电子技术基础知识
- 格式:docx
- 大小:41.33 KB
- 文档页数:8
大二电力电子技术基础知识点总结如下是大二电力电子技术基础知识点的总结:电力电子技术是电气工程领域的重要分支之一,它主要涉及电力电子器件和电力电子电路的设计与应用。
在大二的学习中,我们接触到了很多电力电子技术的基础知识点,这些知识点对于我们的学习和未来的工作都有着重要的意义。
下面是对这些知识点的总结:1. 电力电子器件电力电子器件是实现电力电子技术的基石,常见的电力电子器件有功率场效应管(MOSFET)、双极型晶体管(BJT)、绝缘栅双极型晶体管(IGBT)等。
这些器件具有不同的特性和应用场景,我们需要掌握它们的工作原理、特性参数以及选型和驱动方法。
2. 电力电子电路电力电子电路是电力电子技术的核心,其中包括直流-直流变换器、直流-交流变换器、交流-交流变换器等。
我们需要了解这些电路的结构和工作原理,掌握它们的控制方法、效率计算以及应用领域。
3. 开关功率器件开关功率器件是电力电子电路的关键组成部分,常见的开关功率器件有晶闸管(SCR)、双向可控硅(Triac)、发光二极管(LED)等。
了解开关功率器件的工作原理、特性和保护方法,能够更好地设计和应用电力电子电路。
4. 电力电子变换器电力电子变换器是实现电能的变换与调控的关键设备,常见的电力电子变换器有直流电压变换器、直流电流变换器、交流电压变换器等。
我们需要了解这些变换器的结构和动作原理,掌握它们的控制策略、效率计算以及在电力系统中的应用。
5. 短路保护与故障诊断在电力电子技术应用中,短路故障是常见的问题。
我们需要学习短路保护的原理和方法,能够设计和应用短路保护电路。
同时,故障诊断技术也十分重要,我们需要了解故障诊断的基本原理和方法,能够快速准确地分析和解决故障问题。
6. 可编程控制器(PLC)在电力电子技术中的应用近年来,可编程控制器在电力电子技术中的应用越来越广泛。
我们需要了解PLC的基本原理和应用技巧,能够利用PLC实现电力电子设备的自动控制和远程监控。
《电子技术基础》复习要点课程名称:《电子技术基础》适用专业:2018级电气工程及其自动化(业余)辅导教材:《电子技术基础》张志恒主编中国电力出版社复习要点第一章半导体二极管1.本征半导体❑单质半导体材料是具有4价共价键晶体结构的硅Si和锗Ge。
❑导电能力介于导体和绝缘体之间。
❑特性:光敏、热敏和掺杂特性。
❑本征半导体:纯净的、具有完整晶体结构的半导体。
在一定的温度下,本征半导体内的最重要的物理现象是本征激发(又称热激发),产生两种带电性质相反的载流子(空穴和自由电子对),温度越高,本征激发越强。
◆空穴是半导体中的一种等效+q的载流子。
空穴导电的本质是价电子依次填补本征晶体中空位,使局部显示+q电荷的空位宏观定向运动。
◆在一定的温度下,自由电子和空穴在热运动中相遇,使一对自由电子和空穴消失的现象称为复合。
当热激发和复合相等时,称为载流子处于动态平衡状态。
2.杂质半导体❑在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
◆P型半导体:在本征半导体中掺入微量的3价元素(多子是空穴,少子是电子)。
◆N型半导体:在本征半导体中掺入微量的5价元素(多子是电子,少子是空穴)。
❑杂质半导体的特性◆载流子的浓度:多子浓度决定于杂质浓度,几乎与温度无关;少子浓度是温度的敏感函数。
◆体电阻:通常把杂质半导体自身的电阻称为体电阻。
◆在半导体中,存在因电场作用产生的载流子漂移电流(与金属导电一致),还才能在因载流子浓度差而产生的扩散电流。
3.PN结❑在具有完整晶格的P型和N型半导体的物理界面附近,形成一个特殊的薄层(PN结)。
❑PN结中存在由N区指向P区的内建电场,阻止结外两区的多子的扩散,有利于少子的漂移。
❑PN结具有单向导电性:正偏导通,反偏截止,是构成半导体器件的核心元件。
◆正偏PN结(P+,N-):具有随电压指数增大的电流,硅材料约为0.6-0.8V,锗材料约为0.2-0.3V。
◆反偏PN结(P-,N+):在击穿前,只有很小的反向饱和电流Is。
电工电子技术基础知识点一、电工技术基础1. 电路基础- 电路定义:电流的路径,由电源、导线、负载和开关组成。
- 欧姆定律:电压(V)、电流(I)和电阻(R)之间的关系,V = I * R。
- 基本电路类型:串联电路、并联电路、混合电路。
2. 电源- 直流电源(DC):电压和电流方向恒定的电源。
- 交流电源(AC):电压和电流方向周期性变化的电源。
- 电池、发电机、变压器等都是常见的电源设备。
3. 导线与连接- 导线材料:铜、铝等,具有低电阻率。
