自动识别路径小车
- 格式:doc
- 大小:76.00 KB
- 文档页数:10
AGV小车也叫无人搬运车,依靠自身自动导向系统,在无需人工操作的情况下能够沿预定的路线将物料自动从起点运送到目的地,具有无人驾驶、柔性好、清洁生产的特点,因此被人们大量使用,受到大众的青睐。
Automated Guided Vehicle,简称AGV,指装备有电磁或光学等自动导引装置,能够沿规定的导引路径行驶,具有安全保护以及各种移载功能的运输车,工业应用中不需驾驶员的搬运车,以可充电之蓄电池为其动力来源,一般市场定价在1.15万-6.6万左右,具体价格要根据设备型号、功能等不同而有所变化。
AGV主要包括车辆、外围设备、现场部件以及固定控制系统。
车辆是AGV的核心,主要执行运输任务;固定控制系统的任务是管理运输订单、优化日程、通过预先定义的接口和其他控制系统通迅,系统还负责与客户交互和提供辅佐功能如图形可视化和统计分析;外围设备包括车辆的各种车载设备如电池装载站和负荷传递机。
AGV按插取方式分为:夹抱式——取货工具为夹爪,主要用于直接夹抱外形包装规则的货物;叉取式——取货工具为货叉,主要用于搬运有托盘装载的货物。
AGV按照货物接驳的方式可以分为辊道移载搬运型AGV、叉式搬运型AGV、推挽移载搬运型AGV、夹抱搬运型AGV、升降接载搬运型AGV等,用户可以根据需要搬运货物的种类以及不同接驳形式选择不同的搬运型AGV产品。
AGV的导航方式有磁导航、激光导航、惯性导航、视觉导航等等,均可轻松改变路径,但激光导航的路径改变更灵活。
江苏六维智能物流装备股份有限公司,成立于1997年,是国内较早从事货架、工位器具、物流系统、自动化立体仓库货架的规划、设计、制造、安装及调试及咨询服务的较大规模厂家,经过二十年的拼搏与发展,六维已成为一家集智能物流解决方案与仓储系统集成的高科技企业。
机器人弹力小车知识点总结一、弹力小车概述弹力小车是一种由弹性材料制成的轮胎,能够使车辆在行驶过程中具有弹性,提高车辆在不平路面上的通过能力。
机器人弹力小车是指搭载有自主导航系统和传感器的弹力小车,能够自动识别环境,避障和规划路径,实现自主行驶的智能机器人。
二、弹力小车的原理1. 弹力小车的结构弹力小车的结构主要包括车身、弹性轮胎、电机和控制系统。
弹力轮胎是弹力小车的核心部件,其采用的是特殊的弹性材料制成,能够在行驶过程中对路面不平进行自适应的缓冲和减震,提高车辆通过不平路面的能力。
电机负责提供驱动力,控制系统则实现弹力小车的智能控制和导航。
2. 弹力小车的工作原理当弹力小车行驶在不平路面时,弹力轮胎会受到压缩和拉伸的变形,从而产生对路面的弹性反作用力,使车辆能够更好地适应路面变化。
控制系统通过传感器对路面情况进行实时监测,根据情况调节电机的输出力,保证车辆的稳定性和可靠性。
三、弹力小车的应用领域1. 物流配送弹力小车可以应用于仓储、物流配送领域,能够自主导航,在仓库内部运送货物,提高物流配送效率,降低人力成本。
2. 智能服务机器人弹力小车还可以用于酒店、商场等场所,作为智能服务机器人,能够协助提供服务,为用户提供导航、送物等功能。
3. 工业生产在工业生产线上,弹力小车可以用于物料运输、零部件搬运等工作,提高生产效率,降低人力成本。
4. 农业领域在农业领域,弹力小车可以用于农田里的播种、喷洒农药、采摘作业等,提高农业生产效率。
四、弹力小车的关键技术1. 自主导航技术自主导航技术是弹力小车的核心技术之一,能够通过激光雷达、摄像头等传感器对周围环境进行感知,实现路径规划和避障导航。
2. 机器视觉技术机器视觉技术可以使弹力小车通过摄像头对环境进行识别,实现自主导航、目标检测和路径规划等功能。
3. 人机交互技术人机交互技术使得弹力小车能够与用户进行沟通和交互,提供更加个性化的服务。
4. 机器学习技术机器学习技术能够使弹力小车能够通过数据学习,不断提升自身的智能水平,实现更为精准的导航和操作。
自动循迹小车的设计与实现胡涛涛\耿璇2,庞鑫2(1.太原师范学院,山西太原〇306丨9;2.山西工程职业技术大学,山西太原030031)摘要:设计与实现了 一种可以自动循迹的小车该小车能在0.6 - 0. 9 m m的细铁丝轨迹上自动循迹行驶,同时能准确检测到 在任意直道铁丝段上放置的硬币并给出报警,小车的行驶时间和行驶距离实时显示在显示屏上._该小车系统以A rduino为控制核 心,采用T I公司的LDC1000电感数字转换器模块作为金属循迹传感器,结合驱动模块、电源模块和显示模块共同完成了上述各项要求。
