当前位置:文档之家› 悬架导向机构设计综述

悬架导向机构设计综述

悬架导向机构设计综述
悬架导向机构设计综述

悬架导向机构设计综述

梁晓东

北京科技大学车辆工程系 北京(100083)

E-mail: liangxiaodong839@https://www.doczj.com/doc/b5189039.html,

摘 要:悬架导向机构对悬架系统性能的发挥起着非常重要的作用。本文分析了悬架导向机构的设计要求,并综合分析了现今车辆悬架系统所采用导向机构及其设计,对悬架系统导向机构的选型和设计有一定的参考作用。

关键词:悬架、导向机构、运动学、动力学。

中文图书分类号:U461.1

The design summary of suspension guide mechanism

Liang Xiaodong

Department of Automotive Engineering, University of Science and Technology Beijing, PRC,

(100083)

Abstract

The guide mechanism of suspension system is critical to the performance of the suspension. This paper analyzes the requirements of the guide mechanism of the suspension, and synthetically makes a deep discussion of the style and the design method of the guide mechanism, now used on the vehicles. This paper could be a reference of choosing the style of the suspension guide mechanism.

Key words: Suspension, Guide mechanism, Kinematics, Dynamics.

1.引言

悬架是车辆重要总成之一,其性能的优劣对整车的操纵稳定性、行驶平顺性、通过性、动力性、燃料经济性、全车零部件寿命特别是轮胎寿命,以及对道路路面的损伤强度都有最直接、最明显的影响[1]。悬架主要由弹性元件、阻尼元件、导向机构和横向稳定杆组成。其中悬架导向机构决定着车轮定位参数及其动态性能,是悬架的关键部件之一。

2.悬架的设计要求

悬架的分类及形式的选择依据主要是悬架导向机构的结构形式,导向机构承受传递车轮传递过来的纵向力和力矩以及侧向力。对导向机构的设计要求有[2,3]:

(1)当车轮与车身产生相对运动时,保证轮距变化在一定的范围之内,以免

轮胎过早磨损。

(2)当车轮上下跳动时,前轮定位参数要有合理的变化特性;

(3)转弯时,应使车轮与车身倾斜方向相同,增加汽车的不足转向效应;

(4)车辆加速和制动时能保持车身稳定,减少车身纵倾的可能性;

(5)制动时,悬架导向机构的运动应使车身具有抗点头的作用;加速时有抗

俯仰的作用;

(6)行程恰当的侧倾中心,保证悬架有足够的侧倾刚度;

(7)各铰接点处受力尽量小,减少橡胶元件的弹性变形,以保证导向精度;

(8)导向杆系有足够的强度、刚度和疲劳强度。

3.悬架导向机构的结构形式分析

悬架导向机构的结构形式有很多,根据不同的用途有多种。轿车上,对于整体式车轴,主要有多连杆式(常见的主要有四连杆式、五连杆式)、第迪安式;对于独立悬架,主要有单(双)纵臂式、双横臂式、麦弗逊撑杆式、多连杆式、拖曳臂式、半拖曳臂式和摆动轴式。现在轿车上广泛采用的是双横臂式导向机构。中型和重型货车一般都采用整体式车轴,导向机构形式主要有板簧式、A形架式、双横臂式、双纵臂式、拖曳臂式和柔性梁式。

悬架导向机构的具体形式选择应根据车辆的用途,综合考虑成本和车辆的运行条件作具体分析,下面对不同形式的悬架导向机构做简要分析[4]: 叶片弹簧式:简单而便宜,能完全消除车轮外倾角的变化,减少轮胎磨损,是货车悬架的优选方案。簧片在垂直方向上柔顺,并且有较大的侧向和纵向刚度,因而簧片兼起导向机构的作用,广泛用于大多数的轻型和重型货车上。悬架工作时簧片之间的固有摩擦以及簧片侧向刚度和纵向刚度与垂直刚度之间的正向关系决定了轿车上不采用叶片式弹簧。一些大型客车上为了充分发挥板簧式悬架的优势,采用板簧和空气弹簧组合形式,如日本的日野RR172和德国的曼150FOC等大客车上,利用板簧较大的纵向和侧向刚度作为其导向机构,主要有中置式和边

置式两种(图1)。

图1 板簧和空气弹簧组合式悬架系统

多连杆式:多连杆式导向机构在独立式后悬架得到了广泛的应用,主要有四连杆式和五连杆式,适用于要求为车轮提供纵向力、侧向控制和承受制动力矩的场合。多连杆式导向机构给与设计者以很大的设计空间,通过优化设计可以对侧倾中心位置,抗点头、抗后蹲以及侧倾转向性能都能有很好的控制,以获得更好的乘坐舒适性以及NVH特性。缺点是价格昂贵,主要用于高性能轿车,如梅赛德斯-奔驰CLK车型。随着技术水平的提高,多连杆式导向机构有向中级桥车普及的趋势,如马自达3和速腾也都采用了多连杆式导向机构。图2为本田雅阁车型用多连杆导向机构悬架。

图2 多连杆式导向机构悬架

第迪安式介于整体式车轴和独立悬架之间,非常经典,但很少使用,就如化油器一样有不可解决的缺点。

双横臂式(图3)广泛用于美国轿车的悬架的导向机构,其上下控制臂通常是长度不同的。这类控制臂在美国通常称为“A臂”,在英国称为“叉形臂”,常用于前悬架。长短臂式导向机构由于在车轮跳动过程中虚拟主销的运动导致车轮定位参数的变化,因而必须优化几何设计以使跳动和回弹时轮距变化最小,避免轮胎的过度磨损。

图3 长短臂式导向机构悬架

麦弗逊撑杆式(图4)是种与不等长臂前悬架几何关系相似的采用撑杆结构的悬架,主要优点是为发动机横置提供了较大的空间,结构简单,质量小,便于发动机的横向布置,从而适于前悬架设计;缺点是安装位置过高,从而限制了设计者降低发动机罩的能力。由图4可知,弹簧轴线相对于减振器轴线向外偏移,并高高地安装于减振器之上,主要是为使弹簧中心偏移,抵消作用于减振器上的附加力矩。这是弹簧高高在上和向外偏移的真正原因[5]。

图4 麦弗逊撑杆式

拖曳臂式常用于较为昂贵和有高性能要求的轿车上,控制臂纵向布置,承受纵向力和制动力矩,并且控制车辆的后蹲和升起。作为下方的横向控制臂常用一个简单的支撑杆,如下图5所示。

图5 拖曳臂式

半拖曳臂式导向机构主要用于半独立悬架和独立悬架。半拖曳式独立悬架因宝马共识和梅赛德斯-奔驰公司的广泛应用而流行。其铰接轴线通常与横向贯穿°

车辆的直线成25角。当车轮发生跳动和回弹时,半拖曳臂式悬架会产生转向效应。转向/外倾角综合作用在外侧车轮上,产生和转弯方向相反的作用,于是后轴产生了不足转向,但是若不加以控制,侧向力柔顺转向将导致过多转向即要保证动态过程中两铰接轴线的交点一直在车桥的前方。下图为半拖曳式半独立悬架,在普通轿车上应用比较广泛,如雷诺Scenic车型和本田飞度的后悬就是采用

