y cos x______ - ____ 个单位. 【范例解析】例 1.已知函数 f (x) 2sin x(sin x cosx).(I)用五点法画出函数在区间 ——上的图象,长度为一个周期;2’ 2(H)说明f(x) 2s in x(si nx cosx)的图像可由y si nx 的图像经过怎样变换而1.已知简谐运动f(x) 2sin (3X )(2)的图象经过点(0,1),则该简谐运3.函数 y Asin( x )( 0,尹R)的部分图象如图所示,则函数表达为y4si n( x ) 8 4的图象向右平移分析:化为Asin( x )形式.得到•列表,取点,描图:x33588888y11逅1 1 V21故函数y f(x)在区间[-,2]上的图象是:(U)解法一:把y sinx图像上所有点向右平移—个单位,得到y sin(x )4 41的图像,再把y sin(x -)的图像上所有点的横坐标缩短为原来的丄(纵坐标不4 2变),得到y si n(2x —)的图像,然后把y sin(2x —)的图像上所有点纵坐标4 4伸长到原来的倍(横坐标不变),得到y 2 sin(2x -)的图像,再将4y . 2 sin(2x )的图像上所有点向上平移1个单位,即得到4y 1 - 2 sin(2x -)的图像.1解法二:把y sinx图像上所有点的横坐标缩短为原来的-(纵坐标不变),得2到y sin 2x的图像,再把y sin 2x图像上所有点向右平移—个单位,得到8解:(I)由f(x)2sin2x 2sin xcosx 1 cos2x sin 2x2(sin 2x cos —4cos2xs in )4 2sin(2x 4).分析:化为Asin( x )形式.x -)的图像上所有点纵坐标伸长到原来 的2倍(横坐标不变),得到y 、2sin(2x)的图像,再将y 二sin(2x) 44的图像上所有点向上平移1个单位,即得到y 1 ,2sin(2x -)的图像. 4例2.已知正弦函数y Asin( x ) (A 0, 0)的图像如右图所示.(1) 求此函数的解析式f 1(x);(2) 求与fdx)图像关于直线x 8对称的曲线的解析式f 2(x); (3) 作出函数y h(x) f 2(x)的图像的简图.£(x) 一 2sin(gx 4).(2)设函数f 2(x)图像上任一点为M(x,y),与它关于直线x 8对称的对称点为M (x,y),f 2(x)2sin (尹 4)y sin(2x —)的图像,然后把y sin(2 分析:识别图像,抓住关键点. 解:(1)由图知,A 伍,Q 2 将x 2, y 2代入,,即 y 2 sin( x ).88 、、2sin (— ).2,解得一,即(6 2) 16,8得 28,解得y y. 16 x,y.代入 f 1(x) 、2sin( x84-)中,得(3) y f i(x)示.点评:由图像求解析式,A比较容易求解,困难的是待定系数求和,通常利用周期确定,代入最高点或最低点求【反馈演练】1. 为了得到函数y 2sin(°),x R的图像,只需把函数y 2sin x,x R的图3 6像上所有的点①向左平移-个单位长度,再把所得各点的横坐标缩短到原来的-倍(纵坐6 3标不变);②向右平移-个单位长度,再把所得各点的横坐标缩短到原来的-倍(纵坐6 3标不变);③向左平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐6标不变);④向右平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐6标不变).其中,正确的序号有__③_ .62. 为了得到函数y sin(2x )的图象,可以将函数y cos2x的图象向右平移___ 个单位长度.—3 —65. 下列函数:其中函数图象的一部分如右图所示的序号有y Asin( x ) b(1)求这段时间的最大温差; (2)写出这段时间的函数解析式.n __7.如图,函数y 2cos( x )(x R , >0,0< <-)的图象与y 轴相交于点(0, 3),且该函数的最小正周期为(1)求和的值;(2)已知点A n ,0,点P 是该函数图象上一点,点23.若函数 f(x) 2sin( x ),x R (其中 0, 2)的最小正周期是, 且 f(0)、3,则3_2 ______ 4.在0,2 内,使sin x5 4盲cosx 成立的x 取值范围为 ________① y sin x —6② y sin 2x③ y cos 4x — 3④ y cos 2x6. 如图,某地一天从6时至14时的温度变化曲线近似满足函数解:(1)由图示,这段时间的最大温差是 30 10 20 °C(2)图中从6时到14时的图象是函数yAsin( x )b 的半个周期• •• 1 — 14 6,解得21由图示,A —(30 10)2101 b 2(1030) 2020这时,y 10sin(8x )将x 6,y10代入上式,可取3 4综上,所求的解析式为y 10si n( —x —) 8 420 ( x [6,14])第6题第7题当y 。
三角函数专题:三角函数最值(值域)的5种常见考法1、形如sin y a x = (或cos y a x =)型可利用正弦函数,余弦函数的有界性,注意对a 正负的讨论 2、形如sin()y a x b ωϕ=++ (或cos()y a x b ωϕ=++型 (1)先由定义域求得x ωϕ+的范围(2)求得sin()x ωϕ+ (或cos()x ωϕ+)的范围,最后求得最值 3、形如sin cos y a x b x =+型引入辅助角转化为22)y a b x ϕ=++,其中tan baϕ=,再利用三角函数的单调性求最值。