- 导线规格:根据负载电流选择合适截面积的导线。
- 连接方式:焊接、压接、螺栓连接等。
4. 负载- 电阻性负载:如电热器、电阻器。
- 电容性负载:如电容器。
- 感性负载:如电动机、变压器。
5. 开关与控制- 开关类型:单刀单掷、单刀双掷、三刀双掷等。
- 控制元件:继电器、接触器、定时器等。
二、电子技术基础1. 电子元件- 被动元件:电阻器、电容器、电感器。
- 主动元件:二极管、晶体管、集成电路。
- 半导体材料:硅、锗等。
2. 数字电子基础- 数字信号:二进制信号,0和1表示低电平和高电平。
- 逻辑门:与门、或门、非门、异或门等。
- 触发器:RS触发器、D触发器、JK触发器等。
3. 模拟电子基础- 放大器:运算放大器、音频放大器、功率放大器。
- 振荡器:正弦波振荡器、方波振荡器。
- 滤波器:低通滤波器、高通滤波器、带通滤波器。
4. 电子测量与测试- 测量仪器:万用表、示波器、信号发生器。
- 测试方法:电压测量、电流测量、电阻测量。
5. 电子电路设计- 电路原理图设计:使用绘图软件绘制电路图。
- PCB布局:电路板设计,包括元件布局和走线。
- 电路仿真:使用软件模拟电路工作情况。
三、安全与维护1. 电工安全- 遵守电气安全规范。
- 使用个人防护装备。
- 定期检查电气设备。
2. 电子设备维护- 清洁电路板和元件。
- 定期更换老化元件。
- 存储环境要求:防潮、防尘、防静电。
数字电子技术基础知识数字电子技术是指应用数字技术来控制电子设备的技术。
它是研究电路的基础技术,它包括数字逻辑电路,数字系统,微处理器和微电子学。
数字电子技术的发展主要有两种:一种是按照数字电路处理信号,另一种是根据微处理器处理信息。
数字电子技术应用于计算机、汽车、媒体,视听娱乐等多方面。
数字电子技术基础知识主要涉及基本电子学知识,数字电子电路、数字电路设计等相关知识,以及数字系统分析、控制系统的设计原理及应用、数字信号处理等内容。
1、基本电子学知识:包括半导体物理特性、半导体电子学基础、晶体管原理、晶体管参数之间的关系、缓冲器的类型及作用、电路的建模等。
2、数字电子电路:包括基本的数字电路组成,如Grated Logic Elements、半桥、全带等;特定的数字电路,如时序时钟、同步和异步计数器、位移编码器、状态空间变换等;以及数字电路的活性化,如速率调制、抖动抑制、比较器以及归一化等。
3、数字电路设计:是利用计算机建立、模拟和仿真由多个电路模块组成的数字电路,它涉及到仿真、校验、重新定义和优化等技术,开发的软件会在系统中进行不断的修改和实施。
4、数字系统分析:利用数字信号处理来解决系统中的模型分析问题,它涉及到系统模型分析、系统优化、系统故障诊断等问题,以达到系统分析和控制的目的。
5、控制系统的设计原理及应用:分析和设计建立的控制系统,如控制系统的建模、实时微处理器、线性系统的状态控制、步进控制、PID控制,以及artificial- intelligence控制等。
6、数字信号处理:利用数字信号处理技术,将不同信号格式的信号经过数字信号处理处理器,实现滤波、压缩、提取、监控等功能,以达到优化信号处理效果。
完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。
2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。
3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。
三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。
2.共集电极放大电路---具有电压跟随和电流跟随的作用。
3.共基极放大电路---具有电压放大的作用,输入电阻较低。
4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。
四.三极管的应用1.放大器---将弱信号放大为较强的信号。
2.开关---控制大电流的通断。
3.振荡器---产生高频信号。
4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。
模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。
2.半导体具有光敏、热敏和掺杂特性。
3.本征半导体是纯净的具有单晶体结构的半导体。
4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。
5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。