该系统具有性能稳定、硬币检测准确、行驶速度快等特点关键词:控制芯片;电感数字转换器;循迹小车中图分类号:TP242 文献标志码:A文章编号:1006 -2394(2021)05 -0031 -04 Design and Implementation of Automatic Tracking CarHU Taotao1,GENG Xuan2,PANG Xin2(1. Taiyuan Normal University,Taiyuan 030619, China;2. Shanxi Engineering Vocation University,Taiyuan030031, China)Abstract :This paper designs an automatic tracking car.The track of the car is marked by0. 6 -0. 9m m thin wire, and 4 coins are placed on any straight wire section.The car can move along the wire track,accurately detect coins and give alarm.The driving time and distance are displayed.The car takes Arduino as the control core and uses T I LDC1000 inductor digital converter module as the metal tracking sensor combining with the drive module,power supply module and display module to complete the above requirements.The system has the characteristics of stable performance,accurate coin detection and fast driving speed.Key w ords:control chip;inductor digital converter;tracking car〇引言随着科学技术的不断发展与进步,机器人在人们日常生产与生活中的应用也越来越广泛。
智能寻迹小车总结报告08电本3袁坤朱昊汪武杰1.设计任务:设计并制作了一个智能电动车,通过车前方的感光模块引导小车沿黑色路径运行,并记录小车整个运动过程的时间。
(1)感光模块引导小车运动:小车黑色轨迹白色背景图1如图1,小车运行在以白色背景的黑色轨迹上。
小车在整个运行过程中沿黑色轨迹运动,当黑色轨迹向左转时,小车能够自动左转弯,左转弯灯亮;当黑色轨迹向右转时,小车能够自动右转弯,右转弯灯亮。
(2)小车能记录整个运行过程的时间:在小车开始运行时,单片机控制计时,当小车收到停止指令后,计时器停止计时,并通过小车上的数码管显示小车整个运行过程的时间。
2.程序框图寻迹小车的主程序如下3.系统的具体设计与实现根据设计任务要求,并且根据我们自己的需要而附加的功能,该电路的总体框图可分为几个基本的模块,框图如(图2)所示:红外传感模块3.1设计中选用红外传感器来准确检测黑色寻迹线。
共设置2个传感器,传感器检测到黑色的寻迹线时,输出逻辑电平1,检测不到黑色寻迹线时,输出逻辑电平0。
在小车正前方中间安装两个标号是1号和2号的传感器用于定位寻迹线中心线,如图。
实物图:由电路图可以看出,在整个运行过程中,红外线发射管一直工作,发出红外线,由于黑色对红外线的反射量很小,而白色背景对红外的反射量很大,这样经过红外接收管的电压值的不同,可以判断出小车的运行情况。
当小车在黑色轨迹上正常运行时,1号和2号传感器输出1,当小车右偏时,2号由输出1转变为0,此时单片机驱动电机模块,调控小车左右两轮的转速,调整车身向左转;当小车左偏时,1号由输出1转变为0,单片机调控小车车身向右转。
传感器部分是小车的“眼睛”,只有通过它的引导小车才能正常在轨道上运行。
在小车的调试过程中,遇到了一些问题。
第一,两个传感器中的红外管有时一直感光,有时感光很差;第二,在黑线上运行时,在一些弯路传感器可以判断出来,一些反应迟钝,并且恢复直行的时候,传感器却依然保持上一状态运行。
2023-10-29•agv概述•agv关键技术•agv应用场景•agv发展趋势与挑战目录01 agv概述agv定义导引原理AGV通过自身搭载的传感器识别周围环境特征,如二维码、RFID 等,实现定位和导引。
导引方式包括电磁导引、激光导引、惯性导引、视觉导引等。
自动导引小车(AGV)一种能够自动导引、自动行驶、自动避障的小型电动车辆,主要用于物流、仓储、制造等场景。
美国通用汽车公司首次使用AGV用于生产线上的物料运输。
20世纪50年代欧洲和日本开始研究和应用AGV技术。
20世纪70年代AGV技术逐渐成熟,开始广泛应用于工业自动化领域。
20世纪80年代随着物联网技术的发展,AGV技术逐渐智能化、网络化。
21世纪初agv发展历程包括潜伏式、牵引式、叉车式、背负式等,根据应用场景和需求进行选择。
AGV类型AGV优点AGV缺点自动化程度高、灵活性好、可实现高效运输、减少人力成本等。
对环境要求高、需要预先铺设导引路径、对硬件设备依赖性强等。