4、形如2sin sin (0)y a x b x c a =++≠或2cos cos (0)y a x b x c a =++≠型, 可利用换元思想,设sin y x =或cos y x =,转化为二次函数2y at bt c =++求最值,t 的范围需要根据定义域来确定. 5、形如sin cos (sin cos )y x x x x =⋅±±型利用sin cos x x ±和sin cos x x ⋅的关系,通过换元法转换成二次函数求值域 6、分式型三角函数值域(1)分离常数法:通过分离常数法进行变形,再结合三角函数有界性求值域; (2)判别式法题型一 借助辅助角公式求值域【例1】该函数sin 3y x x =的最大值是( ) A .1 B 6 C .2 D .2- 【答案】C【解析】因为πsin 32sin 3y x x x ⎛⎫==+ ⎪⎝⎭,又[]πsin 1,13x ⎛⎫+∈- ⎪⎝⎭,所以函数sin 3y x x =的最大值是2.故选:C.【变式1-1】已知()()sin 3cos 0f x A x x A =->的最大值是2,则()3sin 3cos g x x A x +在π3π,44⎡⎤⎢⎥⎣⎦中的最大值是( )A .32B .3C 326+ D .23【答案】C【解析】根据辅助角公式可得:()2223sin 3=333f x A x x A x x A A ⎫=+⎪⎪++⎭()2=3A x ϕ+-,其中3tan ϕ=. 由()f x 的最大值为2()2320A A +>,解得1A =.∴()1333cos 23sin 2g x x x x x ⎫=+=⎪⎪⎭π233x ⎛⎫=+ ⎪⎝⎭.∵π3π,44x ⎡⎤∈⎢⎥⎣⎦,∴π7π13π,31212x ⎡⎤+∈⎢⎥⎣⎦. ∴当π7π312x +=,即π4x =时,()g x 取得最大值. 故()max ππ343g x ⎛⎫=+ ⎪⎝⎭231326232⎫+==⎪⎪⎝⎭故选:C.【变式1-2】已知函数()()3cos sin 3cos 0,2f x x x x x π⎫⎡⎤=∈⎪⎢⎥⎣⎦⎝⎭,则函数()f x 的值域为( ) A .33⎡⎢⎣⎦ B .3⎡⎤⎢⎥⎣⎦C .11,22⎡⎤-⎢⎥⎣⎦D .1,12⎡⎤-⎢⎥⎣⎦ 【答案】B【解析】()23sin cos 3x x f x x =+)133sin 21cos 22x x =+sin 23x π⎛⎫=+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦, 42,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以3sin 213x π⎛⎫≤+≤ ⎪⎝⎭, 所以函数()f x 的值域为3⎡⎤⎢⎥⎣⎦.故选:B【变式1-3】函数2()sin 3cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A .1B .2C .32D .3 【答案】C【解析】因为2()sin 3cos f x x x x =,所以1cos 231()2sin(2)226x f x x x π-==+-,42ππx ≤≤,52366x πππ∴≤-≤,1sin 2126x π⎛⎫∴≤-≤ ⎪⎝⎭,∴13()122max f x =+=.故选:C .【变式1-4】己知函数()3sin 4cos ,R f x x x x =+∈,则()()12f x f x -的最小值是_________. 【答案】10-【解析】由题意可得()()343sin 4cos 5sin cos 5sin 55f x x x x x x ϕ⎛⎫=+=+=+ ⎪⎝⎭,其中4sin 5ϕ=,3cos 5ϕ=,且0,2πϕ⎛⎫∈ ⎪⎝⎭.因为12,R x x ∈,所以min max ()5,()5f x f x =-=.所以()()12f x f x -的最小值是min max ()()10f x f x -=-.题型二 借助二次函数求值域【例2】求函数22sin 2sin 1y x x =-++的值域.【答案】3[3,]2-【解析】y =−2sin 2x +2sinx +1=−2(sinx −12)2+32,−1≤sinx ≤1,根据二次函数性质知,当1sin 2x =时,max 32y =;当sin 1x =-时,min 3y =-, 故值域为3[3,]2-.【变式2-1】函数2cos sin 1y x x =+-的值域为( )A .11[,]44-B .1[0,]4C .1[2,]4-D .1[1,]4- 【答案】C【解析】函数222cos sin 11sin sin 1sin sin y x x x x x x =+-=-+-=-+,设sin t x =,11t -≤≤,则()2f t t t =-+, 由二次函数的图像及性质可知2124t t -≤-+≤,所以cos 2sin 1y x x =+-的值域为1[2,]4-,故选:C.【变式2-2】函数2tan 4tan 1y x x =+-的值域为____________【答案】[)5,-+∞【解析】因为2tan 4tan 1y x x =+-令tan t x =,则t R ∈所以()()224125f t t t t =+-=+-,所以()[)5,f t ∈-+∞,故函数的值域为[)5,-+∞【变式2-3】函数()193sin cos 2R 24y x x x =+-∈的最小值是( ) A .14B .12 C .234- D .414-【答案】C【解析】22197313sin cos 2sin 3sin sin 24422y x x x x x ⎛⎫=+-=-+-=--+ ⎪⎝⎭,令sin x t =,则11t -≤≤.因为23122t ⎛⎫--+ ⎪⎝⎭在[]1,1-上单增,所以当1t =-时,2min31231224y ⎛⎫=---+=- ⎪⎝⎭.故选:C .题型三 借助换元法求值域【例】已知函数(),则()A .()f x 的最大值为3,最小值为1 B .()f x 的最大值为3,最小值为-1 C .()f x 的最大值为32,最小值为34D .()f x 的最大值为32,最小值为32 【答案】C【解析】因为函数()sin cos 2sin cos 2f x x x x x =+++,设sin cos 24x x x t π⎛⎫+=+= ⎪⎝⎭,2,2t ⎡∈-⎣, 则22sin cos 1x x t =-,所以2213124y t t t ⎛⎫=++=++ ⎪⎝⎭,2,2t ⎡∈-⎣,当12t =-时,()min 34f t =;当2t =时,()max 32f t =故选:C【变式3-1】函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________. 