这种结构(图6)。

图6 半拖曳臂式

摆动轴式独立悬架(图7)是Edmund Rumpler在20世纪初发明的,广泛用于多

种欧洲轿车上,其中最著名的是大众公司的‘“甲壳虫”,该形式悬架很难获得

稳定的转向性能,“举升”现象明显,并且在轮胎上下跳动时轮距变化比较大,

轮胎磨损严重,一般用于微型轿车。

图7 摆动轴式

A形架导向机构如图8所示,该机构类似于两根纵向导向臂的铰接点在车架的连接处合并,在传递纵向力的同时还传递侧向力,具有很好的抗侧倾能力,被部分车采用,如德国的曼SL202和尼奥普兰等客车后悬架就是采用该结构。由图8可知,A形架尺寸和重量较大,目的是为了减少轮胎磨损,避免车身有过大的垂直位移。

图8 A形架式导向机构

双横臂式导向机构在轿车中使用非常广泛。重型车辆采用双横臂式(图9)和双纵臂式(图10)导向机构用以承担比较大的纵向力和力矩。采用双横臂式导向机构的有德国的尼奥普兰,瑞典的沃尔沃和我国安徽的凯斯鲍尔等的前悬架。由于双横臂式机构复杂,通常采用此结构时发动机后置;匈牙利的依卡露斯255和奔驰等大客车的前悬架采用了双纵臂四连杆导向机构;五十铃PLV719R和依卡露斯280的后悬架采用了另一种双纵臂四连杆导向机构。双纵臂式四连杆导向机构的上纵臂有两种布置:一种是不知在两边,另一宗式将两根上臂合并在一起布置在中间。其选择依据车辆的总体布置。

图9 双横臂式导向机构 图10 双纵臂式导向机构 柔性梁式导向机构(图11)是刚柔结合的方法来设计的导向机构,多为空气悬架所采用,既满足了导向的要求,又有一定得变形能力。

图11 柔性梁式

同一车辆的前、后悬架导向机构往往采用不同的形式。影响选择汽车前部和后部悬架的主要因素有:发动机位置、车轮是否是驱动/被驱动、或是转向/非转向[4]。发动机位置直接影响了悬架的安装空间,车轮是否为驱动考虑的是车辆的纵向控制及牵引杆的设计,车轮是否转向考虑的是避免悬架与转向机构。

4.悬架导向机构运动学和动力学设计分析

悬架导向机构的几何结构开发过程可以被称为位置合成,需要使用特殊的图形和分析技术,可以借助于计算机软件,如ADAMS软件。在进行导向机构做运动学和动力学分析的准备工作中,需要对连接间隙及刚度做合理假设,通常在设计初始阶段简化为刚体运动。

悬架的运动学特性:系指汽车车轮上下跳动时,前轮定位参数、轮距、侧倾中心高度相应的变化规律以及与转向机构运动学相容性;悬架的动力学特性主要体现在车桥的摆振和纵向性能分析上,这些都是悬架导向机构的设计内容。悬架导向机构的运动学和动力学分析理论基础为多体系统动力学,主要辅助软件为ADAMS[7]。在ADAMS/View中可以建模分析,同时该软件有自带的悬架分析模块,可以通过ADAMS/Car模块使用软件自带悬架系统进行分析,同时也可以自己建立

Template,再引用软件中自带的悬架分析文件进行分析,后一种方法能够给分析带来极大的方便。为了得到比较精确的仿真结果,需要对各杆件进行柔性化分析,这可以通过ADAMS或ANSYS中建立的模态中性文件MNF来实现[8]。

4.1运动学分析

悬架导向机构通常为三维机构,其运动学分析通常要借助计算机辅助软件进行分析。分析内容主要包括车轮上下跳动过程中车轮定位参数的变化,目的在于防止轮胎过早磨损,保证操纵稳定性。分析工况主要有:车辆直线行驶工况、车辆转弯行驶工况、车辆在不平路面行驶工况。分析参数主要有车轮上下跳动过程中的车轮定位参数的变化情况,即前束、主销内倾角、主销后倾角和轮胎外倾角的变化。

运动学分析方法主要有图形法分析和计算分析(二维)。图形法分析是假定车架是固定的,并按着比例画出悬架机构,进而通过分析得到机构的速度图,在求解的过程中要注意位置图和速度图之间的联系。计算分析法可以应用MathCAD软件来进行。目标值为悬架比即车轮垂直跳动速度与弹簧压缩量的关系,轮胎侧向位移与抬高比。

侧倾中心有两种定义,一种是基于力,另一种是基于运动。第一种(SAE定义)陈述为:穿过任意一对车轮横向平面的一点,在这一点处横向力可以作用到簧载质量,而不会引起簧载质量的侧倾。第二种陈述为:侧倾中心是车身绕其侧倾并且车轮与地面接触区没有任何侧向运动的点。每一个侧倾中心位于纵向中心呢平面(汽车)和垂直横向平面交点所产生的直线上,并穿过一对车轮中心[6]。中心之间的连线为侧倾轴。前后悬架的侧倾中心可以用Aronhold-Kennedy三中心定理来确定。

4.2动力学分析

悬架导向机构的动力学分析通常也要借助计算机辅助软件来进行。内容主要有:悬架导向机构的抗点头和抗后蹲性能分析、车辆转弯时侧倾分析、摆振分析。在建立导向机构动力学模型前,需要对导向机构进行合理简化为多个二维分析模型图。如下图12所示进行等效拖曳臂分析的模型图。

图12 等效拖曳臂导向机构受力分析

导向机构动力学分析得到力学量之后就可以进行导向机构各零件的强度、疲劳强度和刚度设计。设计时需要考虑动载荷因数。设计结果可以借助ANSYS软件进行验证,并可以借助该软件进行零件的结构优化,以满足导向机构的轻量化设计要求。

5、结论

分析了多种悬架导向机构的结构形式和性能特点,并对其运动学和动力学特性分析做了简要介绍,为悬架导向机构设计提供了选型和设计参考。

参考文献

[1] 中国汽车工程学会组编,2008世界汽车技术发展跟踪研究.北京:北京理工大学出版社,2008.

[2] 刘惟信. 汽车设计. 北京: 清华大学出版社,2001

[3] 喻凡 林逸. 汽车系统动力学. 北京:机械工业出版社,2005.9

[4] Thomas D. Gillespie著,赵六奇和金达锋译.车辆动力学基础.北京:清华大学出版社,2006.

[5] 徐石安主编,汽车构造—底盘工程.北京:清华大学出版社,2008.

[6] Julian Happian-smith主编,张金柱译,现代汽车设计概论,北京:化学工业出版社,2007.

[7] 石博强等编著,ADAMS基础与工程范例教程.北京:中国铁道出版社,2007.9.

[8] 李增刚编著,ADAMS入门详解与实例.北京:国防工业出版社,2007.1.