03agv分类及优缺点020102 agv关键技术通过激光雷达扫描环境中的物体,根据反射回来的信号计算距离,实现精确的定位和导航。
导航技术激光雷达导航利用陀螺仪和加速度计等惯性传感器,通过测量加速度和角速度等信息,实现相对位置的推算和导航。
惯性导航通过在路径上设置电磁感应器,感应agv上的电磁信号,实现定位和导航。
电磁导航03基于机器学习的路径规划利用机器学习算法,学习历史路径数据,预测未来可能的最优路径,实现agv的路径规划。
路径规划技术01基于规则的路径规划根据预设的规则和约束条件,计算出可行路径,实现agv的路径规划。
02基于搜索的路径规划通过搜索算法,搜索出满足条件的最优路径,实现agv的路径规划。
用于获取周围环境的距离信息,实现精确的定位和避障。
激光雷达传感器用于获取agv的加速度和角速度信息,实现运动状态的监测和导航。
惯性传感器用于获取电磁信号的信息,实现路径的识别和导航。
基于STM32的智能循迹避障小车【摘要】本文介绍了一款基于STM32的智能循迹避障小车。
在引言中,我们简要介绍了背景信息,并阐明了研究的意义和现状。
在我们详细讨论了STM32控制系统设计、循迹算法实现、避障算法设计、硬件设计和软件设计。
在结论中,我们分析了实验结果,讨论了该小车的优缺点,并展望了未来的发展方向。
通过本文的研究,我们验证了该智能小车在循迹和避障方面的性能,为智能移动机器人领域的研究提供了新的思路和方法。
【关键词】关键词:STM32、智能小车、循迹避障、控制系统、算法设计、硬件设计、实验结果、优缺点、未来展望1. 引言1.1 背景介绍智能循迹避障小车是一种基于STM32单片机的智能机器人,在现代社会中起着越来越重要的作用。
随着科技的发展,人们对智能机器人的需求也日益增长。
智能循迹避障小车不仅可以帮助人们完成一些重复性、繁琐的任务,还可以在一些特殊环境下代替人类进行工作,提高效率和安全性。
循迹功能使智能小车能够按照特定的路径行驶,可以应用于自动导航、自动驾驶等领域。
而避障功能则使智能小车具有避开障碍物的能力,适用于环境复杂、存在风险的场所。
通过将这两个功能结合起来,智能循迹避障小车可以更好地适应各种复杂环境,完成更多的任务。
本文旨在探讨基于STM32的智能循迹避障小车的设计与实现,通过研究其控制系统设计、循迹算法实现、避障算法设计、硬件设计和软件设计等方面,为智能机器人领域的发展做出一定的贡献。
1.2 研究意义智能循迹避障小车的研究旨在利用先进的STM32控制系统设计和算法实现,实现小车的智能循迹和避障功能,从而提高小车的自主导航能力和适应性。
研究意义主要包括以下几个方面:1. 提升科技水平:通过研究智能循迹避障小车,促进了在嵌入式系统领域的发展,推动了智能控制和算法设计的进步,增强了人工智能在实际应用中的影响力。
2. 提高生产效率:智能循迹避障小车可以应用于仓储物流、工业自动化等领域,可以替代人工完成重复、枯燥的任务,提高了生产效率和效益。
agv路径算法
AGV路径算法是指一种自动导航小车的路径规划算法。
AGV是自
动导航小车的简称,它们可以在不需要人工干预的情况下自主地行驶,完成一系列物流任务。
路径规划是AGV的重要任务之一,它需要根据地图、任务、机器人等信息,计算出最优路径,从而保证机器人在最短的时间内到达目的地。
AGV路径算法的基本思路是将整个地图划分成一个个小区域,然后根据任务需求,计算从当前位置到目标位置的最短路径。
这些算法通常采用A*算法、Dijkstra算法、深度优先搜索等优化算法,以达
到最优性。
在实际应用中,AGV路径算法需要考虑多种因素,例如机器人的大小、载重、最大速度、转弯半径等因素,以及地图中的障碍物、交通流量等情况。
此外,路径算法还需要考虑机器人之间的协调,避免碰撞和拥堵。
随着物流自动化的不断发展,AGV路径算法也在不断地优化和改进。
新的算法不断涌现,从而使得AGV能够更加高效地完成物流任务。
- 1 -。
2010-2011 第二学期光电传感技术院系电子工程学院光电子技术系班级科技0803班姓名熊浩学号********班内序号10考核成绩基于光电传感器的自动循迹小车设计摘要新一代汽车研究与开发将集中表现在信息技术、微电子技术、计算机技术、智能自动化技术、人工智能技术、网络技术、通信技术在汽车上的应用。
智能汽车是是现代汽车发展的方向。
本系统采用光电传感器作为道路信息的采集传感器,单片机为控制系统的核心来处理信号和控制小车行驶。
MC9S12系列单片机在汽车电子控制领域得到广泛应用。
本论文是利用Freescale的MC9S12XS128微控制器对智能车系统进行设计。
智能车系统设计包括硬件电路和控制软件系统的设计。
关键字:智能车;光电传感器;自动循迹;控制算法;PID;引言自动循迹智能车是一个集环境感知、规划决策、自动驾驶等多种功能于一体的综合系统。
除了特殊潜在的军用价值外,还因其在公路交通运输中的应用前景受到很多国家的普遍关注。