【答案】[-1,1]【解析】设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,即sin x cos x =1-t 22,且-1≤t ≤ 2. ∴y =-t 22+t +12=-12(t -1)2+1. 当t =1时,y max =1;当t =-1时,y min =-1. ∴函数的值域为[-1,1].【变式3-2】函数()sin cos sin 2f x x x x =++的最大值为( ) A .1 B .12 C .12 D .3 【答案】C【解析】()sin cos sin 2sin cos 2sin cos f x x x x x x x x =++=++,令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,所以[2,2]t ∈-,则22(sin cos )12sin cos t x x x x =+=+, 所以22sin cos 1x x t =-,所以原函数可化为21y t t =+-,[2,2]t ∈,对称轴为12t =-,所以当2t 时,21y t t =+-取得最大值,所以函数的最大值为222121=,即()sin cos sin 2f x x x x =++的最大值为12C【变式3-3】函数f (x )=sinxcosx +√2sin (x −π4)的值域为________. 【答案】[−12−√2,1]【解析】由于f (x )=sinxcosx +√2sin (x −π4)=sinxcosx +sinx −cosx ,令sinx −cosx =t ,则sinxcosx =1−t 22,于是函数化为y =1−t 22+t =−12(t −1)2+1,而t =sinx −cosx =√2sin (x −π4)∈[−√2,√2] , 所以当1t =时,函数取最大值1,当t =−√2时,函数取最小值−12−√2,故值域为[−12−√2,1].题型四 分式型三角函数的值域【例4】函数cos 12cos 1x y x +=-的值域是( )A .][(),04,∞∞-⋃+B .][(),02,∞∞-⋃+ C .[]0,4 D .[]0,2 【答案】B【解析】令11cos ,1,,122x t t ⎡⎫⎛⎤=∈-⋃⎪ ⎢⎥⎣⎭⎝⎦,13(21)11322212122211t t y t t t -++===+⋅---,可得[)(]213,00,1t -∈-⋃,[)11,1,213t ⎛⎤∈-∞-⋃+∞ ⎥-⎝⎦,3113,,22122t ⎛⎤⎡⎫⋅∈-∞-⋃+∞ ⎪⎥⎢-⎝⎦⎣⎭,故(][),02,y ∈-∞⋃+∞.故选:B.【变式4-1】函数sin 3sin 2x y x +=+的值域为___________. 【答案】4,23⎡⎤⎢⎥⎣⎦【解析】解:sin 31sin 2sin 21x y x x +==+++, 因为1sin 1x -≤≤,所以1sin 23x ≤+≤,所以1113sin 2x ≤≤+,所以411+23sin 2x ≤≤+, 所以sin 3sin 2x y x +=+的值域是4,23⎡⎤⎢⎥⎣⎦.【变式4-2】函数sin cos ()1sin cos =++x xf x x x的值域为_____________.【答案】212111,2⎡⎫⎛-----⎪ ⎢⎪⎣⎭⎝⎦【解析】令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,[2,1)(1,2]t ∈---,则212sin cos t x x =+,即21sin cos 2t x x -=,所以2112()12t t f t t --==+,又因为[2,1)(1,2]t ∈---,所以()212111,2f t ⎫⎛---∈--⎪ ⎪ ⎣⎭⎝⎦, 即函数sin cos ()1sin cos =++x xf x x x 的值域为212111,2⎡⎫⎛-----⎪ ⎢⎪ ⎣⎭⎝⎦.【变式4-3】当04x π<<时,函数221sin ()cos sin sin xf x x x x-=⋅-的最小值是________.【答案】4【解析】22cos ()sin cos sin xf x x x x=-21tan tan x x =-, 当04x π<<时,tan (0,1)x ∈,所以21110tan tan 244<-≤-=x x ,()4f x ∴≥,即221sin ()cos sin sin xf x x x x-=⋅-的最小值为4.含绝对值的三角函数值域A .[-1,0] B .[0,1] C .[-1,1] D .[-2,0] 【答案】D【解析】当0sin 1x ≤≤ 时,sin sin 0y x x =-= ,所以,当1sin 0x -≤<,2sin y x =,又22sin 0x -≤< ,所以函数的值域为[]2,0-,故选:D.【变式5-1】函数()2sin 3cos f x x x =+的值域是( )A .[]2,5B .[]3,5C .13⎡⎤⎣⎦D .13⎡⎣【答案】C【解析】()sin()2cos()2sin 3cos 2sin 3cos f x x x x x x x +=+++=-+-=+πππ,∴()f x 为周期函数,其中一个周期为T π=,故只需考虑()f x 在[0,]π上的值域即可,当[0,]2x π∈时,()2sin 3cos 13)f x x x x =+=+α,其中cos 13α,sin 13α=, ∴max ()()132f x f =-παmin ()()22f x f ==π,当[,]2x ππ∈时,()2sin 3cos 13)f x x x x =-=+β,其中,cos 13β=sin 13=β, ∴max ()()132f x f =-πβmin ()()22f x f ==π,∴()f x 的值域为13].故选:C【变式5-2】设函数2()|sin |2cos 1f x x x =+-,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的最小值是______. 