关于双馈型与直驱型风力发电机特点的比对(第2版)
- 格式:doc
- 大小:256.50 KB
- 文档页数:6
学号密级公开xxxxxxxxx本科生毕业设计风力发电机传动系统的设计学院名称:培黎工程技术学院专业名称:机械设计制造及其自动化学生姓名:马指导教师:同教授二○一三年五月BACHELOR'S DEGREE THESIS OF LANZHOU CITY UNIVERSITYDesign of Transmission System of WindPower GeneratorCollege : School of Bailie Engineering & TechnologySubject : Mechanic Design Manufacturing and AutomationName : MaDirected by : Professor Tong ChanghongMay 2013郑重声明本人呈交的学位论文,是在导师的指导下,独立进行研究工作所取得的成果,所有数据、图片资料真实可靠。
尽我所知,除文中已经注明引用的内容外,本学位论文的研究成果不包含他人享有著作权的内容。
对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确的方式标明。
本学位论文的知识产权归属于培养单位。
本人签名:日期:摘要风电产业的飞速发展促成了风电装备制造业的繁荣,传动系统是风电机组的核心系统,而齿轮箱又为双馈式风电机组传动系统的核心部件,备受国内外风电行业和研究机构的关注。
但由于国内齿轮箱的研究起步晚,技术薄弱,尤其在目前兆瓦级风力发电机中,其属于易过载和过早损坏率较高的部件,且易出故障。
与之相对应的,直驱式风力发电机具备低风速时高效率、低噪音等优点,但直驱式发电机组在风力发电越来越大型化发展的今天,其过于庞大的低速发电机运输、吊装困难,制造成本较高。
二者相比较,考虑到结构、经济问题,我们就不得不重新思考如何提高齿轮箱的传动效率,从而提高传动系统的传动效率。
本文在对风力发电机的结构、原理深入了解、研究的基础上,对其传动系统的齿轮增速系统进行自主设计。
Introduction“变浆距风力机+双馈发电机”作为新型风力发电机组,是目前研究的热点,国对双馈发电机的研究主要集中在单机建模、空载并网、柔性并网、并网后有功功率和无功功率的解耦控制、低电压穿越运行。
风电场协调控制等方面。
双馈异步发电机其结构与绕线式异步电机类似,定子绕组接电网(或通过变压器接电网),交流励磁电源给转子绕组提供频率、相位、幅值都可调节的励磁电流,从而实现恒频输出。
交流励磁电源只需供给转差功率,大大减少了容量的需求。
由于发电机的定、转子均接交流电(双向馈电),双馈发电机由此得名,其本质上是具有同步发电机特性的交流励磁异步发电机,双馈风力发电系统中转子侧交直交变流单元功率仅需要25%一40%的风力机额定功率,大大降低了功率变流单元的造价;双馈异步风力发电机体积小,运输安装方便,发电机成本较低。
但双馈发电机由于使用定转子两套绕组,增加了发电机的维护工作量,还降低了发电机的运行可靠性。
转子绕组承受较高的dv/dt,转子绝缘要求较高。
对于有刷电机,当电网电压突然降低时,电流迅速升高,扭矩迅速增大,需经常更换发电机碳刷、滑环等易损耗部件。
1 变速恒频风力发电机组系统结构1.1 风轮风轮是吸收风能并将其转化成机械能的部件。
风以一定速度和攻角作用在桨叶上,使桨叶产生旋转力矩而转动,将风能转变成机械能。
自然界的风速不是恒定的,风力机获得的机械能是随风速的变化而不断变化。
由风力机的空气动力学特性可知,风力机输出机械功率的为P wt ,产生的气动转矩为T wt [1]。
231(,)2wt p p C R v λβρπ= 230.5()wt wt T lp T v R C πρλ==Ω 其中,ρ为空气密度(kg/m 3),一般为1.25 kg/m 3;R 为风力机叶片的半径(m );v 为风速(m/s );l Ω为叶片旋转速度;C p 为风力机的功率系数,也称风能利用系数,是评价风力机效率的重要参数,C T 为风力机的转矩系数,由贝兹理论可知,一般C p =1/32/5,其理论极限值为0.593。
2风力发电机组并网运行方式分析2.1风力发电系统的基本结构和工作原理风力发电系统从形式上有离网型、并网型。
离网型的单机容量小(约为0.1~5 kW,一般不超过10 kW),主要采用直流发电系统并配合蓄电池储能装置独立运行;并网型的单机容量大(可达MW级),且由多台风电机组构成风力发电机群(风电场)集中向电网输送电能。
另外,中型风力发电机组(几十kW到几百kW)可并网运行,也可与其它能源发电方式相结合(如风电一水电互补、风电一柴油机组发电联合)形成微电网。
并网型风力发电的频率应保持恒等于电网频率,按其发电机运行方式可分为恒速恒频风力发电系统和变速恒频风力发电系统两大类。
2.1.1恒速恒频风力发电系统恒速恒频风力发电系统中主要采用三相同步发电机(运行于由电机极对数和频率所决定的同步转速)、鼠笼式异步发电机(SCIG)。
且在定桨距并网型风电机组中,一般采用SCIG,通过定桨距失速控制的风轮使其在略高于同步转速的转速(一般在(1~1.05)n)之间稳定发电运行。