典型地多连杆独立悬挂结构图

全面解析5种常见悬挂 在这个言必谈操控、论必说运动的年代里,几乎所有汽车品牌多在大力的宣传自己产品优秀的操控性能,从欧系的宝马、奥迪、萨伯到日系的讴歌、英菲尼迪等高端品牌无不在极力宣传自己良好的操控性和运动性,就连一向以舒适性能为取向的奔驰、凯迪拉克、雷克萨斯等高端品牌也在新近的设计中加入了更多的运动取向。从以福克斯为代表的紧凑型轿车到以迈腾为代表的中级车到以宝马5系Li为代表的高档车无不标榜自己的运动性能。那么他们是否如宣传所说这么优秀,此次汽车探索就为大家解读影响汽车运动性能的汽车底盘的核心——悬挂系统,并分析不同悬挂对汽车操控性及舒适性的影响。 『悬挂在汽车底盘安放位置的示意图』 ● 悬挂的概念和分类 首先让我们来了解一下什么是悬挂:悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。典型的汽车悬挂结构由弹性元件、减震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。绝大多数悬挂多具有螺旋弹簧和减振器结构,但不同类型的悬挂的导向机构差异却很大,这也是悬挂性能差异的核心构件。根据结构不同可分为非独立悬挂和独立悬挂两种。

『奥迪S4前后均采用了独立悬挂』 非独立悬挂由于是用一根杆件直接刚性地连接在两侧车轮上,一侧车轮受到的冲击、振动必然要影响另一侧车轮,这样自然不会得到较好的操纵稳定性及舒适性,同时由于左右两侧车轮的互相影响,也容易影响车身的稳定性,在转向的时候较易发生侧翻。独立悬挂底盘扎实感非常明显。由于采用独立悬挂汽车的两侧车轮彼此独立地与车身相连,因此从使用过程来看,当一侧车轮受到冲击、振动后可通过弹性元件自身吸收冲击力,这种冲击力不会波及另一侧车轮,使得厂家可在车型的设计之初通过适当的调校使汽车在乘坐舒适性、稳定性、操纵稳定性三方面取得合理的配置。选用独立悬挂汽车一般来说其操控性和舒适性均要明显好于选用非独立悬挂的汽车。 『多连杆悬挂是独立悬挂的典型代表』

悬架设计指南

设计指南(弹簧、稳定杆) 不管悬架的类型如何演变,从结构功能而言,它都是有弹性元件、减振装置和导向机构三部分组成。 一 弹性元件 弹性元件主要作用是传递车轮或车桥与车架或车身之间的垂直载荷,并依靠其变形来吸收能量,达到缓冲的目的。在现用的弹性元件中主要有三种;(1)钢板弹簧,(2)扭杆弹簧,(3)螺旋弹簧。 钢板弹簧设计 板弹簧具有结构简单,制造、维修方便;除作为弹性元件外,还兼起导向和传递侧向、纵向力和力矩的作用;在车架或车身上两点支承,受力合理;可实现变刚度,应用广泛。 (一) 钢板弹簧布置方案 1.1钢板弹簧在整车上布置 (1) 横置;这种布置方式必须设置附加的导向传力装置,使结构复杂,质量加大,只在少数轻、微车上应用。 (2) 纵置;这种布置方式的钢板弹簧能传递各种力和力矩,结构简单,在汽车上得到广泛应用。 1.2 纵置钢板弹簧布置 (1) 对称式;钢板弹簧中部在车轴(车桥)上的固定中心至钢板弹簧两端卷耳中 心之间的距离相等,多数汽车上采用对称式钢板弹簧。 (2) 非对称式;由于整车布置原因,或者钢板弹簧在汽车上的安装位置不动,又 要改变轴距或通过变化轴荷分配的目的时,采用非对称式钢板弹簧。 (二)钢板弹簧主要参数确定 初始条件:1G ~满载静止时汽车前轴(桥)负荷 2G ~满载静止时汽车后轴(桥)负荷 1U G ~前簧下部分荷重 2U G ~后簧下部分荷重 1W F =(G 1-G 1U )/2 ~前单个钢板弹簧载荷 2W F =(G 2-G 2U )/2 ~后单个钢板弹簧载荷 c f ~悬架的静挠度; d f -悬架的动挠度

1L ~汽车轴距; 1、 满载弧高a f 满载弧高指钢板弹簧装在车轴(车桥)上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差。a f 用来保证汽车具有给定的高度。当a f =0时,钢板弹簧在对称位置上工作。为在车架高度已确定时得到足够的动挠度,常取a f = 10~20mm 。 2、 钢板弹簧长度L 的确定 L —指弹簧伸直后两卷耳中心间的距离 (1)钢板弹簧长度对整车影响 当L 增加时:能显著降低弹簧应力,提高使用寿命; 降低弹簧刚度,改善汽车平顺性; 在垂直刚度C 给定的条件下,明显增加钢板弹簧纵向角刚度; 减少车轮扭转力矩所引起的弹簧变形; 原则上在总布置可能的条件下,尽可能将钢板弹簧取长些。 (2)钢板弹簧长度确定 钢板弹簧一般跟据经验确定; 轿车: L =(0.40~0.55)轴距 货车前悬架: L =(0.26~0.35)轴距 后悬架: L =(0.35~0.45)轴距 3、断面尺寸及片数确定 (1)宽度b 的确定 有关钢板弹簧的刚度、强度等,可按等截面简支梁的计算公式计算,但需引入挠度增大系数δ加以修正。因此,可根据修正后的简支梁公式计算钢板弹簧所需的总惯性矩J 0。对称式钢板弹簧 0J =[(L-ks )3c δ]/48E (1) s -U 形螺栓中心距; k -U 形螺栓加紧后无效长度系数(刚性加紧,k=0.5,挠性加紧,k=0); c -钢板弹簧垂直刚度(N/mm ),c=F W /f c ; δ-挠度增大系数(先确定与主片等长的重叠片数1n ,再估计一个总片数0n ,求得η=n 1/n 0,然后用δ=1.5/[1.04(1+0.5η)]初定δ;

导向机构设计

3.4 导向机构的设计 3.4.1 导向机构设计要求 独立悬架的导向机构承担着悬架中除垂直力之外的所有作用力和力矩,并决定了悬架跳动时车轮的运动轨迹和车轮定位角的变化,因此,悬架的设计要求有: 1)形成强档的侧倾中心和侧倾轴线。 2)形成恰当的纵倾中心。 3)个交接点处受力尽量小,减小橡胶元件的弹性形变,以保证导向精确。 4)保证车轮定位参数及其随车轮跳动哦的变化能满足要求。 5)具有足够的疲劳强度。 对于前轮独立悬架机构的要求是: 1) 悬架上载荷变化时,保证轮距变化不超过±4.0mm,轮距变化大会引起轮胎早期磨损。 2)悬架上载荷变化时,前轮定位参数要有合理的变化特性,车轮不应产生纵向加速度。 3)汽车转弯行使时,应使车身倾角小。在0.4g侧向加速度作用下,车身侧倾角≦6°~7°,并使车轮与车身的倾斜同向,以增强不足转向效应。 4)只用时,应使车身有抗前俯作用;加速时,有抗后仰作用。 3.4.2 导向机构的布置参数 1)侧倾中心 麦弗逊式独立悬架的侧倾中心由下图所示方式得出。从悬架与车身的固定连接点E作活塞杆运动方向的垂直并将下横臂延长。两条的交点即为极点P 。将P点与车轮接地点N的连线交在汽车的轴线上,交点W即为侧倾中心。 图3-1 麦弗逊式独立悬架侧倾中心的确定 Fig.3-1 Maifuxunshi independent suspension roll centre established