【答案】0【解析】∵2()|sin |2cos 1f x x x =+-|sin |cos 2x x =+为偶函数,∴只需求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的最小值,此时2()sin cos22sin sin 1f x x x x x =+=-++,令[]sin 0,1t x =∈,则221y t t =-++,函数的对称轴为[]10,14t =∈,∴当1t =时,min 2110y =-++=.【变式5-3】若不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则k 的取值范围是______. 【答案】[)2,∞+ 【解析】∵ ()sin 1cos sin tan sin sin cos cos x x xx x x x x++=+=,3,4x ππ⎡⎤∈⎢⎥⎣⎦∴ sin 0,1cos 0,cos 0x x x >+><,∴ tan sin 0x x +<,∴sin tan tan sin sin tan tan sin 2tan x x x x x x x x x -++=---=-, ∵ 不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立 ∴ 2tan k x ≥-,3,4x ππ⎡⎤∈⎢⎥⎣⎦,∴()max 2tan 2k x ≥-=. 故k 的取值范围是[)2,∞+.。
三角函数的定义域和值域三角函数是数学中的一类重要函数,包括正弦函数、余弦函数、正切函数等。
在进行三角函数的研究和应用时,了解其定义域和值域是非常重要的。
一、正弦函数的定义域和值域正弦函数是以角度(或弧度)为自变量,输出对应的正弦值。
其定义域是实数集。
根据正弦函数的特点,我们知道正弦值的范围在-1到1之间,即其值域为[-1, 1]。
二、余弦函数的定义域和值域余弦函数也是以角度(或弧度)为自变量,输出对应的余弦值。
与正弦函数类似,余弦函数的定义域也是实数集,而其值域同样为[-1, 1]。
三、正切函数的定义域和值域正切函数是以角度(或弧度)为自变量,输出对应的正切值。
正切函数的定义域为除去其奇数倍的π的实数集,即R - {(2n + 1)π/2 |n∈Z}。
值域为全体实数,即整个实数集R。
四、其它三角函数的定义域和值域除了正弦函数、余弦函数、正切函数之外,还有诸如余切函数、正割函数、余割函数等三角函数。
这些函数的定义域和值域如下:1. 余切函数(cotx)的定义域为除去其奇数倍的π的实数集,即R - {nπ | n∈Z}。
值域也为全体实数。
2. 正割函数(secx)的定义域为除去π/2 + nπ的实数集,即R - {(2n + 1)π/2 | n∈Z}。
值域为正数和负数的并集,即R - {0}。
3. 余割函数(cscx)的定义域为除去nπ的实数集,即R - {nπ |n∈Z}。
值域同样为正数和负数的并集,即R - {0}。
五、总结三角函数的定义域和值域是根据函数的特点和性质决定的。
正弦函数和余弦函数的定义域为实数集,值域都是[-1, 1];正切函数的定义域为除去其奇数倍的π的实数集,值域为全体实数;余切函数、正割函数、余割函数的定义域分别为R - {nπ | n∈Z},值域为正数和负数的并集。
在实际应用中,对三角函数的定义域和值域的了解有助于我们分析和计算相关问题,并且在解决实际问题时能够更加准确地进行数值的转换和计算。
(完整word版)高中数学必修四三角函数最值与值域常考题型总结(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)高中数学必修四三角函数最值与值域常考题型总结(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)高中数学必修四三角函数最值与值域常考题型总结(含答案)(word版可编辑修改)的全部内容。
三角函数最值与值域专题三角函数的最值问题是高考的一个重要内容,要求掌握求三角函数最值的常见方法.类型一:利用1cos 1sin ,≤≤x x 这一有界性求最值。
例1:求函数xx y sin 21sin --=的值域。
解:由xx y sin 21sin --=变形为(1)sin 21y x y +=+,知1y ≠-,则有21sin 1y x y +=+,21|sin |||11y x y +=≤+22221||1(21)(1)1y y y y +⇒≤⇒+≤++203y ⇒-≤≤,则此函数的值域是2[,0]3y ∈-例2,若函数cos y a x b =+的最大值是1,最小值是7-,求a,b 0,1,7430,1,74,3a ab a b a b a a b a b a b >+=-+=-⇒==-<-+=+=-⇒=-=-,练习:1,求函数1cos 3cos xy x-=+的值域 3][1-∞-∞(,,+)2,函数x y sin =的定义域为[a ,b ],值域为]21,1[-,则b —a 的最大值和最小值之和为bA .34πB .π2C .38πD .π4类型二:x b x a y cos sin +=型.此类型通常可以可化为sin cos )y a x b x x ϕ=+=+求其最值(或值域)。
三角函数中的最值问题(4种方法)基本方法1、直接法:形如f (x )=a sin x +b (或y =a cos x +b ),值域为[-|a |+b ,|a |+b ],形如y=asinx+bcsinx+c 的函数可反解出sinx,利用|sinx|≤1求解,或分离常数法.2、化一法:形如f (x )=a sin x +b cos x ,f (x )=a sin 2x +b cos 2x +c sin x cos x 的函数可化为f (x )=A sin(ωx +φ)的形式,利用正弦函数的有界性求解,给定x 范围时要注意讨论ωx +φ的范围,注意利用单位圆或函数图象.3、换元法:形如f (x )=a sin 2x +b sin x +c 或f (x )=a cos 2x +b sin x +c 或f (x )=a (sin x ±cos x )+b sin x ·cos x 的函数可通过换元转化为二次函数在某区间上的值域求解.4、几何法(数形结合):形如dx c bx a y ++=cos sin 转化为斜率问题,或用反解法.