如图2.1所示采用SCIG的恒速恒频风力发电系统结构示意图,由于SCIG在向电网输出有功功率的同时,需从电网吸收滞后的无功功率以建立转速为n的旋转磁场,这加重了电网无功功率的负担、导致电网功率因数下降,为此在SCIG机组与电网之间设置合适容量的并联电容器组以补偿无功。
在整个运行风速范围内(3 m/s < <25 m/s),气流的速度是不断变化的,为了提高中低风速运行时的效率,定桨距风力1发电机普遍采用三相(笼型)异步双速发电机,分别设计成4极和6极,其典型代表是NEGMICON 750 kW机组。
风图2.1采用SCIG的恒速恒频风力发电系统恒速恒频风力发电系统具有电机结构简单、成本低、可靠性高等优点,其主要缺点为:运行范围窄;不能充分利用风能(其风能利用系数不可能保持在最大值);风速跃升时会导致主轴、齿轮箱和发电机等部件承受很大的机械应力。
风力发电工程标准清单国家标准 行业标准勘察设计◆工程勘察1 NB/T 31030-2012陆地和海上风电场工程地质勘察规范◆系统设计1 GB 51096—2015风力发电场设计规范2 GB/T 51308-2019海上风力发电场设计标准3 DL/T 5383-2007风力发电场设计技术规范◆接入系统1 GB/T 19963-2011 风电场接入电力系统技术规定2 NB/T 31003-2011大型风电场并网设计技术规范◆专项设计1 GB/T 31140-2014高原用风力发电设备环境技术要求2 GB/T 31817-2015 风力发电设施防护涂装技术规范3 GB/T 33423-2016沿海及海上风电机组防腐技术规范4 NB/T 31006-2011海上风电场钢结构防腐蚀技术标准5 NB/T 31026-2012风电场工程电气设计规范6 NB/T 31057-2014风力发电场集电系统过电压保护技术规范7 NB/T 31058—2014风力发电机组电气系统匹配及能效8 NB/T 31083-2016 风电场控制系统功能规范9 NB/T 31094-2016风力发电设备海上特殊环境条件与技术要求10 NB/T 31095-2016风电电气设备安全通用要求11 NB/T 31088-2016风电场安全标识设置设计规范12 NB 31089-2016风电场设计防火规范13 DL/T 1631-2016并网风电场继电保护配置及整定技术规范14 NB/T 31119-2017风力发电设备干热特殊环境条件与技术要求15 NB/T 31120-2017风力发电设备湿热特殊环境条件与技术要求16 NB/T 31121-2017风力发电设备寒冷特殊环境条件与技术要求◆风机基础1 GB/T 36569-2018海上风电场风力发电机组基础技术要求2 NB/T 31080—2016 海上风力发电机组钢制基桩及承台制作技术规范3 NB/T 31133-2018海上风电场风力发电机组混凝土基础防腐蚀技术规范◆塔架1 GB/T 19072-2010 风力发电机组 塔架2 GB/T 28410-2012 风力发电塔用结构钢板3 GB/T 33628-2017风力发电机组高强螺纹连接副安装技术要求4 NB/T 31001-2010风电机组筒形塔制造技术条件5 NB/T 31082-2016风电机组塔架用高强度螺栓连接副6 JB/T 11218-2011风力发电塔架法兰锻件7 T/CEC5007-2018风力发电机组预应力现浇式混凝土塔筒技术规范8 T/CEC5008-2018风力发电机组预应力装配式混凝士塔筒技术规范◆电缆1 GB/T 29631-2013 额定电压1.8/3 kV及以下风力发电用耐扭曲软电缆2 GB/T 33606-2017额定电压6kV(Um=7.2kV)到35kV(Um=40.5kV)风力发电用耐扭曲软电缆3 NB/T 31034-2012额定电压1.8/3 kV及以下风力发电用耐扭曲软电缆 第1部分:额定电压0.6/1 kV及以下电缆4 NB/T 31035-2012额定电压1.8/3 kV及以下风力发电用耐扭曲软电缆 第2部分:额定电压1.8/3 kV电缆5 NB/T 31036-2012额定电压1.8/3 kV及以下风力发电用耐扭曲软电缆 第3部分:扭转试验方法◆风力发电机组1 GB/T 10760.1-2017小型风力发电机组用发电机 第1部分:技术条件2 GB/T 10760.2-2017小型风力发电机组用发电机 第2部分:试验方法3 GB/T 17646-2017小型风力发电机组4 GB/T 18451.1-2012 风力发电机组 设计要求5 GB/T 18451.2-2012 风力发电机组 功率特性测试6 GB/T 19068.1-2017小型风力发电机组第1部分:技术条件7 GB/T 19068.2-2017小型风力发电机组第2部分:试验方法8 GB/T 19068.3-2003离网型风力发电机组第3部分:风洞试验方法9 GB/T 19069-2017 失速型风力发电机组控制系统技术条件10 GB/T 19070-2017 失速型风力发电机组控制系统试验方法11 GB/T 19071.1-2018 风力发电机组异步发电机第2部分:试验方法12 GB/T 19071.2-2018 风力发电机组异步发电机 第2部分: 试验方法13 GB/T 19073-2018风力发电机组 