麦弗逊式独立悬架的弹簧减震器轴线EG 布置得越接近垂直,下横臂GD 布置得越接近于水平,则侧倾中心W 就越接近于地面,从而使得在车轮上跳动时车轮外倾角的变化不理想 麦弗逊式独立悬架的侧倾中心高度为 s v w r d k p b h ++= σβtan cos 2 (3-42) 式中 ) s i n (βα++=o c k d k p +=βsin (3-43) 表3-4 215/60R16轮胎标准 Table.3-4 215/60R16 Tire standards 选取: d=360mm s r =152 β=60 σ=50 (3-44) 根据图 3-4 可 知 α = σ =50 (3-45) 因为弹簧自由高度 0H =260mm ,减振器的长度L=300mm 所以取 C+o=478mm (3-46) 因为轮胎的断面宽度B=189mm ,车宽度a B =1673mm ,所以: v b = 2 2 B B a - = =- 2 1892 1673742mm (3-47) 根据设计要求满载时: K= ) 65sin(4780 +o =2505.24mm (3-48) 87.6213606sin 24.25050 =+?=p mm (3-49) 所以

常见汽车悬架解析

汽车常见悬架 一、汽车悬架的功用 悬架是车架(或承载式车身)与车桥(或车轮)之间的一起传力连接装置的总称。其功用是把路面作用于车轮上的垂直反力(支承力)、纵向反力(驱动力和制动力)和侧向力以及这些反力所造成的力矩传递到车架(或承载式车身)上,以保证汽车的正常行驶。 二、悬挂系统的基本构成 汽车的悬架机构各有不同,但一般都由弹性元件、减振器、导向机构等三部分组成,分别起缓冲、减振和受力传递的作用。弹性元件即弹簧,承受垂直载荷,缓和及抑制不平路面对车体的冲击。减振器又指液力减振器,其功能是为加速衰减车身的振动,它也是悬挂系统中最精密和复杂的机械件。传力装置则是指车架的上下摆臂等叉形钢架、转向节等元件,用来传递纵向力、侧向力及力矩,并保证车轮相对于车架有确定的相对运动规律。此外,还铺设了缓冲块和横向稳定器。 三、汽车悬挂的分类 悬架按导向机构的基本形式分,有两大类,分别是独立悬挂和非独立悬挂。 1、非独立悬挂 非独立悬架其特点是两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上,当车轮上下跳动时定位参数变化小。若采用钢板弹簧作弹性元件,它可兼起导向作用,使结构大为简化,降低成本。目前广泛应用于货车和大客车上,有些轿车后悬架也有采用的。非独立悬架由于非簧载质量比较大,高速行驶时悬架受到冲击载荷比较大,平顺性较差。 非独立悬架的结构,特别是导向机构的结构,随所采用的弹性元件不同而有所差异,而且有时差别很大。采用螺旋弹簧、气体弹簧时,需要有较为复杂的导向机构;而采用钢板弹簧时,由于钢板弹簧本身可兼起导向机构的作用,并有一定的减振作用,使得悬架结构大为简化。因此,在非独立悬架中大多数采用钢板弹簧作为弹性元件。它中部用U型螺栓将钢板弹簧固定在车桥上。悬架前端为固定铰链,也叫死吊耳。它由钢板弹簧销钉将钢板弹簧前端卷耳部与钢板弹簧前支架连接在一起,前端卷耳孔中为减少摩损装有衬套。后端卷耳通过钢板弹簧吊

独立悬架导向机构

独立悬架导向机构的设计 一、设计要求 对前轮独立悬架导向机构的要求是: 1)悬架上载荷变化时,保证轮距变化不超过±4.Omm,轮距变化大会引起轮胎早期磨损。 2)悬架上载荷变化时,前轮定位参数要有合理的变化特性,车轮不应产生纵向加速度。 3)汽车转弯行驶时,应使车身侧倾角小。在0.4g侧向加速度作用下,车身侧倾角不大于6°~7°,并使车轮与车身的倾斜同向,以增强不足转向效应。 4)汽车制动时,应使车身有抗前俯作用;加速时,有抗后仰作用。 对后轮独止:悬架导向机构的要求是: 1)悬架上的载荷变化时,轮距无显著变化。 2)汽车转弯行驶时,应使车身侧倾角小,并使车轮与车身的倾斜反向,以减小过多转向效应。 此外,导向机构还应有够强度,并可靠地传递除垂直力以外的各种力和力矩。 目前,汽车上广泛采用上、下臂不等长的双横臂式独立悬架(主要用于前悬架)和滑柱摆臂(麦弗逊)式独立悬架。下面以这两种悬架为例,分别讨论独立悬架导向机构参数的选择方法,分析导向机构参数对前轮定位参数和轮距的影响。 二、导向机构的布置参数 1.侧倾中心 双横臂式独立悬架的侧倾中心由如图6—24所示方式得出。将横臂内外转动点的连线延长,以便得到极点P,并同时获得P点的高度。将P点与车轮接地点N连接,即可在汽车轴线上获得侧倾中心W。当横臂相互平行时(图6—25),P点位于无穷远处。作出与其平行的通过N点的平行线,同样可获得侧倾中心W。 双横臂式独立悬架的侧倾中心的高度hw通过下式计算得出 滑柱摆臂式独立悬架的侧倾中心由如图6—26所示方式得出。从悬架与车身的固定连接点E 作活塞杆运动方向的垂直线并将下横臂线延长。两条线的交点即为P点。 滑柱摆臂式悬架的弹簧减振器柱EG布置得越垂直,下横臂GD布置得越接近水平,则侧倾小心W就越接近地面,从而使得在车轮上跳时车轮外倾角的变化很不理想。如加长下横臂,则可改善运动学特性。 麦弗逊式独立悬架侧倾中心的高度hw可通过下式计算 式中 2.侧倾中心 在独立悬架中,前后侧倾中心连线称为侧倾轴线。侧倾轴线应大致与地面平行,且尽可能离地面高些。平行是为了使得在曲线行驶时前、后轴上的轮荷变化接近相等,从而保证中性转向特性;而尽可能高则是为了使车身的侧倾限制在允许范围内。 然而,前悬架侧倾中心高度受到允许轮距变化的限制且几乎不可能超过150mm。此外,在前轮驱动的车辆中,由于前轿轴荷大,且为驱动桥,故应尽可能使前轮轮荷变化小。因此,