典型例题例1已知函数f (x )=(sin x+cos x )2+cos 2x ,求f (x )在区间.解:(化一法)因为f (x )=sin 2x+cos 2x+2sin x cos x+cos 2x=1+sin 2x+cos 2x=2sin 2 +1,当x ∈0,2 ∈由正弦函数y=sin x 当2x+π4π2,即x=π8时,f (x )取最大值2+1;当2x+π45π4,即x=π2时,f (x )取最小值0.综上,f (x )在0,上的最大值为2+1,最小值为0.例2求函数y =2+sin x +cos x 的最大值.解:(化一法)y =2+2sin(x +π4),当x =π4+2k π(k ∈Z )时,y max =2+2例3求函数f (x )=cos2x +6cos(π2-x )的最大值.解:(换元法)f (x )=1-2sin 2x +6sin x =-2(sin x -32)2+112.令sin x =t ,则t ∈[-1,1],函数y =-2(t -32)2+112在[-1,1]上递增,∴当t =1时,y 最大=5,即f (x )max =5,例4已知x 是三角形的最小内角,求函数y =sin x +cos x -sin x cos x 的最小值.解:(换元法)由0≤x ≤π3,令t =sin x +cos x =2sin(x +π4),又0<x ≤π3,∴π4<x +π4≤712π,得1<t ≤2;又t 2=1+2sin x cos x ,得sin x cos x =t 2-12,得y =t -t 2-12=-12(t -1)2+1,例5已知sin α+sin β=22,求cos α+cos β的取值范围.解:(换元法)令cos α+cos β=t ,则(sin α+sin β)2+(cos α+cos β)2=t 2+12,即2+2cos(α-β)=t 2+12⇒2cos(α-β)=t 2-32,∴-2≤t 2-32≤2⇒-12≤t 2≤72,∴-142≤t ≤142,即-142≤cos α+cos β≤142.例6求函数y =1+sin x3+cos x的值域解法一:(几何法)1+sin x3+cos x可理解为点P (-cos x ,-sin x )与点C (3,1)连线的斜率,点P (-cos x ,-sin x )在单位圆上,如图所示.故t =1+sin x3+cos x满足k CA ≤t ≤k CB ,设过点C (3,1)的直线方程为y -1=k (x -3),即kx -y +1-3k =0.由原点到直线的距离不大于半径1,得|1-3k |k 2+1≤1,解得0≤k ≤34.从而值域为[0,34].解法二:(反解法)由y =1+sin x3+cos x 得sin x -y cos x =3y -1,∴sin(x +φ)=3y -11+y2其中sin φ=-y 1+y 2,cos φ=11+y 2.∴|3y -11+y2|≤1,解得0≤y ≤34.例7求函数y =2sin x +1sin x -2的值域解法一:(分离常数法)y =2sin x +1sin x -2=2+5sin x -2,由于-1≤sin x ≤1,所以-5≤5sin x -2≤-53,∴函数的值域为[-3,13].解法二:(反解法)由y =2sin x +1sin x -2,解得sin x =2y +1y -2,∵-1≤sin x ≤1,∴-1≤2y +1y -2≤1,解得-3≤y ≤13,∴函数的值域为[-3,13].针对训练1.函数y =3-2cos(x +π4)的最大值为____.此时x =____.2.函数xxy cos -3sin -4的最大值为.3.函数f (x )=sin 2x+3cos ∈的最大值是.4.函数y =12+sin x +cos x的最大值是【解析】1.函数y =3-2cos(x +π4)的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).2.解析式表示过A (cos x ,sin x ),B (3,4)的直线的斜率,则过定点(3,4)与单位圆相切时的切线斜率为最值,所以设切线的斜率为k ,则直线方程为y-4=k (x-3),即kx-y-3k+4=+11,∴k max3.由题意可知f (x )=1-cos 2x+3cos x-34=-cos 2x+3cos x+14=-cos -+1.因为x ∈0,cos x ∈[0,1].所以当cos f (x )取得最大值1.4.∵y =12+2sin (x +π4),又2-2≤2+2sin(x +π4)≤2+2∴y ≤12-2=1+22,含参问题一、单选题1.已知函数()sin cos (0,0)62af x x x a πωωω⎛⎫=++>> ⎪⎝⎭,对任意x ∈R ,都有()f x ≤,若()f x 在[0,]π上的值域为3[2,则ω的取值范围是()A.11,63⎡⎤⎢⎥⎣⎦B.12,33⎡⎤⎢⎣⎦C.1,6⎡⎫+∞⎪⎢⎣⎭D.1,12⎡⎤⎢⎥⎣⎦【解析】()sin cos 62af x x x πωω⎛⎫=++ ⎪⎝⎭1cos 2a x x ωω++max ()f x =02a a >∴= ,())3f x x πω∴=+0,0x πω≤≤> ,333x πππωωπ∴≤+≤+,3()2f x ≤ 2233πππωπ∴≤+≤,1163ω∴≤≤.故选:A2.已知函数()()cos 0f x x x ωωω=+>,当()()124f x f x -=时,12x x -最小值为4π,把函数()f x 的图像沿x 轴向右平移6π个单位,得到函数()g x 的图像,关于函数()g x ,下列说法正确的是()A.在,42ππ⎡⎤⎢⎣⎦上是增函数B.其图像关于直线6x π=对称C.在区间,1224ππ⎡⎤-⎢⎥⎣⎦上的值域为[]2,1--D.