齿轮箱设计要求14 GB/T 19960.1-2005 风力发电机组 第1 部分:通用技术条件15 GB/T 19960.2-2005 风力发电机组 第2部分:通用试验方法16 GB/T 20320-2013 风力发电机组电能质量测量和评估方法17 GB/T 21150-2007 失速型风力发电机组18 GB/T 21407-2015 双馈式变速恒频风力发电机组19 GB/T 22516-2015 风力发电机组噪声测量方法20 GB/T 23479.1-2009 风力发电机组 双馈异步发电机第1部分:技术条件21 GB/T 23479.2-2009 风力发电机组双馈异步发电机 第1部分:技术条件22 GB/T 25383-2010 风力发电机组 风轮叶片23 GB/T 25384-2018 风力发电机组风轮叶片全尺寸结构试验24 GB/T 25385-2010 风力发电机组运行及维护要求25 GB/T 25386.1-2010 风力发电机组 变速恒频控制系统 第1部分:技术条件26 GB/T 25386.2-2010 风力发电机组 变速恒频控制系统 第2部分:试验方法27 GB/T 25387.1-2010 风力发电机组全功率变流器第1部分:技术条件 28 GB/T 25387.2-2010 风力发电机组全功率变流器 第2部分:试验方法29 GB/T 25388.1-2010 风力发电机组 双馈式变流器 第1部分:技术条件30 GB/T 25388.2-2010 风力发电机组双馈式变流器 第2部分:试验方法31 GB/T 25389.1-2018 风力发电机组 低速永磁同步发电机 第1部分:技术条件32 GB/T 25389.2-2018 风力发电机组低速永磁同步发电机 第2部分:试验方法33 GB/T 29494-2013 小型垂直轴风力发电机组34 GB/T 29543-2013 低温型风力发电机组35 GB/T 29717-2013滚动轴承风力发电机组偏航、变桨轴承36 GB/T 29718-2013 滚动轴承风力发电机组主轴轴承37 GB/T 31517-2015 海上风力发电机组 设计要求38 GB/T 31518.1-2015 直驱永磁风力发电机组第1部分:技术条件39 GB/T 31518.2-2015直驱永磁风力发电机组 第2部分:试验方法40 GB/T 31519-2015 台风型风力发电机组41 GB/T 32077—2015 风力发电机组变桨距系统42 GB/T 31293—2014 风电叶片用真空导入环氧树脂43 GB/T 31294—2014 风电叶片用芯材夹芯板面层剥离强度的测定44 GB/T 33096-2016 风力发电机组用橡胶弹性元件通用技术条件45 GB/T 33540.1-2017风力发电机组专用润滑剂第1部分:轴承润滑脂 46 GB/T 33540.2-2017风力发电机组专用润滑剂第2部分:开式齿轮润滑脂47 GB/T 33540.3-2017风力发电机组专用润滑剂第3部分:变速箱齿轮油48 GB/T 33540.4-2017风力发电机组专用润滑剂第4部分:液压油49 GB/T 33623-2017滚动轴承 风力发电机组齿轮箱轴承50 GB/T 33629-2017风力发电机组 雷电防护51 GB/T 33630-2017海上风力发电机组 防腐规范52 GB/T 34521-2017小型风力发电机组用控制器53 GB/T 34524-2017风力发电机组主轴54 GB/T 35204-2017风力发电机组安全手册55 GB/T 35207-2017电励磁直驱风力发电机组56 GB/T 35792-2018风力发电机组合格测试及认证57 GB/T 35854-2018风力发电机组及其组件机械振动测量与评估58 GB/T 36490-2018风力发电机组防雷装置检测技术规范59 GB/T 36994-2018风力发电机组电网适应性测试规程60 GB/T 36995-2018风力发电机组故障电压穿越能力测试规程61 GB/T 36996-2018风力发电机组用永磁盘式无铁芯发电机62 GB/T 37257-2018风力发电机组机械载荷测量63 GB/T 37424-2019海上风力发电机组运行及维护要求64 GB/T 37431-2019风力发电机组风轮叶片红外热像检测指南65 GB/Z 25425-2010 风力发电机组公称视在声功率和音值66 GB/Z 25426-2010 风力发电机组机械载荷测量67 GB/Z 25427-2010 风力发电机组 雷电防护68 GB/Z 25458-2010 风力发电机组合格认证规则及程序69 GB/Z 35482-2017风力发电机组时间可利用率70 GB/Z 35483-2017风力发电机组发电量可利用率71 NB/SH/T 0973-2018风力发电机组主齿轮箱润滑油换油指标72 NB/T 10111-2018风力发电机组润滑剂运行检测规程73 NB/T 10112-2018风力发电机组设备监造导则74 NB/T 10211-2019风力发电机组叶片电加热防/除冰控制系统技术规范 75 NB/T 10212-2019风力发电机用烧结铁硼磁体76 NB/T 10213-2019风力发电机组变桨滑环77 