近年来其智能化研究取得了很大进展,而其智能主要表现为对路径的自动识别和跟踪控制上。
路径跟踪问题的研究正吸引着国内外计算机视觉、车辆工程与控制领域学者们越来越多的注意,得出了很多有意义的成果。
这些方法可分为两类,即传统控制方法和智能控制方法。
传统控制方法多建立在精确数学模型基础上,而自动引导车系统具有复杂的动力学模型,是一个非线性、时延系统,由于各种不确定因素的存在,精确的数学模型难以获得,只能采用理想化模型来近似,所得到控制律较为繁琐,给实际应用造成不便。
随着近年智能控制论的兴起,一些智能控制方法如模糊控制,神经网络等逐步走向完善,尤其是模糊控制理论在很多地方显示出相当的应用价值,以此为基础,设计新概念的控制器受到人们很大关注。
同时,人们也正考虑这在各种方面包括硬件和软件的综合技术开发和研究探索,智能车的技术将会趋于成熟并得到广泛的应用。
本课题利用传感器识别路径,将赛道信息进行存储,利用单片机控制智能车行进。
单片机的智能小车设计
单片机的智能小车设计是将单片机应用于智能小车的研发。
它的主要目的是让智能小车可以智能地运动,例如自动导航,路径规划和跟随功能等。
为了使智能小车具有智能行走的能力,需要将单片机应用于智能小车设计。
单片机作为一种嵌入式多功能控制器,具有体积小、速度快、功耗低和可靠性高等特点,它可以正确地执行指定程序,从而控制智能小车的运动。
使用单片机来控制智能小车,我们必须安装有电机驱动控制子系统、传感器子系统以及单片机的CPU子系统。
这三个子系
统之间非常重要,并能够协同工作。
电机驱动子系统包括驱动电机,用来控制智能小车的前进后退运动;传感器子系统主要用于检测外界环境信息,以便对智能小车的运动做出反应;CPU子系统能根据由传感器子系统检
测到的外界环境信息,结合人工写好的控制程序,实时给出正确的控制信号,以实现智能小车的自动行走。
此外,智能小车还可以安装有相关的软件,例如避障软件,路径规划软件,声控软件等。
这些软件能够根据实际情况为智能小车提供正确的智能指导,以便使智能小车更加智能地行走。
通过以上这些子系统的配合,单片机智能小车就可以实现自动识别路径、避障、跟随等功能,从而达到智能行走的目的。
可以说,单片机智能小车设计已经大大提高了智能小车的功能性、
实用性以及可靠性,它不仅提高了智能小车的功能,而且简化了智能小车的控制方式,同时也降低了设计成本。
引言:智能小车红外循迹技术是一种基于红外传感器的自动导航技术,它可以使小车能够根据外界环境发出的红外信号进行导航,实现自动巡航。
本文将从红外循迹技术的原理、应用场景、具体实现方法、优缺点以及未来发展等方面详细讨论。
概述:红外循迹技术是智能小车领域中的重要技术之一,通过红外传感器感知地面上的红外信号,从而确定小车的行驶路径。
该技术常用于自动导航和避障等场景中,具有较高的可靠性和稳定性。
下面将详细探讨智能小车红外循迹技术的相关内容。
正文内容:一、红外循迹技术的原理1.红外传感器的工作原理2.红外信号与地面的交互3.红外循迹算法的实现二、红外循迹技术的应用场景1.工业自动化领域中的应用2.家庭服务中的应用3.自动驾驶车辆中的应用三、智能小车红外循迹技术的具体实现方法1.硬件方案1.1红外传感器选择与安装1.2控制模块设计与搭建1.3电源管理与供电设计2.软件方案2.1红外信号的数据处理2.2循迹算法的设计与实现2.3控制系统的编程与调试四、智能小车红外循迹技术的优缺点1.优点1.1精确度高1.2反应速度快1.3成本较低2.缺点2.1受环境因素影响较大2.2对于不同地面的适应性较差2.3容易受到干扰五、智能小车红外循迹技术的未来发展1.红外循迹技术在自动驾驶领域的应用前景2.其他导航技术与红外循迹技术的结合3.红外传感器的性能改进与创新总结:智能小车红外循迹技术是一种基于红外传感器的自动导航技术,其原理是通过感知地面上的红外信号来确定小车的行驶路径。
红外循迹技术广泛应用于工业自动化、家庭服务和自动驾驶车辆等领域。
该技术具有精度高、反应速度快以及成本低的优点,但也存在受环境因素影响较大、对不同地面适应性差以及易受干扰等缺点。
未来,红外循迹技术在自动驾驶领域的应用前景广阔,并且可以通过与其他导航技术的结合以及红外传感器的性能改进与创新来进一步提升其应用效果和可靠性。
摘要本设计主要有单片机模块、传感器模块、电机驱动模块以及电源模块组成,小车具有自主寻迹的功能。
本次设计采用STC公司的89C52单片机作为控制芯片,传感器模块采用红外光电对管和比较器实现,能够轻松识别黑白两色路面,同时具有抗环境干扰能力,电机模块由L298N芯片和两个直流电机构成,组成了智能车的动力系统,电源采用的直流电池,经过系统组装,从而实现了小车的自动循迹的功能。
关键词智能小车 STC89C52单片机 L298N 红外光对管1绪论随着科学技术的发展,机器人的设计越来越精细,功能越来越复杂,智能小车作为其的一个分支,也在不断发展。