函数()g x 是奇函数【解析】因()()cos 2sin 06f x x x x πωωωω⎛⎫=+=+> ⎪⎝⎭,当()()124f x f x -=时,12x x -最小值为4π,则()f x 的最小正周期为22T ππω==,即4ω=,所以()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,把函数()f x 的图像沿x 轴向右平移6π个单位,得()2sin 42sin 42cos 46662f x g x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,所以,()g x 为偶函数,故D 选项不正确;由4,k x k k Z πππ≤≤+∈,即,44k k x k Z πππ+≤≤∈,故()g x 在区间(),44k k k Z πππ+⎡⎤∈⎢⎥⎣⎦上为减函数,所以()g x 在区间,42ππ⎡⎤⎢⎥⎣⎦上为减函数,故A选项不正确;由4,2x k k Z ππ=+∈,即,48k x k Z ππ=+∈,所以()g x 图像关于,48k x k Z ππ=+∈对称,故B选项不正确;当,1224x ππ⎡⎤∈-⎢⎥⎣⎦时,4,36x ππ⎡⎤∈-⎢⎣⎦,则()21g x -≤≤-,所以C 选项正确.故选:C.3.已知函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦,则ω的取值范围是()A.30,2⎛⎤ ⎥⎝⎦B.3,32⎡⎤⎢⎥⎣⎦C.73,2⎡⎤⎢⎥⎣⎦D.57,22⎡⎤⎢⎥⎣⎦【解析】因为0>ω,所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,[,]4424x ππωππω-∈--因为函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦所以52244πωπππ≤-≤,解得332ω≤≤,故选:B.4.已知函数()(2)f x x ϕ=+22ππϕ-≤≤,若()0f x >在5(0,)12π上恒成立,则3(4f π的最大值为()B.0C.D.2-【解析】因为5(0,)12x π∈,故52(,)6x πϕϕϕ+∈+;由()0f x >,即1sin(2)2x ϕ+>-,得722266k x k πππϕπ-+<+<+,k Z ∈,故57(,)(2,2)666k k πππϕϕππ+⊆-++,k Z ∈,故2657266k k πϕπππϕπ⎧≥-+⎪⎪⎨⎪+≤+⎪⎩,解得2263k k πππϕπ-+≤≤+,k Z ∈;又22ππϕ-≤≤,故63ππϕ-≤≤,5.已知曲线()sin cos f x x m x ωω=+,()m R ∈相邻对称轴之间的距离为2π,且函数()f x 在0x x =处取得最大值,则下列命题正确的个数为()①当0,126x ππ⎡⎤∈⎢⎥⎣⎦时,m的取值范围是⎣;②将()f x 的图象向左平移04x 个单位后所对应的函数为偶函数;③函数()()y f x f x =+的最小正周期为π;④函数()()y f x f x =+在区间00,3x x π⎛⎫+ ⎪⎝⎭上有且仅有一个零点.故33()()42f ππϕϕ⎡⎤+++-⎢⎥⎣⎦,故3()4f π的最大值为0.故选:BA.1B.2C.3D.4【解析】函数()f x 的相邻对称轴之间的距离为2π,则周期为22T ππ=⨯=,∴22πωπ==,()sin 2cos 2f x x m x =+)x ϕ=+,其中cos ϕ=,sin ϕ=[0,2)ϕπ∈,()f x 在0x 处取最大值,则022,2x k k Z πϕπ+=+∈,0222k x πϕπ=+-,k Z ∈,①若0[,]126x ππ∈,则[2,2]63k k ππϕππ∈++,1sin 2ϕ≤≤,12解m ≤正确.②如()sin(28f x x π=+,0316x π=时函数取最大值,将()f x 的图象向左平移04x 个单位后得313()sin[2(4)sin(2)1688g x x x πππ=+⨯+=+,不是偶函数,错;③()()y f x f x =+中,()y f x =是最小正周期是π,()y f x =的最小正周期是2π,但()()y f x f x =+的最小正周期还是π,正确;④003[,44x x x ππ∈++时,()()0y f x f x =+=,因此在区间00,3x x π⎛⎫+ ⎪⎝⎭上有无数个零点,错;∴正确的命题有2个.故选:B.6.已知函数()cos 4cos 12=+-xf x x 在区间[0,]π的最小值是()A.-2B.-4C.2D.4【解析】22()cos 4cos 12cos 14cos 12(cos 1)42222x x x x f x x =+-=-+-=+-,由[0,]x π∈知,[0,]22x π∈,cos [0,1]2x ∈,则当x π=时,函数()f x 有最小值min ()2f x =-.故选:A.7.已知()cos31cos xf x x=+,将()f x 的图象向左平移6π个单位,再把所得图象上所有点的横坐标变为原来的12得到()g x 的图象,下列关于函数()g x 的说法中正确的个数为()①函数()g x 的周期为2π;②函数()g x 的值域为[]22-,;③函数()g x 的图象关于12x π=-对称;④函数()g x 的图象关于,024π⎛⎫⎪⎝⎭对称.A.1个B.2个C.3个D.4个【解析】()()cos 2cos311cos cos x x xf x x x+=+=+cos 2cos sin 2sin 12cos 2cos x x x x x x -=+=.即:()2cos 2f x x =且,2x k k Z ππ≠+∈.()2cos(4)3g x x π=+且,62k x k Z ππ≠+∈.①因为函数()g x 的周期为2π,因此①正确.②因为,62k x k Z ππ≠+∈,故() 2.g x ≠-因此②错误.③令4,3x k k Z ππ+=∈,得,124k x k Z ππ=-+∈.故③正确k ππ二、填空题8.函数()2sin()sin()2sin cos 66f x x x x x ππ=-++在区间[0,2π上的值域为__________.【解析】由11(x)sinx cosx)(sinx cosx)sin 2x2222f =-++22312(sin x cos x)sin 2x 44=-+2231sin cos sin 222x x x=-+11cos 2sin 22x x =--+1x )24π=-当[0,]2x π∈时,2[,]444x ππ3π-∈-,则sin(2)[42x π-∈-,所以11(x)[,22f ∈-.