NB/T 10214-2019风力发电机组用锚杆组件78 NB/T 10215-2019风力发电机组 测风传感器79 NB/T 31004-2011风力发电机振动状态监测导则80 NB/T 31012-2011永磁风力发电机制造技术规范81 NB/T 31013-2011双馈风力发电机制造技术规范82 NB/T 31014-2018双馈风力发电机变流器制造技术规范83 NB/T 31015-2018永磁风力发电机变流器制造技术规范84 NB/T 31017-2018双馈风力发电机组主控制系统技术规范85 NB/T 31018-2018风力发电机组电动变桨控制系统技术规范86 NB/T 31019-2011风力发电机线圈绝缘用耐电晕聚酰亚胺薄膜补强玻璃布粉云母带87 NB/T 31020-2011风力发电机间绝缘用耐电晕聚酰亚胺薄膜88 NB/T 31023-2012风力发电机组高速轴液压盘式制动器89 NB/T 31024-2012风力发电机组偏航液压盘式制动器90 NB/T 31025-2012风力发电机组环形锻件91 NB/T 31039-2012风力发电机组雷电防护系统技术规范92 NB/T 31041-2019海上双馈风力发电机变流器技术规范93 NB/T 31042-2019海上永磁风力发电机变流器技术规范94 NB/T 31043-2019海上风力发电机组主控制系统技术规范95 NB/T 31044-2012永磁风力发电机-变流器组技术规范96 NB/T 31048.1-2014风力发电机用绕组线第1部分:一般规定97 NB/T 31048.2-2014风力发电机用绕组线第2部分:240级98 NB/T 31048.3-2014风力发电机用绕组线第3部分:聚酯薄膜补强云母带绕包铜扁线99 NB/T 31048.4-2014风力发电机用绕组线第4部分:玻璃丝包薄膜绕包铜扁线100 NB/T 31048.5-2014风力发电机用绕组线第5部分:180级及以上浸漆玻璃丝包漆包铜扁线101 NB/T 31048.6-2014风力发电机用绕组线第6部分:聚酰亚胺薄膜补强云母带绕包铜扁线102 NB/T 31049-2014风力发电机绝缘规范103 NB/T 31050-2014风力发电机绝缘系统的评定方法104 NB/T 31051—2014 风电机组低电压穿越能力测试规程105 NB/T 31053—2014 风电机组低电压穿越建模及验证方法106 NB/T 31054—2014 风电机组电网适应性测试规程107 NB/T 31056-2014风力发电机组接地技术规范108 NB/T 31059-2014风力发电机组 风力发电机组 双馈异步发电机用瞬态过电压抑制器109 NB/T31063-2014海上永磁同步风力发电机110 NB/T 31064-2014海上双馈风力发电机技术条件111 NB/T 31066-2015 风电机组电气仿真模型建模导则112 NB/T 31074-2015 高海拔风力发电机组技术导则113 NB/T 31096-2016 高原风力发电机组用双馈式变流器技术要求114 NB/T 31097-2016 高原风力发电机组用全功率变流器技术要求115 NB/T 31092-2016微电网用风力发电机组性能与安全技术要求116 NB/T 31093-2016微电网用风力发电机组主控制器技术规范117 NB/T 31100-2016电励磁同步风力发电机技术条件118 NB/T 31101.1-2016风力发电机组板式冷却器 第1部分:技术条件119 NB/T 31101.2-2016风力发电机组板式冷却器 第2部分:试验方法120 NB/T 31102.1-2016风力发电机组发电机用烧结电磁线 第1部分:技术条件121 NB/T 31102.2-2016风力发电机组发电机用烧结电磁线 第2部分:试验方法122 NB/T 31103-2016直驱永磁风力发电机组主控制系统软件功能技术规范123 NB/T 31107-2017低风速风力发电机组选型导则124 NB/T 31122-2017风力发电机组在线状态监测系统技术规范125 NB/T 31123-2017高原风力发电机组用全功率变流器试验方法126 NB/T 31124-2017高原双馈风力发电机技术规范127 NB/T 31125-2017高原永磁同步风力发电机技术规范128 NB/T 31126-2017风力发电机组变浆桨驱动变频器技术规范129 NB/T 31129-2018风力发电机组振动状态评价导则130 NB/T 31138-2018高原风力发电机组电气控制设备结构防腐技术要求 131 NB/T 31139-2018高原风力发电机组用全功率变流器液体冷却散热技术要求132 NB/T 31140-2018高原风力发电机组主控制系统技术规范133 NB/T 31141-2018直驱风力发电机组偏航、变桨轴承型式试验技术规范134 NB/T 31142-2018直驱风力发电机组主轴轴承挂机测试方法规范135 NB/T 31143-2018直驱风力发电机组主轴轴承型式试验技术规范136 NB/T 31144-2018风力发电机组液压盘式制动器制动块137 NB/T 31148-2018风力发电机组钢制筒形塔架监造导则138 