汽车钢板弹簧悬架设计方案

汽车钢板弹簧悬架设计 (1)、钢板弹簧种类 汽车钢板弹簧除了起弹性元件作用之外,还兼起导向作用,而多片弹簧片间磨擦还起系统阻尼作用。由于钢板弹簧结构简单,使用维修、保养方便,长期以来钢板弹簧在汽车上得到广泛应用。目前汽车使用的钢板弹簧常见的有以下几种。 ①通多片钢板弹簧,如图1-a所示,这种弹簧主要用在载货汽车和大型客车上,弹簧弹性特性如图2-a所不,呈线性特性。 变形 载荷变形 载荷变形载荷 图1 图2 ②少片变截面钢板弹簧,如图1-b所不,为减少弹簧质量,弹簧厚度沿长度方向制成等厚,其弹性特性如一般多片钢板弹簧一样呈线性特性图2-a。这种弹簧主要用于轻型货车及大、中型载货汽车前悬架。 ③两级变刚度复式钢板弹簧,如图1-c 所示,这种弹簧主要用于大、中型载货汽车后悬架。弹性特性如图2-b 所示,为两级变刚度特性,开始时仅主簧起作用,当载荷增加到某值时副簧与主簧共同起作用,弹性特性由两条直线组成。 ④渐变刚度钢板弹簧,如图1-d 所示,这种弹簧多用于轻型载货汽车与厢式客车后悬架。副簧放在主簧之下,副簧随汽车载荷变化逐渐起作用,弹簧特性呈非线性特性,如图2-c 所示。

多片钢板弹簧 钢板弹簧计算实质上是在已知弹簧负荷情况下,根据汽车对悬架性能(频率)要求,确定弹簧刚度,求出弹簧长度、片宽、片厚、片数。并要求弹簧尺寸规格满足弹簧的强度要求。 3.1钢板弹簧设计的已知参数 1)弹簧负荷 通常新车设计时,根据整车布置给定的空、满载轴载质量减去估算的非簧载质量,得到在每副弹簧上的承载质量。一般将前、后轴,车轮,制动鼓及转向节、传动轴、转向纵拉杆等总成视为非簧载质量。如果钢板弹簧布置在车桥上方,弹簧3/4的质量为非簧载质量,下置弹簧,1/4弹簧质量为非簧载质量。 2)弹簧伸直长度 根据不同车型要求,由总布置给出弹簧伸直长度的控制尺寸。在布置可能的情况下,尽量增加弹簧长度,这主要是考虑以下几个方面原因。 ①由于弹簧刚度与弹簧长度的三次方成反比,因此从改善汽车平顺性角度看,希望弹簧长度长些好。 ②在弹簧刚度相同情况下,长的弹簧在车轮上下跳动时,弹簧两卷耳孔距离变化相对较小,对前悬架来说,主销后倾角变化小,有利于汽车行驶稳定性。 ③增加弹簧长度可以降低弹簧工作应力和应力幅,从而提高弹簧使用寿命。 ④增加弹簧长度可以选用簧片厚的弹簧,从而减少弹簧片数,并且簧片厚的弹簧对提高主片卷耳强度有利。 3)悬架静挠度 汽车簧载质量与其质量组成的振动系统固有频率是评价汽车行驶平顺性的重要参数。悬架设计时根据汽车平顺性要求,应给出汽车空、满载时前、后悬架频率范围。如果知道频率,就可以求出悬架静挠度值c δ。选取悬架静挠度值时,希望后悬架静挠度值2c δ小于前悬架静挠度值1c δ,并且两值最好接近,一般推荐:

麦弗逊悬架设计

轿车前悬架设计 姓名:学院: 指导老师:学号:

目录 一?设计任务 1.1整车性能参数 1.2具体设计任务 二?悬架的结构形式分析 2.1对悬架提出的设计要求有 2.2悬架分类 2.1.1非独立悬架的结构特点以及优缺点 2.1.2独立悬架的结构特点以及优缺点 2.1.3独立悬架的分类 2.1.4捷达轿车前悬架的选择 三?悬架主要参数的确定 3.1悬架的静挠度 f c 3.2悬架的动挠度 f d 3.3悬架的弹性特性 3.4悬架侧倾角刚度及其在前?后轴的分配四?弹性元件的设计 4.1弹簧参数的计算选择 4.2空载时的刚度 4.3满载时计算刚度 4.4螺旋弹簧的选择及校核 五?麦弗逊式独立悬架导向机构的设计5.1对前轮独立悬架导向机构的设计要求 5.2对后轮轮独立悬架导向机构的设计要求 5.3麦弗逊式独立悬架导向机构的布置参数 5.3.1侧倾中心 5.3.2侧倾轴线 5.3.3纵倾中心 5.3.4抗制动纵倾性(抗制动前俯角) 5.4麦弗逊式独立悬架导向机构设计 5.4.1导向机构受力分析 六?减振器 6.1分类 6.2相对阻尼系数

6.3减振器阻尼系数δ的确定 6.3.1减振器阻尼系数s cm ψδ2= 6.3.2麦弗逊式独立悬架减振器如图6.3.2.1所示,按照如图安装时,其阻尼系数δ 6.3.3阻尼系数δ的确定 6.4最大卸荷力o F 的确定 6.4.1卸荷速度x ν的确定 6.4.2最大卸荷力o F 的确定 6.5筒式减振器工作缸直径D 的确定 七?悬架结构元件 7.1三角形下控制臂长度GB=362mm 7.2减振器长度 7.3螺旋弹簧的长度,自由高度0H 八?悬架结构元件的尺寸 8.1三角形下控制臂 8.2减振器 8.3固定架 九?悬架装配图 十?参考文献

汽车悬架系统常识——整理、综述.(DOC)