在近几年的电子设计大赛中,关于小车的智能化功能的实现也多种多样,因此本次我们也打算设计一智能小车,使其能自动识别预制道路,按照设计的道路自行寻迹。
2设计任务与要求采用MCS-51单片机为控制芯片(也可采用其他的芯片),红外对管为识别器件、步进电机为行进部件,设计出一个能够识别以白底为道路色,宽度10mm左右的黑色胶带制作的不规则的封闭曲线为引导轨迹并能沿该轨迹行进的智能寻迹机器小车。
3方案设计与方案选择3.1硬件部分可分为四个模块:单片机模块、传感器模块、电机驱动模块以及电源模块。
3.1.1单片机模块为小车运行的核心部件,起控制小车的所有运行状态的作用。
由于以前自己开发板使用的是ATMEL公司的STC89C52,所以让然选择这个芯片作为控制核心部件。
STC89C52是一种低损耗、高性能、CMOS八位微处理器,片内有4k字节的在线可重复编程、快速擦除快速写入程序的存储器,能重复写入/擦除1000次,数据保存时间为十年。
其程序和数据存储是分开的。
3.1.2传感器模块方案一:使用光敏电阻组成光敏探测器采集路面信息。
阻值经过比较器输出高低电平进行分析,但是光照影响很大,不能稳定工作。
方案二:使用光电传感器来采集路面信息。
使用红外光电对管,其结构简明,实现方便,成本低廉,没有复杂的图像处理工作,因此反应灵敏,响应时间少。
小车自动跟踪的系统设计与实现随着科技的不断发展,自动化技术在日常生活中的应用越来越广泛。
小车自动跟踪系统是其中的一个应用领域,它能够使小车根据特定的目标进行自动追踪和移动。
在设计和实现小车自动跟踪系统时,需要考虑以下几个方面:1. 检测与感知技术:为了使小车能够准确地追踪目标,必须能够检测到目标的位置信息。
常用的检测与感知技术包括计算机视觉、红外线传感器、超声波传感器等。
这些技术可以提供目标的位置、距离和方向等数据,用于小车的控制与导航。
2. 控制与导航算法:在小车追踪目标的过程中,需要设计控制与导航算法,使小车能够根据目标的位置数据进行合理的移动和转向。
常用的算法包括PID控制、模糊控制、自适应控制等。
这些算法可以根据目标位置的变化来调整小车的动作,使其能够始终保持在目标附近。
3. 通信与协调机制:在实现多个小车协同追踪目标的场景中,需要设计合适的通信与协调机制。
小车之间可以通过无线通信技术进行数据交换和协调合作,从而实现更加高效和准确的目标追踪。
常用的通信方式包括蓝牙、Wi-Fi、RFID等。
4. 电力与能源管理:小车自动跟踪系统通常需要使用电池作为能源供应。
为了延长小车的工作时间,需要设计有效的电力与能源管理机制。
可以使用低功耗的电子组件,优化电路设计,采用能量回收技术等来减少能源消耗。
除了上述的关键技术要素,还可以考虑其他附加功能和优化措施,以提升小车自动跟踪系统的性能和用户体验。
例如,可以加入避障功能,使小车能够避开障碍物;可以设计智能规划路径算法,使小车能够选择最优路径追踪目标;可以增加声音和光线提示,提醒用户系统的工作状态等。
在实际实现过程中,可以参考已有的相关技术和产品,如ROS机器人操作系统、基于OpenCV的图像处理算法、Arduino等开源硬件平台。
利用这些资源,可以加快系统的开发和调试,实现小车自动跟踪系统的设计与实现。
小车自动跟踪系统具有广泛的应用前景,可以用于工业自动化、智能巡检、无人物流等领域。
AGV小车一、AGV小车的基本介绍AGV小车指装备有电磁或光学等自动导引装置,能够沿规定的导引路径行驶,具有安全保护以及各种移载功能的运输车,工业应用中不需驾驶员的搬运车,以可充电之蓄电池为其动力来源。
一般可通过电脑来控制其行进路线以及行为,或利用电磁轨道来设立其行进路线,电磁轨道黏贴於地板上,无人搬运车则依靠电磁轨道所带来的讯息进行移动与动作。
二、AGV小车的主要种类1.电磁感应引导式AGV电磁感应式引导一般是在地面上,沿预先设定的行驶路径埋设电线,当高频电流流经导线时,导线周围产生电磁场,AGV上左右对称安装有两个电磁感应器,它们所接收的电磁信号的强度差异可以反映AGV偏离路径的程度。
2.激光引导式AGV该种AGV上安装有可旋转的激光扫描器,在运行路径沿途的墙壁或支柱上安装有高反光性反射板的激光定位标志,AGV依靠激光扫描器发射激光束,然后接受由四周定位标志反射回的激光束,车载计算机计算出车辆当前的位置以及运动的方向,通过和内置的数字地图进行对比来校正方位,从而实现自动搬运。
3.视觉引导式AGV视觉引导式AGV是正在快速发展和成熟的AGV,该种AGV上装有CCD摄像机和传感器,在车载计算机中设置有AGV欲行驶路径周围环境图像数据库。
三、AGV小车的引导方式1.电磁感应引导利用低频引导电缆形成的电磁场及电磁传感装置引导无人搬运车的运行。
2.激光引导利用激光扫描器识别设置在其活动范围内的若干个定位标志来确定其坐标位置,从而引导AGV运行。
3.磁铁--陀螺引导利用特制磁性位置传感器检测安装在地面上的小磁铁,再利用陀螺仪技术连续控制无人搬运车的运行方向。