NB/T 31149-2018风力发电机组变桨系统用超级电容器技术规范139 QX/T 312—2015 风力发电机组防雷装置检测技术规范140 JB/T 6939.1-2004离网型风力发电机组用控制器第1部分:技术条件 141 JB/T 6939.2-2004离网型风力发电机组用控制器第2部分:试验方法 142 JB/T 10194-2000风力发电机组风轮叶片143 JB/T 10300-2001风力发电机组 设计要求144 JB/T 10194-2000风力发电机组风轮叶片145 JB/T 10399-2004离网型风力发电机组风轮叶片146 JB/T 10401.1-2004离网型风力发电机组制动系统第1部分:技术条件 147 JB/T 10401.2-2004离网型风力发电机组制动系统第2部分:试验方法 148 JB/T10403-2004离网型风力发电机组塔架149 JB/T10404-2004离网型风力发电集中供电系统运行管理规范150 JB/T 10405-2004离网型风力发电机组基础与联接技术条件151 JB/T 10425.1-2004 风力发电机组 偏航系统 第1部分:技术条件 152 JB/T 10425.2-2004 风力发电机组偏航系统 第2部分:试验方法153 JB/T 10426.1-2004 风力发电机组 制动系统 第1部分:技术条件 154 JB/T 10426.2-2004 风力发电机组 制动系统 第2部分:试验方法155 JB/T 10427-2004风力发电机组一般液压系统156 JB/T 12137—2015 风力发电机组主轴锻件技术条件157 JB/T 12252-2015风力发电机用电刷 158 DL/T 1638-2016风力发电机组单位元变压器保护测控装置技术条件159 CECS 391-2014风力发电机组消防系统技术规程160 T/CEC 222-2019风力发电机组水冷系统冷却液技术规范161 T/CEEIA 253-2016风力发电机绝缘处理用无溶剂浸渍树脂技术要求162 HG/T 5247~5248-2017单组份热固化和风力发电机组叶片用环氧结构胶粘剂(2017)[合订本]163 HG/T 5248-2017风力发电机组叶片用环氧结构胶粘剂◆变压器1 GB 1094.16-2013 电力变压器第16部分:风力发电用变压器2 NB/T 31061-2014风力发电用组合式变压器*3 NB/T 31062-2014风力发电用干式变压器技术参数和要求◆监控系统1 GB/T 30966.1-2014 风力发电机组风力发电场监控系统通信 第1部分:原则与模型2 GB/T 30966.2-2014 风力发电机组风力发电场监控系统通信 第2部分:信息模型3 GB/T 30966.3-2014风力发电机组风力发电场监控系统通信第3部分:信息交换模型4 GB/T 30966.4-2014风力发电机组风力发电场监控系统通信第4部分:映射到通信规约5 GB/T 30966.5-2015风力发电机组风力发电场监控系统通信第5部分:一致性测试6 GB/T 30966.6-2015风发电机组风力发电场监控系统通信第6部分:状态监测的逻辑节点类和数据类7 NB/T 31002.1-2010 风力发电场监控系统通信-原则与模式8 NB/T 31067-2015风力发电场监控系统通信-信息模型9 NB/T 31068-2015风力发电场监控系统通信-信息交换模型10 NB/T 31069-2015风力发电场监控系统通信-映射到通信规约11 NB/T 31070-2015风力发电场监控系统通信-—致性测试12 NB/T 31071-2015风力发电场远程监控系统技术规程◆功率预测系统1 NB/T 31046-2013风电功率预测系统功能规范*2 NB/T 31079-2016 风电功率预测系统测风塔数据测量技术要求◆其他设备/产品1 GB/T 33160-2016风力发电用齿轮钢2 GB/T 33346-2016风力发电导电轨(密集型母线槽)3 GB/T 29553-2013风力发电复合材料整流罩4 GB/T 29913.1-2013风力发电设备用轴承钢第1部分:偏航、变桨轴承用钢5 GB/T 30123-2013风力发电导电轨(空气型母线槽)6 NB/T 31037-2012风力发电用低压成套开关设备和控制设备7 NB/T 31038-2012风力发电用低压成套无功功率补偿装置*8 NB/T 31099-2016风力发电场无功配置及电压控制技术规定9 NB/T 31060-2014风力发电设备环境条件*◆系统检测1 NB/T 31005-2011风电场电能质量测试方法2 DL/T 1084-2008风电场噪声限值及测量方法3 QX/T 243-2014风电场风速预报准确率评判方法工程施工1 GB/T 19568-2017风力发电机组 装配和安装规范2 GB/T 50571-2010 海上风力发电工程施工规范3 NB/T 31033-2012海上风电场工程施工组织设计技术规定4 DL/T 5384-2007风力发电工程施工组织设计规范5 NB/T 31084-2016风力发电场建设工程监理规范6 NB/T 31090-2016并网型风力发电机组售后服务规范7 