根据掺杂元素的不同,可分为P型半导体和N型半导体。
6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。
7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。
8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。
二.半导体二极管半导体二极管是由PN结组成的单向导电器件。
1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。
2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。
3.分析半导体二极管的方法包括图解分析法和等效电路法等。
三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。
电子信息技术的基础知识电子信息技术是指利用电子设备和电子信号进行信息的获取、传输、处理和存储的一门学科。
在当今高度发达的信息社会中,电子信息技术已经成为各行各业的基础工具。
本文将介绍几个电子信息技术的基础知识。
第一,电子元器件。
电子元器件是构成电子设备的基本组成部分,包括电阻、电容、电感、二极管、三极管等。
电阻可以控制电流的流动,电容可以储存电荷,电感可以储存电能,二极管可以实现电流的单向导通,三极管可以放大电信号。
了解这些基础元器件的特性和工作原理,是从事电子信息技术的基础。
第二,数字电路。
数字电路是由逻辑门和触发器等基本逻辑元件构成的电路。
逻辑门包括与门、或门、非门等,用于实现逻辑运算。
触发器可以储存和传递信息。
数字电路在计算机、通信和控制系统中起着重要的作用。
了解数字电路的基础知识,可以帮助我们理解计算机的工作原理、编写程序以及进行逻辑设计。
第三,模拟电路。
模拟电路是用于信号的处理和放大的电路。
常见的模拟电路包括放大器、滤波器、振荡器等。
放大器可以放大电信号,滤波器可以去除干扰信号,振荡器可以产生稳定的振荡信号。
模拟电路广泛应用于音频、视频、通信等领域。
了解模拟电路的基础知识,可以帮助我们设计和优化电路,提高信号质量和系统性能。
第四,通信原理。
通信原理是研究信息的传输和交换的理论。
常见的通信原理包括调制解调、编码解码、传输介质和通信协议等。
调制是将数字信号转换为模拟信号,解调是将模拟信号转换为数字信号。
编码是将信息转换为具有一定规则的数字序列,解码是将数字序列转换为原始信息。
传输介质是信息传输的媒介,通信协议是信息交换的规范。
了解通信原理的基础知识,可以帮助我们进行网络配置和通信系统的设计。
第五,数字信号处理。
数字信号处理是用数字计算机和数学算法对信号进行处理和分析的技术。
常见的数字信号处理包括滤波、谱分析、图像处理等。
滤波可以去除噪声和干扰,谱分析可以分析信号的频谱特性,图像处理可以对图像进行增强和压缩。
电子学基础知识电子学是一门研究电子的产生、控制、传输、处理和应用的学科。
它在现代科技中扮演着至关重要的角色,从我们日常使用的电子设备到复杂的通信系统、计算机技术,无一不依赖于电子学的原理和技术。
接下来,让我们一起走进电子学的世界,了解一些基础的知识。
一、电子与电荷要理解电子学,首先得明白电子和电荷的概念。
电子是一种带有负电荷的基本粒子,它的电荷量非常小。
电荷则是物质的一种基本属性,分为正电荷和负电荷。
同种电荷相互排斥,异种电荷相互吸引。
当物体失去电子时,它就带有正电荷;当物体获得电子时,它就带有负电荷。
电荷的流动就形成了电流,这是电子学中一个非常重要的概念。
二、电路电路是电流流通的路径,它由电源、导线、开关和负载等组成。
电源提供电能,比如电池或者发电机。
导线用来传输电能,开关可以控制电路的通断,而负载则是消耗电能的设备,比如灯泡、电阻器、电动机等。
电路有两种基本类型:串联电路和并联电路。
在串联电路中,电流只有一条路径,各个元件依次连接;而在并联电路中,电流有多条路径,各个元件并列连接。
三、电阻电阻是电路中阻碍电流流动的元件,它的单位是欧姆(Ω)。
电阻的大小取决于材料的性质、长度、横截面积以及温度等因素。
不同的电阻材料具有不同的电阻特性。
常见的电阻有定值电阻和可变电阻。
定值电阻的阻值是固定不变的,而可变电阻的阻值可以通过调节来改变。
电阻在电路中起到限流、分压等作用,比如我们通过调节变阻器的阻值来控制灯泡的亮度。
四、电容电容是储存电荷的元件,它的单位是法拉(F)。
电容的大小取决于两个电极板的面积、距离以及中间介质的性质。