故答案为:11[,22-9.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【解析】由题意可得()02cos 2cos 02cos 211f θθ=+=+=,得cos 20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.10.函数32()sin 3cos ,32f x x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭的值域为_________.【解析】由题意,可得()3232ππf x sin x 3cos x sin x 3sin x 3,x ,,32⎡⎤=+=-+∈-⎢⎥⎣⎦,令t sinx =,t ⎡⎤∈⎢⎥⎣⎦,即()32g t t 3t 3=-+,t ⎡⎤∈⎢⎥⎣⎦,则()()2g't 3t 6t 3t t 2=-=-,当t 0<<时,()g't 0>,当0t 1<<时,()g't 0>,即()y g t =在⎡⎤⎢⎥⎣⎦为增函数,在[]0,1为减函数,又g ⎛=⎝⎭()g 03=,()g 11=,故函数的值域为:⎤⎥⎣⎦.11.(2019·广东高三月考(文))函数()cos 2|sin |f x x x =+的值域为______.【解析】2219()cos 2|sin |12|sin ||sin |2|sin |48f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,所以当1sin 4x =时,()f x 取到最大值98,当sin 1x =时,()f x 取到最小值0,所以()f x 的值域为90,8⎡⎤⎢⎥⎣⎦故答案为:90,8⎡⎤⎢⎥⎣⎦。
三角函数最值或值域的求法(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--三角函数最值或值域的求法三角函数的最值问题是本章的一个重要内容,要求掌握求三角函数最值的常见方法。
类型一:利用1cos 1sin ,≤≤x x 这一有界性求最值。
例1:求函数xx y sin 21sin --=的值域。
解:由x x y sin 21sin --=变形为(1)sin 21y x y +=+,知1y ≠-,则有21sin 1y x y +=+,由21|sin |||11y x y +=≤+22221||1(21)(1)1y y y y +⇒≤⇒+≤++203y ⇒-≤≤,则此函数的值域是2[,0]3y ∈-类型二:x b x a y cos sin +=型。
此类型通常可以可化为sin cos )y a x b x x ϕ=+=+求其最值(或值域)。
例2:求函数)3sin()6sin(ππ++-=x x y (R x ∈)的最值。
解法1:)12sin(2]4)6sin[(2)6cos()6sin(πππππ+=+-=-+-=x x x x y ,∴函数的最大值为2,最小值为2-。
分析2:运用公式sin (α±β) = sin αcos β ± cos αsin β解法2:x x y cos 213sin 213-++= ∴函数的最大值为2,最小值为2-。
分析3:观察发现角)3(π+x 与角)6(π-x 的差恰好为2π,故将)6(π-x 看成基本量,将函数化归为同一角)6(π-x 的函数式。
解法3: (运用和差化积公式 ))4cos()12sin(2ππ-+=x y )12sin(2π+=x ∴函数的最大值为2,最小值为2-。
类型三:)0(sin sin 2≠++=a c x b x a y 型。
此类型可化为)0(2≠++=a c bt at y 在区间]1,1[-上的最值问题。
教师姓名 郭鹏 学生姓名 刘晓航 填写时间 年级 高一升高二学科数学上课时间 阶段 基础( ) 提高(√ ) 强化( )课时计划第( )次课 共( )次课教 学 目 标 1.会根据正、余弦函数的有界性和单调性求简单三角函数的最值和值域;2.运用转化思想,通过变形、换元等方法转化为代数函数求其给定区间内的值域和最值;3.通过对最值问题的探索与解决,提高运算能力,增强分析问题和解决问题能力。
体现数学思想方法在解决三角最值问题中的作用。
教学 重难点重点:求三角函数的最值与值域难点:灵活选取不同的方法来求三角函数的最值和值域教 学 过 程一、知识检测1.在下列说法中:(1)函数x y sin 2-=的最大值为3;(2)函数x xy 22sin sin 4+=最小值是4;(3)函数x y cos 1=的值域是[1,0)(0,1]- ;(4)存在实数x ,使得1tan 2tan x x+=成立.正确的是 ( ) A .(1)(2) B .(2)(4) C .(1)(3) D .(1)(4) 2.函数]32,6[,sin ππ∈=x x y 的值域为( ) A .[-1,1] B . ]1,21[ C . ]23,21[ D . ]1,23[ 3.函数x x y 2cos 2sin =的最大值为 ,最小值为 . 4.=x _________时,函数)4sin()4sin(ππ-++=x x y 的最大值为__________5.函数2sin sin 1y x x =++的值域为6.函数b x a y +=cos (b a ,为常数,且0>a )的最大值是1,最小值是7-,则函数x b x a y cos sin +=的最大值是_______________.二、互动平台(Ⅰ)简单三角函数的值域【例1】 1. 求下列三角函数的值域.(1)x y sin = (2)⎥⎦⎤⎢⎣⎡∈=32,6,sin ππx x y 2. 若函数cos y a x b =+的最大值是1,最小值是7-,求a 、b .小结:求基本三角函数值域,一定要结合三角函数的图像,故切记正、余弦函数的图像.