JB/T10398-2004离网型风力发电系统售后技术服务规范8 NB/T 31091-2016并网型风力发电机组成套供应规范9 NB/T 31106-2016陆上风电场工程安全文明施工规范10 NY/T 1137-2006小型风力发电系统安装规范11 JB/T 10395-2004离网型风力发电机组安装规范验收与评价1 GB/T 20319-2017 风力发电机组验收规范2 GB/T 31997-2015 风力发电场项目建设工程验收规程3 GB/T 32352-2015 高原用风力发电机组现场验收规范4 GB/T 51121-2015 风力发电工程施工与验收规范5 GB/T 36712-2018节能评估技术导则 风力发电项目6 NB/T 31021-2012风力发电企业科技文件归档与整理规范7 NB/T 31022-2012风力发电工程达标投产验收规程8 NB/T 31027-2012风电场工程安全验收评价报告编制规程9 NB/T 31028-2012风电场工程安全预评价报告编制规程10 DL/T 5191-2004风力发电场项目建设工程验收规程11 NB/T 31055—2014风电场理论可发电量与弃风电量评估导则12 NB/T 31073-2015风电场工程劳动安全与工业卫生验收规程13 NB/T 31076-2016风力发电场并网验收规范14 NB/T 31078-2016风电场并网性能评价方法15 NB/T 31085-2016风电场项目经济评价规范16 NB/T 31086-2016风电场工程水土保持方案编制技术规范17 NB/T 31087-2016风电场项目环境影响评价技术规范18 NB/T 31134-2018海上用风力发电设备关键部件环境耐久性评价 发电机 19 NB/T 31135-2018海上用风力发电设备关键部件环境耐久性评价 控制系统20 NB/T 31136-2018海上用风力发电设备关键部件环境耐久性评价 变流器 21 NB/T 31137-2018海上用风力发电设备关键部件环境耐久性评价 结构件 22 RB/T 012-2019风力发电机组设计评估只拿关键结构件23 SN/T 3834.4-2014进出口电力行业成套设备检验技术要求第4部分:风力发电设备24 JB/T 10397-2004离网型风力发电机组验收规范生产运维1 GB/T 32128—2015 海上风电场运行维护规程2 NB/T 10110-2018风力发电场技术监督导则3 NB/T 10217-2019风力发电场生产准备导则4 NB/T 10218-2019海上风电场风力发电机组基础维护技术规程5 NB/T 31047-2013风电调度运行管理规范6 NB/T 31065—2014 风力发电场调度运行规程7 NB/T 31145-2018风电场标识系统编码规范8 NB/T 31130-2018风力发电场设备润滑技术监督规程9 NB/T 31131-2018风力发电场测量技术监督规程10 NB/T 31132-2018风力发电场电能质量技术监督规程11 DL/T 666-2012风力发电场运行规程12 DL/T 796-2012风力发电场安全规程13 DL/T 797-2012风力发电场检修规程14 NB/T 31072-2015风电机组风轮系统技术监督规程15 LD/T 50-2016风力发电劳动防护用品配备规范16 NY/T 3022-2016离网型风力发电机组运行质量及安全检测规程其他1 GB/T 2900.53-2001 电工术语 风力发电机组2 GB/T 31724-2015风能资源术语3 GB/T 18709-2002 风电场风能资源测量方法4 GB/T 18710-2002 风电场风能资源评估方法5 GB/T 28591-2012 风力等级6 NB/T 31029-2012海上风电场风能资源测量及海洋水文观测规范7 NB/T 31031-2012海上风电场工程预可行性研究报告编制规程8 NB/T 31032-2012海上风电场工程可行性研究报告编制规程9 DL/T 5067-1996风力发电场项目可行性研究报告编制规程10 NB/T 31075-2016风电场电气仿真模型建模及验证规程11 NB/T 31077-2016风电场低电压穿越建模及评价方法12 NB/T 31081—2016风力发电场仿真机技术规范13 NB/T 31098-2016风电场工程规划报告编制规程14 NB/T 31108-2017海上风电场工程规划报告编制规程15 NB/T 31007-2011风电场工程勘察设计收费标准16 NB/T 31008-2019海上风电场工程概算定额17 NB/T 31009-2019海上风电场工程设计概算编制规定及费用标准18 NB/T 31010-2019陆上风电场工程概算定额19 NB/T 31011-2019陆上风电场工程设计概算编制规定及费用标准20 QX/T 308—2015分散式风力发电风能资源评估技术导则。
关于“中国风力发电机技术的发展”的调研报告学班时一、风力发电的含义、风力发电的优势和不足以及我国大力发展风力发电面临的挑战。
风力发电是指把风的动能转为电能。
风能是一种清洁无公害的可再生能源,很早就被人们利用,主要是通过风车来抽水、磨面等,人们感兴趣的是如何利用风来发电。