电容在电路中可以起到滤波、耦合、储能等作用。
例如,在电源滤波电路中,电容可以滤除电源中的交流成分,使输出的直流电压更加稳定。
五、电感电感是能够储存磁场能量的元件,它的单位是亨利(H)。
电感的大小与线圈的匝数、长度、横截面积以及铁芯的材料等有关。
电感在电路中主要用于滤波、扼流、变压等。
电子技术基础知识1、逻辑代数的基本运算有与、或、非三种。
2、只有决定事物结果的全部条件同时具备时,结果才发生。
这种因果关系称为逻辑与,或称逻辑相乘。
3、在决定事物结果的诸条件中只要有任何一个满足,结果就会发生。
这种因果关系称为逻辑或,也称逻辑相加。
4、只要条件具备了,结果便不会发生;而条件不具备时,结果一定发生。
这种因果关系称为逻辑非,也称逻辑求反。
5、逻辑代数的基本运算有重叠律、互补律、结合律、分配律、反演律、还原律等。
举例说明。
6、对偶表达式的书写。
7、逻辑该函数的表示方法有:真值表、逻辑函数式、逻辑图、波形图、卡诺图、硬件描述语言等。
8、在n变量逻辑函数中,若m为包含n个因子的乘积项,而且这n个变量均以原变量或反变量的形式在m中出现一次,则称m为该组变量的最小项。
9、n变量的最小项应有2n个。
10、最小项的重要性质有:①在输入变量的任何取值下必有一个最小项,而且仅有一个最小项的值为1;②全体最小项之和为1;③任意两个最小项的乘积为0;④具有相邻性的两个最小项之和可以合并成一项并消去一对因子。
11、若两个最小项只有一个因子不同,则称这两个最小项具有相邻性。
12、逻辑函数形式之间的变换。
(与或式—与非式—或非式--与或非式等)13、化简逻辑函数常用的方法有:公式化简法、卡诺图化简法、Q-M法等。
14、公式化简法经常使用的方法有:并项法、吸收法、消项法、消因子法、配项法等。
15、卡诺图化简法的步骤有:①将函数化为最小项之和的形式;②画出表示该逻辑函数的卡诺图;③找出可以合并的最小项;④选取化简后的乘积项。
16、卡诺图法化简逻辑函数选取化简后的乘积项的选取原则是:①乘积项应包含函数式中所有的最小项;②所用的乘积项数目最少;③每个乘积项包含的因子最少。
手把手教你写程序:内容:从最简单的程序入手,手把手教你写程序,让同学们拿到一个复杂的程序或者任务,能快速找到切入点,写出程序,再在此基础上优化程序。
当拿到一个单片机任务时,不要急于动手写程序,先仔细分析它的以下几个点:1、它要单片机整体实现什么功能2、功能细分(模块化),先干什么,再干什么,最后干什么3、画初步流程图,(把几个模块画出即可)4、模块之间的分析:一个模块到另一个模块之间,怎么变换,怎么连接(优化流程图)5、单个模块分析:每个模块要做什么(流程图细化)6、所有模块结合连接,细化所有流程图7、分析单个模块每步要用到的方法或者指令8、总流程图定型9、纸上写程序,对照流程图分析其可行性,若不可行则返回10、上机调试,加注释以上十步,缺一不可(小程序列外)切记:流程图的确定很重要,需反复修改大忌:拿到任务,不仔细分析就写程序。
即使是小程序,我们也要养成良好的编程习惯,不要一味的追求结果。
写小程序可能比别人快,若是大程序,一旦出现思维混乱,或者出现程序调试不出结果,那么你花在调试上的时间,要比别人的多。
磨刀不误砍柴工!程序的优化:属于后期工作,只有调试出来后,才去优化,如果一开始优化和写程序同时进行,一是加重你的思考量,二是出现问题无从下手。
无疑增加了写程序的难度。
对于一个初学者,写一个程序,本身头脑就处于紧张的状态,思考的问题就很多,如果此时把优化程序也考虑进去,你脑袋的负荷无疑加重,若你头脑精明,你可以把优化的地方,先在纸上记下来,等到调试结果正常,再把你想到的,优化的地方加进去。
1.电子基础知识—电阻电阻定义:电阻英文名称为Resistance,缩写为R,它是导体的一种基本性质,与导体的尺寸、材料、温度有关。
导体的横截面积,材料,长度可改变导体电阻的大小,有时温度也同样可以影响其大小。
电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。
电阻有阻流和分压的作用。
电阻R在数值上等于加在电阻上的电压U与通过的电流I的比值,即R=U/I。
电阻的分类:A按制作材料可分,碳膜电阻、金属膜电阻、线绕电阻和水泥电阻等。
其中常用的为碳膜电阻,而水泥电阻则常用于大功率电器中或用作负载。
B、按功率大小可分为,1/8w以下(chip)、1/8W、1/4W、1/2W、1W、2W等C、按阻值表示法又可分为,数字表示法及色环表示法。
电阻的单位及换算:电阻的单位,欧姆、千欧(KΩ)、兆欧(MΩ),电阻最基本的单位为欧姆(Ω)。
电阻单位的换算,1MΩ=KΩ=Ω电阻的阻值辨认:a.数字表示法,此表示法常用于CHIP元件中。