(Ⅱ)与三角函数有关的复合函数的值域:)cos(),sin(ϕωϕω+=+=x A y x A y 型函数的值域【例2】 ⎥⎦⎤⎢⎣⎡∈+=4,0),42sin(2ππx x y【例3】 求函数],0[,cos sin π∈-=x x x y 的值域小结:对于h x A y ++=)sin(ϕω的最大值为h A +,最小值为h A +-,若h x A y ++=)sin(ϕω,],[b a x ∈,先由],[b a x ∈求出ϕω+x 的范围,然后结合图像求出,即由内而外逐层求值域(Ⅲ)引入辅助角法:类型一:x b x a y cos sin +=型.(此类型通常可以可化为22sin cos ()y a x b x a b x ϕ=+=++求其最值(或值域).)【例4】 求函数)3sin()6sin(ππ++-=x x y (R x ∈)的最值.类型二:)0(cos sin sin 2≠+⋅+=a c x x b x a y 型. 形如这种类型的,可利用倍角公式、降幂公式进行降次、整理为sin 2cos 2y A x B x =+型再利用辅助角公式求出最值. 【例5】求函数)2474(cos sin 4sin 3cos 35)(22ππ≤<-+=x x x x x x f 的最值,并求取得最值时x 的值.【例6】)求函数)cos 3)(sin 3(x x y ++=的值域.方法小结:求只含有sin cos x x ±,sin cos x x 的函数的最值问题,通常方法是换元法:令sin cos x x t ±= (22t -≤≤),将sin cos x x 转化为t 的关系式,从而使问题转化为二次函数的最值问题.但要注意换元后变量的取值范围.[小试身手] 已知:213sin cos 122sin y x x x x R =+⋅+∈,,求y 的最大值及此时x 的集合. [分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解.[小试身手] 1.已知函数x x f 2sin )(=,()cos(2)6g x x π=+,直线x =t (t ∈0,2π⎡⎤⎢⎥⎣⎦)与函数f (x )、g (x )的图像分别交于M 、N 两点,则|MN |的最大值是多少?2. 求函数x x x x y 22cos 6cos sin 3sin 5++=的值域.3. cos 2cos y x x =+4. 求函数x x x x y cos sin cos sin ⋅++=的值域.(Ⅳ)配方法:)0(sin sin 2≠++=a c x b x a y 型。
此类型可化为)0(2≠++=a c bt at y 在区间]1,1[-上的最值问题.【例6】求函数1sin 3cos 2++=x x y (R x ∈)的最值.【例8】求函数1sin 3cos 2++=x a x y (R a ∈,R x ∈)的最大值.小结:对于二次型函数,都可通过换元构造二次函数c bt at y ++=2,进而转化为二次函数在某个区间上的值域问题,但一定要注意新元的范围.[小试身手] 1. 函数22()sin 2cos [,]1,3f x x x πθθ=+-在区间上的最大值为则的值是多少? 2. 求函数5sin cos 2y x x =+的最值. 3. 设()⎪⎭⎫⎝⎛≤≤--+-=20214sin cos 2πx a x a x x f ,用a 表示()f x 的最大值()M a .3. 求函数x x y sin 22cos +=在区间⎥⎦⎤⎢⎣⎡-4,4ππ上的值域. (Ⅴ)数形结合:dx c bx a x f ++=cos sin )(型。
此类型最值问题可考虑如下几种解法:①转化为cx b x a =+cos sin 再利用辅助角公式求其最值;②采用数形结合法(转化为斜率问题)求最值.【例9】求函数sin cos 2xy x =-的值域解法1:将函数sin cos 2xy x =-变形为cos sin 2y x x y -=∴22sin()1y x y φ+=+由2|2||sin()|11y x y φ+=≤+22(2)1y y ⇒≤+,解得:3333y -≤≤,故值域是33[,]33- 解法2:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。
作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2xy x =-得最值,由几何知识,易求得过Q 的两切线得斜率分别为33-、33。
结合图形可知,此函数的值域是33[,]33-.课 后 作 业1.函数x x y cos 3sin +=在区间[0,]2π上的最小值为 .2.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 .3.函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是___________________.4.当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为 .1.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于__________.2.当04x π<<时,函数22cos ()cos sin sin xf x x x x=-的最小值是_______. 3.函数sin cos 2xy x =+的最大值为_______,最小值为________.4.函数cos tan y x x =⋅的值域为 .xQPy O5.已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于_________. 6.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.7. 已知函数()()22sin 23sin cos 0f x a x a x x a b a =-++≠的定义域为[-2π,0],值域为[-5,1],求常数a 、b 的值教学反思: 三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现.其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。
题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳 家长签名及建议:。