利用风力发电非常环保,且风能蕴量巨大,因此日益受到世界各国的重视。
我国在多年来的高速经济发展环境下,对能源的需求与日俱增,目前已经成为全球第一能源消耗大国。
在所有的能源资源中,煤、石油、天然气等生物化学资源,在提供大量能源的同时也带来了环境污染和高额的成本,已经越来越成为制约我国经济进一步发展的负面因素。
近年来我国的雾霾状况日益严重,主要原因就是由于优质燃煤供应不足,使得冬季供暖及发电过多的使用污染高的褐煤所导致。
相对而言,风力资源作为可再生能源、清洁无污染,具有巨大的环境效益,同时由于不需要额外投入资源进行使用,也节省了大量成本,具有很高的经济性。
风能有它自身的优缺点,简单地说,优点有:①清洁,环境效益好;②可再生,永不枯竭;③基建周期短,投资少;④装机规模灵活;⑤技术相对成熟。
缺点有:①有噪音,会造成视觉污染;②占用大片土地;③不稳定,不可控;④目前成本仍然很高。
接下来将从经济效益和环境效益两方面具体介绍风力发电的优势和不足。
风电项目的经济效益优势:虽然风电项目没有能源成本,但是决定风电项目经济效益的因素仍然与普通发电项目相似,包括总投资、运营成本与上网电价三个方面。
首先从项目总投资方面来看,风电项目一般包括固定资产投资、融资成本以及现金成本等方面。
总投资过高或融资成本过高都会制约风电项目的经济效益,其次在运营成本方面,包括经营成本、设备折旧和运行维护成本等内容。
最后在上网电价方面,由于风电项目属于国家鼓励项目,在某些情况下还能够获得国家在电价上的补贴,因此上网电价一般要比普通的火力发电稍高。
总体上看,风电项目的经济效益优势主要表现在两个方面:一是项目本身的财务效益优势;二是项目对国民经济发展的宏观经济优势。
精品
-可编辑-
关于双馈型与直驱型风力发电设备特点的比对
双馈风力发电机与直驱风力发电机的主要区别是有无齿轮箱的使用。在直驱
式风力发电系统中,风机叶轮直接驱动多级同步发电机的转子发电,免去齿轮箱
这一传统部件。双馈风力发电机组,定子有两套极数不同的绕组,功率绕组直接
与电网相连,控制绕组通过双向变流器接电网,采用无刷的磁阻或者笼型转子,
无需电刷和集电环。
双馈机组有齿轮箱,但是变流器是部分功率逆变;直驱机组无齿轮箱,是全
功率逆变的。直驱电机也分励磁和永磁,永磁理论上效率略高,但技术没有非常
成熟。关注效率方面,在低风速区域,直驱风力发电设备具有优势,此优势取决
于所用电机的设计、制造水准。需要明确指出,此优势不明显,尤其综合整机年
发电量,双馈与直驱机型相差不大,如果相差两个百分点已经属于上等水平。
(一)从实际应用角度,比对两种类型风机的特性
●可靠性
1)双馈异步风力发电机组采用的双馈异步恒频技术为国际先进成熟的技
术,变流器容量小,采用空冷冷却方式;直驱发电机组采用全功率变流器,在低
电压穿越等情况下IGBT模块的可靠性较低,同时全功率变流器通常需采用水冷
冷却方式,在实际运行中的很多工况下,水冷系统容易出现故障,易导致变流器
IGBT模块烧毁。
2)联合动力公司风机机型采用准三分之一变频,变流器容量小,成本低,
双馈机型发电机可控参数多,能对发电机电压、频率、转速、无功功率和有功功
率等参数方便可控,系统的稳定性高。
3)中国的风机制造厂商针对直驱机型采用永磁同步发电机,永磁同步发电
机存在过退磁现象(大容量的磁铁和铁心粘合的工艺较难实现;永磁材料会有不
可逆退磁、高温退磁等现象;永磁的功率因数也不易调节),在风机使用寿命期
内,存在因退磁影响发电机效率的可能,所以直驱风机尤其不适用于在温度较高
的地区。
4)在装配质量层面上,风场现场的作业操作越少越好。直驱机型发电机在
户外单独分体吊装,会降低吊装作业速度,在恶劣气候环境下,严重降低装配质
量。
精品
-可编辑-
●造价:
由于直驱机型采用永磁同步发电机,永磁材料为稀有金属,致使电机成本高;
而双馈机型变流器容量小,容量仅为机组总容量的30%左右,使得变流器成本
降低。故直驱机型比双馈机型成本高。
●维护:
直驱机型的发电机尺寸和重量均比双馈机型大,一旦发生故障,发电机维护
费用将非常昂贵,但直驱机型没有齿轮箱,所以针对传动链的维护量相对较小;
双馈机型存在齿轮箱易坏且维护量大的事实,同时,电机的滑环碳刷等也需要经
常维护。
●生产运行:
目前国内直驱机型的产业技术成熟度低于双馈机型的产业成熟度。由此导致
直驱机型运行稳定性比双馈机型低,例如在承德围场某风场,直驱风机在遇阵风
后通常会出现非正常切出现象,严重影响风机发电量。在实际运行中,现场反映
机组运行的故障率比相邻风场的双馈机型高。据现场运行人员提供数据,2010
年1月中旬到2月中旬,在同为5万容量的相邻两个风场,直驱机型的发电量
约为双馈机型的三分之二。
(二)从技术细节角度,比对两种类型风机的特性
明细 异步双馈 永磁直驱
驱动链结构 有齿轮箱,维护成本高 无齿轮箱或低传动比
(半直驱)
电机种类 电励磁 永磁
(需考虑永磁体退磁问题)
电机尺寸、重量、造价 小,轻,低 高,大,重
电机电缆的电磁释放 有释放,需要屏蔽线 无释放
电机滑环 半年更换碳刷,2年更换滑环 无碳刷,无滑环
精品
-可编辑-
变流单元 IGBT,单管额定电流小,技术难度大 IGBT,单管额定电流大,
技术难度小