关于汽车悬架系统 ——简单知识了解 李良 车辆工程 说明: 1、单独的关于悬架的资料太多,将资料简化,尽可能简单些,写的不好,多多批评指正。第二部分对悬架的设计和选型很有参考价值,可以看看。 2、另外搜集了一些关于悬架方面的资料(太多了,提供部分),也很不错。 3、有什么问题或建议多多提,我喜欢~~~~~~~~ 第一部分简单回答您提出的问题 悬架的作用: 1、连接车体和车轮,并用适度的刚性支撑车轮; 2、吸收来自路面的冲击,提高乘坐舒适性; 3、有助于行驶中车体的稳定,提高操作性能; 悬架系统设计应满足的性能要点: 1、保证汽车有良好的行驶平顺性;相关联因素有:振动频率、振动加速度界限值 2、有合适的减振性能;应与悬架的弹性特性很好地匹配,保证车身和车轮在共振区的振幅小,振动衰减快 3、保证汽车具有良好的操纵稳定性;主要为悬架导向机构与车轮运动的协调,一方面悬架要保证车轮跳动时,车轮定位参数不发生很大的变化,另一方面要减小车轮的动载荷和车轮跳动量 4、汽车制动和加速时能保持车身稳定,减少车身纵倾(点头、后仰)的可能性,保证车身在制动、转弯、加速时稳定,减小车身的俯仰和侧倾 5、能可靠地传递车身与车轮之间的一切力和力矩,零部件质量轻并有足够的强度、刚度和寿命 悬架的主要性能参数的确定: 1、前、后悬架静挠度和动挠度; 2、悬架的弹性特性; 3、(货车)后悬架主、副簧刚度的分配; 4、车身侧倾中心高度与悬架侧倾角刚度及其在前、后轴的分配; 5、前轮定位参数的变化与导向机构结构尺寸的选择; 悬架系统与转向系统: 1、悬架机构位移的转向效应,悬架系对操纵性、稳定性的影响之一是悬架机构的位移随弹簧扰度而变所引起的转向效应。轴转向,使用纵置钢板弹簧的车轴式悬架的汽车在转弯时车体所发生侧摆的情况下,转弯外侧车轮由于弹簧被压缩而后退,内侧车轮由于弹簧拉伸而前进,其结果是整个车轴相当原来的车轴中心产生转角,这种现象称为周转向。前轮产生转向不足的效应,后轮产生转向过度的效应。独立悬架外侧成为前束(负前束),而产生轴转向效应。 2、车轮外倾角变化的转向效应,大多数独立悬架的车轮对面外倾角以及轮胎接地负荷都随着车体的倾斜而变化,这时外倾推力也发生变化,车轮被推向转弯的外侧,前轮有转向不足,后轮有转向过度的倾向。在这种情况下,其作用和离心对抗,所以产生相反效应。车轴式悬架在转弯时由于左右的负荷移动,轮胎的扰度不同也产生若干的外倾角的变化,其作用相同。 3、上述都是转弯时的情况,而直进时由于路面凹凸不平使车轮上下振动,也同时会产生这种效应,随着外倾角的变化也有产生轴转向的可能性。一般轴转向或因外倾角变化的转向效应都会改变原来的操纵特性,所以对操纵性,稳定性影响相当大,因此,在设计汽车时往往把这些效应计算在内面修正其操纵特性。

汽车悬挂系统结构原理详细图解

汽车悬挂系统结构原理图解 Post by:2010-10-419:48:00 什么是悬挂系统 舒适性是轿车最重要的使用性能之一。舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。所以,汽车悬架是保证乘坐舒适性的重要部件。同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。 汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。 悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。由此可见悬架系统在现代汽车上是重要的总成之一。

一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。减振器用来衰减由于弹性系统引起的振动,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。种类有单杆式或多连杆式的。钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特性,改善汽车的操纵稳定性和行驶平顺性。 悬挂系统的分类 现代汽车悬架的发展十分快,不断出现,崭新的悬架装置。按控制形式不同分为被动式悬架和主动式悬架。目前多数汽车上都采用被动悬架,如下图所示,也就是汽车姿态(状态)只能被动地取决于路面及行驶状况和汽车的弹性元件,导向机构以及减振器这些机械零件。20世纪80年代以来主动悬架开始在一部分汽车上应用,并且目前还在进一步研究和开发中。主动悬架可以能动地控制垂直振动及其车 身姿态,根据路面和行驶工况自动调整悬架刚度和阻尼。

车辆工程毕业设计59前麦弗逊独立悬架设计

第1章绪论 1.1悬架的功用 悬架是车架(或承载式车身)与车桥(或车轮)之间弹性连接装置的总称。 (1) 传递它们之间一切的力(反力)及其力矩(包括反力矩)。 (2)缓和,抑制由于不平路面所引起的振动和冲击,以保证汽车良好的平顺性,操纵稳定性。 (3)迅速衰减车身和车桥的振动。 悬架系统的在汽车上所起到的这几个功用是紧密相连的。要想迅速的衰减振动、冲击,乘坐舒服,就应该降低悬架刚度。但这样,又会降低整车的操纵稳定性。必须找到一个平衡点,即保证操纵稳定性的优良,又能具备较好的平顺性。 悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。由此可见悬架系统在现代汽车上是重要的总成之一。 1.2 悬架的组成 现代汽车,特别是乘用车的悬架,形式,种类,会因不同的公司和设计单位,而有不同形式。 但是,悬架系统一般由弹性元件、 减振器、缓冲块、横向稳定器等几部分组成等,见图1-1所示。 它们分别起到缓冲、减振、力的传递、限位和控制车辆侧倾角度的作用。 图1-1 汽车悬架组成示意图 1-弹性元件 2-纵向推力杆 3-减震器 4-横向稳定器 5-横向推力杆 弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,现代轿车悬架多采用螺旋弹簧,个别高级轿车则使用空气弹簧。螺旋弹簧只承受垂直载荷,缓和及抑制不平路面对车体的冲击,具有占用空间小,质量小, 1

无需润滑的优点,但由于本身没有摩擦而没有减振作用。这里我们选用螺旋弹簧。 减振器是为了加速衰减由于弹性系统引起的振动,减振器有筒式减振器,阻力可调式新式减振器,充气式减振器。它是悬架机构中最精密和复杂的机械件。 导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。种类有单杆式或多连杆式的。钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特性,改善汽车的操纵稳定性和行驶平顺性。 现代汽车悬架的发展十分快,不断出现,崭新的悬架装置。按控制形式不同分为被动式悬架和主动式悬架。目前多数汽车上都采用被动悬架,也就是说汽车姿态(状态)只能被动地取决于路面及行驶状况和汽车的弹性元件,导向机构以及减振器这些机械零件。 1.3悬架的分类 汽车的悬架从大的方面来看,可以分为两类:非独立悬架系统, 如图1-2所示。 图1-2 独立悬架 1.3.1独立悬架 独立悬架是两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮,独立悬架所采用的车桥是断开式的。这样使得发动机可放低安装,有利于降低汽车重心,并使结构紧凑。独立悬架允许前轮有大的跳动空间,有利于转向,便于选择软的弹簧元件使平顺性得到改善。同时独立悬架非簧载质量小,可提高汽车车轮的附着性。 独立悬架的类型及特点:独立悬架的车轴分成两段(如图1-3),每只车轮用螺旋弹簧独立地,地连接安装在车架(或车身)下面,当一侧车轮受冲 2