四、AGV小车的基本结构车体——由车架和相应的机械装置所组成,是AGV 的基础部分,是其他总成部件的安装基础。
电池组和充电装置——AGV 常采用24V 和48V 直流蓄电池为动力。
目前常用的是铅酸和镍镉电池。
驱动装置——由车轮、减速器、制动器、驱动电机及速度控制器等部分组成,是控制AGV 正常运行的装置。
智能循迹小车设计方案智能循迹小车方案自动化06--2班2009年6月5日自动寻迹小车摘要本寻迹小车是以PCB电路板为车架,AT89S51单片机为控制核心,加以直流电机、光电传感器和电源电路以及其他电路构成。
系统由AT89S51通过IO口控制小车的前进后退以及转向。
寻迹由RPR2…各省主要风电塔架制造厂名单序号123456789101112131415161718192021222324 公司名称甘肃玉门锦辉长城甘肃科耀电力有限公司北车集团兰州金牛轨道交通装备有限公司河北强盛风电设备有限公司保定天威电气设备结构有限公司…学习“七.一”讲话精神,深入剖析“四种危险” 胡锦涛在党庆90年大会上,总结了建党以来的“三件大事”和“两大成果”,提出了往后“两个宏伟目标”,指出中共面临“四种考验”和存在“四种危险”。
整篇讲话与时俱进,有新意,有不少新提法,是一篇回顾历史、总结经…自动化06--2班2009年6月5日自动寻迹小车摘要本寻迹小车是以PCB电路板为车架,AT89S51单片机为控制核心,加以直流电机、光电传感器和电源电路以及其他电路构成。
系统由AT89S51通过IO口控制小车的前进后退以及转向。
寻迹由RPR220型光电对管完成。
关键词:AT89S51 直流电机光电传感器自动寻迹电动车AbstractThe smart car is aluminum alloy for the chassis, AT89S51 MCU as its core, including motor and servo, plus photoelectric sensors, as well as other flame sensor and power circuit. MCU controls the car turning back forward or running on the white line. RPR220 reflective photo sensor seeks the trace. Far infrared flame sensor tracks the flame. In addition, the SCM system with Sunplus for voice broadcast can remind current status. The system transmits information through DF module. The car’s status will be transmitted to the Remote Console. OCMJ4X8C LCDdisplay and 2 keys for start control.Keywords: AT89S51 Motor Servo Photo sensor Electrical fire engines一、系统设计1、设计要求(1)寻线跑(2)显示小车当前的速度(3)显示时间并记录行驶距离(4)自动避开障碍物(5)其他2、小车循迹的原理这里的循迹是指小车在地板白纸上循黑线行走,通常采取的方法是红外探测法。
摘要本设计主要有单片机模块、传感器模块、电机驱动模块以及电源模块组成,小车具有自主寻迹的功能。
本次设计采用STC公司的89C52单片机作为控制芯片,传感器模块采用红外光电对管和比较器实现,能够轻松识别黑白两色路面,同时具有抗环境干扰能力,电机模块由L298N芯片和两个直流电机构成,组成了智能车的动力系统,电源采用7.2V的直流电池,经过系统组装,从而实现了小车的自动循迹的功能。
关键词智能小车STC89C52单片机L298N 红外光对管1绪论随着科学技术的发展,机器人的设计越来越精细,功能越来越复杂,智能小车作为其的一个分支,也在不断发展。
在近几年的电子设计大赛中,关于小车的智能化功能的实现也多种多样,因此本次我们也打算设计一智能小车,使其能自动识别预制道路,按照设计的道路自行寻迹。
2设计任务与要求采用MCS-51单片机为控制芯片(也可采用其他的芯片),红外对管为识别器件、步进电机为行进部件,设计出一个能够识别以白底为道路色,宽度10mm 左右的黑色胶带制作的不规则的封闭曲线为引导轨迹并能沿该轨迹行进的智能寻迹机器小车。
3方案设计与方案选择3.1硬件部分可分为四个模块:单片机模块、传感器模块、电机驱动模块以及电源模块。
3.1.1单片机模块为小车运行的核心部件,起控制小车的所有运行状态的作用。
由于以前自己开发板使用的是ATMEL公司的STC89C52,所以让然选择这个芯片作为控制核心部件。