变流容量 全功率的1/4 全功率逆变
变流系统稳定性 中 高
电网电压突降的影响 电机端电流、电机转矩急增 电流、转矩稳定
塔内电缆工作电流类型 高频非正弦波,谐波分量较大,必须使用屏蔽电缆 正弦波
可承受瞬间电压波动 [-10%, +10%] [-85%, +10%]
谐波畸变 难以控制,因为要随电机转速变化进行变频 易控制,因为谐波频率稳定
50Hz/60Hz之间的配置变化 变流滤波参数需调整,齿轮箱需改变 变流滤波参数需调整
电控系统 体积、价格、维护成本 中、中、高 大、高、低
电控系统平均效率 中 高
(三)从本质属性角度,比对两种类型的优劣
●直驱型风力发电设备
精品
-可编辑-
直驱型风力发电机结构示意图
直驱风力发电机组采用水平轴、三叶片、上风向、变桨距调节、直接驱动、
永磁同步发电机并网的总体设计方案,相对于传统的双馈式异步发电机组其优点
如下:
(1)由于传动系统部件的减少,提高了风力发电机组的可靠性;
(2)发电机与电网之间采用全功率变流器,发电机与电网之间的相互影响
减小;
(3)机械传动部件的减少降低了风力发电机组的噪音;
(4)可靠性的提高降低了风力发电机组的运行维护成本;
(5)机械传动部件的减少降低了机械损失,提高了整机效率;
(6)可以实现对电网有功、无功功率的灵活控制;
(7)由于减少了部件数量,使整机的生产周期大大缩短。
虽然直接驱动与采用交—直—交变频器相结合的变速恒频方式有一定的优
势,但这种结构方式也有其缺点,缺点如下:
(1)采用的多极低速永磁同步发电机,电机直径大,成本高。由于运输问
题,电机的直径不能超过4m,随着机组容量的增大,给电机设计、加工制造带
来困难。
(2)定子绕组绝缘等级要求较高。
(3)采用全容量逆变装置,功率变换器设备投资大,增加控制系统成本。
(4)由于结构简化,使机舱重心前倾,设计和控制上难度加大。
●双馈型风力发电设备
精品
-可编辑-
双馈型风力发电机结构示意图
传统的双馈式风力发电机组的组成通常包含三个主要部分:风轮、增速箱和
发电机。现代风力发电机组增加了偏航系统、液压系统、刹车系统和控制系统等。
在风力发电系统中,当风力发电机组与电网并网时,要求风力发电机组发电的频
率与电网的频率保持一致,即保持频率恒定。
双馈式风力发电机组就是采用双馈发电机,转子采用双向四象限运行变流器
并网的一种变速恒频机组。
交流励磁变速恒频双馈发电系统有如下优点:
(1)在原动机变速运行场合中,实现高效、优质发电。双馈感应发电机可
通过调节转子励磁电流的幅值、频率与相位,在原动机速度变化时也可保证发出
恒定频率的电能,从而提高了机组的运行效率,延长了机组的使用寿命。
(2)允许原动机在一定范围内变速运行,可以在同步速上下30%转速范围
内运行;简化了调整装置,减少了调速时的机械应力。同时使机组控制更加灵活、
方便,提高了机组运行效率。
(3)调节励磁电流幅值,可调节发出的有功功率;调节励磁电流相位,可
调节发出的无功功率。可实现有功功率和无功功率的独立调节,达到改变功率角
使发电机稳定运行的目的。所以可通过交流励磁使发电机吸收更多无功功率,参
与电网的无功功率调节,解决电网电压升高的弊病,从而提高电网运行效率、电
能质量与稳定性。
(4)双馈感应发电机通过对转子实施交流励磁,精确地调节发电机定子输
出电压,使其满足并网要求,实现安全快速的“柔性”并网操作。
精品
-可编辑-
(5)需要变频控制的功率仅是电机额定容量的一部分,使变频装置体积减
小,成本降低,投资减少。
双馈式发电系统缺点如下:
(1)双馈式风力发电机组低风速下的风轮机转速也很低,直接用风轮机带
动双馈电机转子将满足不了双馈发电机对转子转速的要求,必须引入齿轮箱升速
后,再同双馈发电机转子连接进行发电。然而齿轮箱成本很高,且易出现故障,
需要经常维护,可靠性差;同时齿轮箱也是风力发电系统产生噪声污染的一个主
要因素。
(2)当低负荷运行时,效率低。
(3)电机转子绕组带有滑环、碳刷,增加维护和故障率。
(4)控制系统结构复杂。
(四)从市场生产角度,比对两种类型风机的趋势
目前国内外风电市场中的主流技术为双馈转子变频技术和全功率变频技术。
双馈技术是国内外的主流技术。如Vestas、GE、Siemens、Sulzon、华锐、
东汽等国内外主流厂家都采用双馈技术,并在积极研制大功率机组,如华锐的
3MW和5MW海上双馈机组,Vestas的3MW-V90双馈机组,Repower的
5MW双馈机组。
当前,双馈机型的生产企业主要有:Vestas(丹麦)、GE(美国)、Gamesa(西
班牙)、REpower(德国)、Nordex(德国)、联合动力、苏司兰、华锐、东汽、上
海电气等。基于此出发点,联合动力的主要产品是1.5MW变速恒频双馈风力发
电机组,以及正在研发的3MW海上双馈机组。
直驱型发电机组的生产厂家主要有:ENERCON(德国)、GE(美国)、Vensys(德
国),金风、湘电,上海万德、广西银河、常州新誉。
当前业主选择实际和应用现实是双馈机组份额要高于全功率变频直驱机组,
业主的机型选择在一定程度说明,纵然直驱技术代表了一种概念、是一种存在,
反映科技发展的一种趋势,但是在重视产品经济及社会效益的现实世界,经过以
上的比对分析及应用实际,双馈与直驱机型孰优孰佳已不言而喻。