独立悬架导向机构的设计

汽车悬架--独立悬架导向机构的设计 第五节独立悬架导向机构的设计 一、设计要求 对前轮独立悬架导向机构的要求是: 1)悬架上载荷变化时,保证轮距变化不超过±4.Omm,轮距变化大会引起轮胎早期磨损。 2)悬架上载荷变化时,前轮定位参数要有合理的变化特性,车轮不应产生纵向加速度。 3)汽车转弯行驶时,应使车身侧倾角小。在0.4g侧向加速度作用下,车身侧倾角不大于6°~7°,并使车轮与车身的倾斜同向,以增强不足转向效应。 4)汽车制动时,应使车身有抗前俯作用;加速时,有抗后仰作用。 对后轮独止:悬架导向机构的要求是: 1)悬架上的载荷变化时,轮距无显著变化。 2)汽车转弯行驶时,应使车身侧倾角小,并使车轮与车身的倾斜反向,以减小过多转向效应。 此外,导向机构还应有够强度,并可靠地传递除垂直力以外的各种力和力矩。 目前,汽车上广泛采用上、下臂不等长的双横臂式独立悬架(主要用于前悬架)和滑柱摆臂(麦弗逊)式独立悬架。下面以这两种悬架为例,分别讨论独立悬架导向机构参数的选择方法,分析导向机构参数对前轮定位参数和轮距的影响。 二、导向机构的布置参数 1.侧倾中心 双横臂式独立悬架的侧倾中心由如图6—24所示方式得出。将横臂内外转动点的连线延长,以便得到极点P,并同时获得P点的高度。将P点与车轮接地点N连接,即可在汽车轴线上获得侧倾中心W。当横臂相互平行时(图6—25),P点位于无穷远处。作出与其平行的通过N点的平行线,同样可获得侧倾中心W。 双横臂式独立悬架的侧倾中心的高度hw通过下式计算得出 滑柱摆臂式独立悬架的侧倾中心由如图6—26所示方式得出。从悬架与车身的固定连接点E 作活塞杆运动方向的垂直线并将下横臂线延长。两条线的交点即为P点。 滑柱摆臂式悬架的弹簧减振器柱EG布置得越垂直,下横臂GD布置得越接近水平,则侧倾小心W就越接近地面,从而使得在车轮上跳时车轮外倾角的变化很不理想。如加长下横臂,则可改善运动学特性。 麦弗逊式独立悬架侧倾中心的高度hw可通过下式计算 式中 2.侧倾中心 在独立悬架中,前后侧倾中心连线称为侧倾轴线。侧倾轴线应大致与地面平行,且尽可能离地面高些。平行是为了使得在曲线行驶时前、后轴上的轮荷变化接近相等,从而保证中

悬架主要参数的确定

悬架结构形式的选择 汽车的悬架主要有独立悬架和非独立悬架,独立悬架的结构特点是,左右车轮通过各自的悬架与车架连接;非独立悬架的结构特点是,左右车轮用一根整体轴连接,再经过悬架与车架连接。 独立悬架与非独立悬架的优缺点对照见表1: 表1 独立悬架与非独立悬架的优缺点对照 所以前后轴都用非独立悬架。从表格中可以看出可以可以方便维修,制造成本也低。 目前在客车上普遍应用的是空气弹簧做弹性元件的悬架。悬架是连接车身和车轮之间一切传力装置的总称,主要由空气弹簧,减振器和导向机构三部分组成。弹性元件用来传递垂直力,并和轮胎一起缓和路面不平引起的冲击和振动,减振器将振动迅速衰减。导向机构用来确定车轮相对于车架或车身的运动,传递除垂直力以外的各种力矩和力。 空气弹簧与机械弹簧悬架的目的是一样的,都是为了保护车辆不受振动和路面冲击振动的影响。但是,机械弹簧悬架也可能加强振动,因为一些小的来自路面的跳动都可能引起共振。而空气弹簧消除振动的性能从而提高车辆的行驶平顺性-乘坐柔软性和舒适性是机械弹簧悬架系统所无法比拟的。机械弹簧悬架的吸振相差太大,在俯仰摆动时,机械弹簧悬架的减振效果更差,只有空气弹簧悬架的25%。 空气悬架在客车的应用上具有许多优点,比如空气弹簧可以设计的比较柔软,可以得到较低的固有振动频率,同时空气弹簧的变刚度特性使得这一频率在较大的载荷变化范围内保持不变,从而提高汽车的行驶平顺性。空气悬架的另一个优点在于通过调节车身高度使大客车的地板高度随载荷的变化基本保持不变。 空气弹簧的优点 1.性能优点:由于空气弹簧可以设计得比较柔软,因而空气悬架可以得到较低的固有振动频率,同时空气弹簧的变刚度特性使得这一频率在较大的载荷变化范围内保持不变,从而

某SUV汽车多连杆后独立悬架设计与分析本科毕业论文

某SUV汽车多连杆后独立悬架设计与分析 摘要 近年来,随着汽车工业的快速发展,人们对汽车的操纵稳定性和乘坐舒适性的要求越来越高,因此对汽车的悬架系统也提出了更高的要求。多连杆式独立悬架以其综合指标过硬、兼顾操控性和行驶舒适性在内的多种特性受到广大消费者的青睐。然而多年以来,结构复杂、成本高昂、舒适性较好的多连杆式独立悬架只用于豪华轿车,或少部分定位较高端的中高级别轿车。伴随着汽车制造技术的不断提升,零部件单位生产成本逐步降低,汽车厂商们开始更多的在低端轿车上装备这种结构复杂、性能优异的悬架,以此来提高车辆在行驶过程中的综合表现,并在同级别车型中形成鹤立鸡群的效应。我这次设计的奔驰GLK300的悬架系统正是符合大众的需求,采用多连杆式独立悬架。 本次设计的主要内容是:奔驰GLK300SUV的后悬架系统的设计,后悬架采用目前较为流行的多连杆式独立悬架系统。减振器采用双作用液力减振器,并对其进行参数计算。对导向机构和横向稳定杆进行结构计算及强度校核。采用CATIA软件对多连杆式独立悬架的零件进行建模并对悬架进行装配。同时采用CATIA软件对悬架的性能进行分析,论证悬架系统设计参数的合理正确性。 在这次设计中,采用了性能较好的多连杆式独立悬架系统,虽然多连杆式独立悬架还未广泛应用于中低端轿车,但随着成本的降低,此悬架系统将越来越多的得到使用。通过CATIA软件对悬架系统的建模及对其进行仿真优化,验证了多连杆式独立悬架的优异性能。因此,这次设计的悬架系统具有广泛的发展前景。 关键词:多连杆;独立悬架;仿真优化;CATIA

A SUV multi-link independent rear suspension of automobile design and analysis Abstract In recent years, with the rapid development of automobile industry, people on the handling stability and riding comfort of the increasingly high demand, so the car's suspension system is also put forward higher requirements. Multi-link independent suspension with its comprehensive index, consideration of different characteristics of excellent handling and ride comfort, favored by the vast number of consumers. However, over the years, complex structure, high cost, comfort good multi-link independent suspension is used only for luxury cars, or a few more high-end positioning in high-grade car. Along with the automobile manufacturing technology continues to improve, spare parts production costs per unit decrease gradually, the automobile manufacturers began more equipment of this structure in the low-end cars complex, excellent performance of suspension, in order to improve the comprehensive performance of vehicles in the process, and the effect of forming in the same stand head and shoulders above others don't models. Suspension system I the design of the Mercedes-Benz GLK300 is in line with the needs of the public, the multi-link independent suspension. The design of the main content is: the design of rear suspension system of the Mercedes-Benz GLK300SUV, rear suspension uses the popular multi-link independent suspension system. Damper adopts double acting hydraulic shock absorber, and parameter calculation of its. The guide mechanism and a transverse stable rod structure calculation and strength check. The components of CATIA software for multi-link independent suspension modeling and assembly of suspension. At the same time were analyzed by CATIA software performance of suspension, reasonable design parameter argumentation suspension system. In this design, the multi-link independent suspension system with better performance, although the multi-link independent suspension is not widely used in the low-end cars, but with lower costs, this suspension system will be more and more use. Through the CATIA software model of suspension system and simulation and optimization of its, verify the multi-link independent suspension performance. Therefore, the design of the suspension system has a broad development prospects. Keywords:Connecting rod;independent suspension ;Simulation optimization;CATIA