STC89C52是一种低损耗、高性能、CMOS八位微处理器,片内有4k字节的在线可重复编程、快速擦除快速写入程序的存储器,能重复写入/擦除1000次,数据保存时间为十年。
其程序和数据存储是分开的。
3.1.2传感器模块方案一:使用光敏电阻组成光敏探测器采集路面信息。
阻值经过比较器输出高低电平进行分析,但是光照影响很大,不能稳定工作。
方案二:使用光电传感器来采集路面信息。
使用红外光电对管,其结构简明,实现方便,成本低廉,没有复杂的图像处理工作,因此反应灵敏,响应时间少。
自动识别路径的智能小车设计报告 来源:kaoshi365 作者:kaoshi365 日期:2009年11月12日 访问次数: 625次 论文关键字:智能小车 电机 驱动 L298 自动循迹 传感器 算法 论文摘要:本系统采用存储空间较大的AT89S52作为主控制芯片,电动车电机驱动采用L298N芯片,结合DS10C4光电开关控制电动小汽车的自动寻路,快慢速行驶和转向,三者的结合使小车更加智能化,自动化。整个系统在设计中注意低功耗处理和力求高性价比等细节,电路结构简单,可靠性能高,无论在结构和技术上都具有较好的科学性。
本设计主要特点: 1. 高效的L298电机驱动电路,提高电源利用率。 2.利用软件实现PWM调速的方法。代替了专用集成芯片电路、通用数字组合电路、分立元器件组成电路、单片机系统控制电路、CPLD系统等。
一、模块方案比较与论证: 1. 车体设计 方案一:购买玩具电动车。购买的玩具电动车具有组装完整的车架车轮。由于装配紧凑,使得各种所需电路的安装十分方便,看起来也比较美观。但玩具电动车一般都价格昂贵。
方案二:自己制作电动车。一般的说来,自己制作的车体比较粗糙,对于白色基板上的道路面行驶,车身重量以及平衡都要有精确的测量,而且也要控制好小车行驶的路线和转弯的力矩及角度,这些都比较难良好地实现。依靠电机与相关齿轮一起驱动,能适应题目中小车准确前进、后退、转弯的要求,
基于以上分析,我们选择了方案二 2.电机模块 方案1:采用步进电机作为该系统的驱动电机。由于其转过的角度可以精确的定位,可以实现小车前进路程和位置的精确定位。虽然采用步进电机有诸多优点,步进电机的输出力矩较低,随转速的升高而下降,且在较高转速时会急剧下降,其转速较低,不适用于小车等有一定速度要求的系统。经综合比较考虑,我们放弃了此方案。
方案 2:直流电机:直流电机的控制方法比较简单,只需给电机的两根控制线加上适当的电压即可使电机转动起来,电压越高则电机转速越高。对于直流电机的速度调节,可以采用改变电压的方法,也可采用PWM调速方法。PWM调速就是使加在直流电机两端的电压为方波形式,通过改变方波的占空比实现对电机转速的调节。
基于以上分析,我们选择了方案二,使用直流电机作为电动车的驱动电机。 3.电机驱动模块 方案 1:采用SM6135W电机遥控驱动模块。SM6135W是专为遥控车设计的大规模集成电路。能实现前进、后退、向右、向左、加速五个功能,但是其采用的是编码输入控制,而不是电平控制,这样在程序中实现比较麻烦,而且该电机模块价格比较高。
方案 2:采用电机驱动芯片L298N。L298N为单块集成电路,高电压,高电流,四通道驱动,可直接的对电机进行控制,无须隔离电路。通过单片机的I/O输入改变芯片控制端的电平,即可以对电机进行正反转,停止的操作,非常方便,亦能满足直流减速电机的大电流要求。调试时在依照上表,用程序输入对应的码值,能够实现对应的动作。表1是其使能、输入引脚和输出引脚的逻辑关系。 表1 L298N的引脚和输出引脚的逻辑关系
EN A(B) IN1(IN3) IN2(IN4) 电机运行情况 H H L 正转 H L H 反转 H 同IN2(IN4) 同IN2(IN4) 快速停止 L X X 停止
基于以上分析,我们选择了方案二,用L298N来做为电机的驱动芯片。 4.寻迹传感器模块 方案1:采用发光二极管+光敏电阻,该方案缺点:易受到外界光源的干扰,有时甚至检测不到黑线,主要是因为可见光的反射效果跟地表的平坦程度、地表材料的反射情况均对检测效果产生直接影响。克服此缺点的方法:采用超高亮度的发光二极管能降低一定的干扰,但这又会增加检测系统的功耗。
方案2:脉冲调制的反射式红外发射接收器。由于采用带有交流分量的调制信号,则可大幅度减少外界的干扰;此外红外发射接收管的工作电流取决于平均电流,如果采用占空比小的调制信号,在平均电流不变的情况下,瞬时电流很大(50~100mA)(ST-188允许的最大输入电流为50mA),则大大提高了信噪比。此种测试方案反应速度大约在5us。
方案3:采用CCD传感器,此种方法虽然能对路面信息进行准确完备的反应,但它存在信息处理满,实时性差等缺点,因此若采用CCD传感器,无疑会加重单片机的处理负担,不利于实现更好的控制策略。
根据以上分析我们采用方案2
5.控制器模块 方案1:采用凌阳的SPCE061A小板作为主控制芯片,而且可以采用凌阳的小车模组,可以很快的完成其基本功能,当是用该小板存在在一定的局限性,较难扩张功能,而且各个模块的拼凑,没有比集成在一块板的稳定性高。