辨认时数字之前两位为有效数字,第三位为倍率。
b.色环表示法,第一、二环为有效数字,第三环为倍率,第四环为误差。
2.电子基础知识—电容和电感电容,指的是在给定电位差下的电荷储藏量;记为C,国际单位是法拉(F)。
电容也是电容器的俗称。
电容是表征电容器容纳电荷的本领的物理量。
我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。
电容用于贮存电荷的组件,贮存电量充电放电、滤波、耦合、旁路。
种类,电容按极性可分为有极性电容和无极性电容,有极性电容包括铝电解电容和钽质电解电容;无极性电容包括陶瓷电容和塑料电容。
电感,是用绝缘导线绕制而成的电磁感应元件,也是电子电路中常用的元器件之一、电感是用漆包线、纱包线或塑皮线等在绝缘骨架或磁心、铁心上绕制成的一组串联的同轴线匝,它在电路中用字母“L”表示,主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。
3.电子基础知识,二三极管二极管,又称晶体二极管,简称二极管,它是一种具有单向传导电流的电子器件。
在半导体二极管内部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的转导性。
常用的二极管有整流、稳压、发光二极管等。
三极管,也称为晶体三极管,它是电子电路中最重要的器件。
它最主要的功能是电流放大和开关作用。
三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。
其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。
三极管分为NPN型和PNP型的三极管两种。
4.电子基础知识—集成电路集成电路,是一种微型电子器件或部件。
它在电路中用字母“IC”表示。
集成电路就是采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构。
其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。
特点,体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。
5.电子基础知识—静电放电静电,就是静止不动的电荷。
一般存在于物体的表面,是正负电荷在局部范围内失去平衡的结果。
静电放电,通常也叫ESD,是英文Electric Static Discharge的缩写,翻译成中文的意思就是静电的放电。
是处于不同静电电位的两个物体间的静电电荷的转移。
1.万用表的使用由于万用表是一种可以测量多种电量,具有多种量程的便携式仪表,是电学研究的必备工具。
所以在这一项目的学习过程中,要立足于强化实际操作能力的培养,通过结合具体的实训操作,提高学习的效果。
具体可分解成常见电阻器的识读、用万用表测电阻、测交、直流电压和直流电流、电桥的制作与测试等这几项任务,穿插学一些电学量的基本概念和电路的基本原理知识。
逐步将实际操作技能有机的与理论知识相结合。
最后通过制作电桥这一任务,综合性的将前面所学的测电阻、测电压和测电流等相关理论和技能知识融合应用,达到理论、技能、实践和拓展等全面的提高,逐步对万用表的使用知识和相应测试技能进行综合掌握。
2.电烙铁的使用电子设备中使用大量的种类繁多的电子元器件,每个电子元器件都要牢固的焊接在电路板上,就必须保证每个焊点的质量。
故而手工焊接技能是电子装配和电子维修必备的技能,练好手工焊接技术是保证电子制作成功的必要条件。
这对于一个从事电子技术工作的人员来说,一定要必须认真学习相关的焊接理论知识,掌握焊接要领,并能熟练地进行焊接操作。
3.装配可调稳压电源模块(1)所涵盖的知识可以认识电阻器、电容器、电位器、二极管、变压器等电子元器件并进行测试。
可以接触到交流电路、变压器的工作原理、整流电路的工作原理、滤波电路的工作原理以及稳压电路的工作原理等。
同时还认识了集成稳压器的管脚功能,并根据电路进行组装,在调试过程中学习用万用表进行检测电路。
(2)功能说明电源部分是实验箱各模块电路总功率的提供者,为了能够满足各模块不同的电源电压需求,所以该电源输出是1.5v一12v连续可调的直流稳压电源;能够保证专用数字电路sv直流稳压电源的实验要求,还能满足差动式功率放大器双12V直流固定电源的'需要,也能输出交流双12V电源。
在制作过程中能进一步综合训练用万用表测电阻、测交、直流电压、电流等技能,同时也能认识安全用电了解安全电压的规定,熟悉安全接地的方法等实用的安全用电操作规程知识。