麦弗逊式悬架的课程设计

前言: 悬架是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。典型的悬架结构由弹性元件、导向机构以及减震器等组成,个别结构则还有缓冲块、横向稳定杆等。弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬架多采用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。悬架是汽车中的一个重要总成,它把车架与车轮弹性地联系起来,因此悬架与车辆的行驶平顺性、操控稳定性具有极大的关系。悬架设计的好坏直接影响到整车的性能。因此开发出高品质的悬架是车辆工程师的一项重要任务。而悬架部分涉及的专业知识也比较高深,本文期望通过对悬架进行初级设计以达到对悬架有进一步了解的目 的。 关键词:悬架;减震器;弹簧计算 1

1悬架 1.1悬架的功用 汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力;保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。 1.2 悬架的组成 一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。 1.弹性元件 弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧等,这里我们选用螺旋弹簧。 2.减振器 减振器用来衰减由于弹性系统引起的振动,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。 3.导向机构 导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。种类有单杆式或多连杆式的。钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特性,改善汽车的操纵稳定性和行驶平顺性。

悬架导向机构设计

独立悬架导向机构的设计 汽车悬架--独立悬架导向机构的设计;一、设计要求;对前轮独立悬架导向机构的要求是:; 1)悬架上载荷变化时,保证轮距变化不超过±4.O;2)悬架上载荷变化时,前轮定位参数要有合理的变化;3)汽车转弯行驶时,应使车身侧倾角小;4)汽车制动时,应使车身有抗前俯作用;加速时,有;对后轮独止:悬架导向机构的要求是:;1)悬架上的载荷变化时 汽车悬架--独立悬架导向机构的设计 第五节独立悬架导向机构的设计 一、设计要求 对前轮独立悬架导向机构的要求是: 1)悬架上载荷变化时,保证轮距变化不超过±4.Omm,轮距变化大会引起轮胎早期磨损。 2)悬架上载荷变化时,前轮定位参数要有合理的变化特性,车轮不应产生纵向加速度。 3)汽车转弯行驶时,应使车身侧倾角小。在0.4g侧向加速度作用下,车身侧倾角不大于6°~7°,并使车轮与车身的倾斜同向,以增强不足转向效应。 4)汽车制动时,应使车身有抗前俯作用;加速时,有抗后仰作用。 对后轮独止:悬架导向机构的要求是: 1)悬架上的载荷变化时,轮距无显著变化。 2)汽车转弯行驶时,应使车身侧倾角小,并使车轮与车身的倾斜反向,以减小过多转向效应。此外,导向机构还应有够强度,并可靠地传递除垂直力以外的各种力和力矩。 目前,汽车上广泛采用上、下臂不等长的双横臂式独立悬架(主要用于前悬架)和滑柱摆臂(麦弗逊)式独立悬架。下面以这两种悬架为例,分别讨论独立悬架导向机构参数的选择方法,分析导向机构参数对前轮定位参数和轮距的影响。 二、导向机构的布置参数 1.侧倾中心 双横臂式独立悬架的侧倾中心由如图6—24所示方式得出。将横臂内外转动点的连线延长,以便得到极点P,并同时获得P点的高度。将P点与车轮接地点N连接,即可在汽车轴线上获得侧倾中心W。当横臂相互平行时(图6—25),P点位于无穷远处。作出与其平行的通过N点的平行线,同样可获得侧倾中心W。 双横臂式独立悬架的侧倾中心的高度hw通过下式计算得出 滑柱摆臂式独立悬架的侧倾中心由如图6—26所示方式得出。从悬架与车身的固定连接点E 作活塞杆运动方向的垂直线并将下横臂线延长。两条线的交点即为P点。 滑柱摆臂式悬架的弹簧减振器柱EG布置得越垂直,下横臂GD布置得越接近水平,则侧倾小心W就越接近地面,从而使得在车轮上跳时车轮外倾角的变化很不理想。如加长下横臂,则可改善运动学特性。 麦弗逊式独立悬架侧倾中心的高度hw可通过下式计算 式中 2.侧倾中心 在独立悬架中,前后侧倾中心连线称为侧倾轴线。侧倾轴线应大致与地面平行,且尽可能离地面高些。平行是为了使得在曲线行驶时前、后轴上的轮荷变化接近相等,从而保证中 性转向特性;而尽可能高则是为了使车身的侧倾限制在允许范围内。 然而,前悬架侧倾中心高度受到允许轮距变化的限制且几乎不可能超过150mm。此外,在前轮驱动的车辆中,由于前轿轴荷大,且为驱动桥,故应尽可能使前轮轮荷变化小。因此,独立悬架(纵臂式悬架除外)的侧倾中心高度为:

悬架系统设计步骤(DOC)

悬架系统设计步骤 在此主要是分析竞争车型的底盘布置。底盘布置首先要确定出轮胎、悬架形式、转向系统、发动机、传动轴、油箱、地板、前纵梁结构(满足碰撞)等,因为这些重要的参数,如轮胎型号、悬架尺寸、发动机布置、驱动形式、燃油种类等在开发过程中要尽可能早地确定下来。在此基础上,线束、管路、减振器、发动机悬置等才能继续下去 悬架选择 对各种后悬架结构型式进行优缺点比较,包括对后部轮罩间空间尺寸的分析比较,进行后悬架结构的选择。 常见的后悬架结构型式有:扭转梁式、拖曳臂式、多连杆式。 扭转梁式悬架 优点: 1.与车身连接简单,易于装配。 2.结构简单,部件少,易分装。 3.垂直方向尺寸紧凑。 4.底板平整,有利于油箱和后备胎的布置。 5.汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定作用, 若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。 6.两侧车轮运转不均衡时外倾具有良好的回复作用。 7.在车身摇摆时具有较好的前束控制能力。 8.车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。 9.通过障碍的轴距具有相当好的加大能力,通过性好。 10.如果采用连续焊接的话,强度较好。 缺点: 1.对横向扭转梁和纵向拖臂的连续焊接质量要求较高。 2.不能很好地协调轮迹。 3.整车动态性能对轴荷从空载到满载的变化比较敏感。 4.但这种悬架在侧向力作用时,呈过度转向趋势。另外,扭转梁因强度关系,允 许承受的载荷受到限制。 扭转梁式悬架结构简单、成本低,在一些前置前驱汽车的后悬架上应用较多。 拖曳臂式悬架 优点: 1.Y轴和X轴方向尺寸紧凑,非常有利于后乘舱(尤其是轮罩间宽度尺寸较大) 和下底板备胎及油箱的布置。 2.与车身的连接简单,易于装配。 3.结构简单,零件少且易于分装; 4.由于没有衬套,滞后作用小。 5.可考虑后驱。 缺点: 1.由于沿着控制臂相对车身转轴方向控制臂较大的长宽比,侧向力对前束将产生 不利的影响。 2.车身摇摆(body roll)对外倾产生不利影响;(适当的控制臂转轴有可能改善外 倾的回复能力,但这导致轮罩间宽度尺寸的减小。)

相关主题
文本预览
相关文档 最新文档