方案2:采用AT89S52作为主控制芯片,该芯片有足够的存储空间,可以方便的在线ISP下载程序,能够满足该系统软件的需要,该芯片提供了两个计数器中断,对于本作品系统已经足够,采用该芯片可以比较灵活的选择各个模块控制芯片,能够准确的计算出时间,有很好的实时性。
基于以上分析,我们选择了方案2
二,采用AT89S52作为电动车的主控制芯片。 6.电源模块 在本系统中,需要用到的电源有单片机的5V,L298N芯片的电源5V和电机的电源7—15V。所以需要对电源的提供必须正确和稳定可靠。
方案1:用9V的锌电源给前、后轮电机供电,然后使用7805稳压管来把高电压稳成5V分别给单片机和电机驱动芯片供电。这种接法比较简单,但小车的电路功耗过大会导致后轮电机动力不足。
方案2:采用双电源。为了确保单片机控制部分和后轮电机驱动的部分的电压不会互相影响,要把单片机的供电和驱动电路分开来,,即:用6节干电池7.2V来驱动电机芯片,然后用7805稳压管来稳成5V供给单片机,后轮电机的电源用3V供电,这样有助于消除电机干扰,提高系统的稳定性。
基于以上分析,我们选择了方案二。 7.最终方案 二、系统总体设计: 1.系统工作原理及功能简介:本系统利用单片机AT89S52单片机作为本系统的主控模块,该单片机可以将从传感器的输出信号得到外界的信息,然后在程序中控制单片机对电动车上的直流电机的输出,从而实现电动车的前进以及转弯等循迹行驶。
2.系统框架图 3.理论分析与计算 4.系统主要模块设计: (1)电源: 为确保小车在行驶过程中各部件均能正常工作且相互之间不受影响,我们可使用了两个电源为两个主要模块提供电压。分别是由转弯电机、单片机和光电传感器组成的总电路电源模块以及后轮驱动电源模块。
(2)转弯与路径出错识别: 小车在行驶过程中会遇到以下两种路况: ① 当小车由直道高速进入弯道时,转角方向和车速应根据弯道的曲率迅速做出相应的改变,原则是弯道曲率越大则方向变化角度越大。
② 当小车遇到十字交叉路段或是脱离轨迹等特殊情况时,智能车应当保持与上次正常情况一致的方向行驶。
(3)光电传感器: 光电传感分布格局: 路径识别方案:电开关脱离轨道时,等待外面任意一只检测到黑线后,做出相应的转向调整,直到中间的光电开关重新检测到黑线(即回到轨道)再恢复正向行驶。现场实测表明,虽然小车在寻迹过程中有一定的左右摇摆。但只要控制好行驶速度就可保证车身基本上接近于沿靠轨道行驶。
四、系统硬件电路设计 (1)系统整体电路图如下: (2)光电传感器电路 (3)电源电路 五、软件代码设计 1.软件算法设计: (1)传感器数据处理及寻迹程序总体流程: 主程序主要起到一个导向和决策功能。其设计思路根据小车所处位置的不同,确定小车的任务。在黑线轨道上走直线时,对传感器的信号进行及时的判断,左边信号为零时控制电机左转,右边为零时控制电机右转。在弯道时,为了不冲出轨道,是左轮一直打偏,直到检测到右边信号为零时控制电机右转,当右信号为1时,继续使左轮一直偏。
(2)具体流程分析: 智能小车采用4个光学传感器置于小车前部,以此判断如何控制舵机转向. 程序不停判断0~3传感器的值,当SENSOR1==1与SENSOR0==0时,小车为图(I)情况,此时应控制舵机向右转,调用TurnRight()函数;当SENSOR0==1与SENSOR1==0时,小车为图(II)情况,此时应控制舵机向右转,调用TurnLeft()函数.
(I) (II) 但由于传感器比较灵敏,经实际测试,白色区域中可能存在杂色,传感器有可能扫描到白色区域中的黑色(如下图),为了避免判断错误,再没检测到需要转右或者转左后,进行延时,接着再次判断此时传感器情况,如果仍然为SENSOR1==1与SENSOR0==0(或者SENSOR0==1与SENSOR1==0)则可能判断在黑色跑道上,接着调用转右(转左)函数.不过,仍然有一定几率判断失误,当延时后,传感器刚好经过另一个杂色的情况,解决方法有待完善.
当前后传感器都为1(黑)时(如下图(III)),则认为小车在黑色跑道上,不需要进行转向,调RecoverBalance()函数,恢复平衡位置.
当前后传感器都为0(白)时(如下图(IV)),则认为传感器将离开跑道范围,为了另小车继续延黑色跑道行走,程序中的pre_dir变量保存最近一次转向方向(1为右,0为左),此时凭此变量来维持小车的转向.
2.主程序流程图: 3. 具体代码分析: //宏定义电机、舵机的输入端 #define ELE_MACHINER1_IN1 P0_0//舵机输入端口1 #define ELE_MACHINER1_IN2 P0_1//舵机输入端口2 #define ELE_MACHINER1_EN P2_7//舵机使能端 //宏定义光电传感器元件0至3 #define SENSOR_INPUT P2 //光电传感器总端口(逆时针排序)