数字逻辑实验报告
- 格式:doc
- 大小:19.52 MB
- 文档页数:36
数字逻辑实验报告1篇一:数字逻辑实验报告实验一 TTL门电路的逻辑功能测试一、实验目的1、掌握TTL器件的使用规则。
2、掌握TTL集成与非门的逻辑功能。
3、掌握TTL集成与非门的测试方法。
二、实验原理TTL集成电路的输入端和输出端均为三极管结构,所以称作三极管、三极管逻辑电路(Transistor -Transistor Logic )简称TTL电路。
54 系列的TTL电路和74 系列的TTL电路具有完全相同的电路结构和电气性能参数。
所不同的是54 系列比74 系列的工作温度范围更宽,电源允许的范围也更大。
74 系列的工作环境温度规定为0—700C,电源电压工作范围为5V±5%V,而54 系列工作环境温度规定为-55—±1250C,电源电压工作范围为5V±10%V。
54H 与74H,54S 与74S 以及54LS 与74LS 系列的区别也仅在于工作环境温度与电源电压工作范围不同,就像54 系列和74 系列的区别那样。
在不同系列的TTL 器件中,只要器件型号的后几位数码一样,则它们的逻辑功能、外形尺寸、引脚排列就完全相同。
TTL 集成电路由于工作速度高、输出幅度较大、种类多、不易损坏而使用较广,特别对我们进行实验论证,选用TTL电路比较合适。
因此,本实训教材大多采用74LS(或74)系列TTL 集成电路,它的电源电压工作范围为5V±5%V,逻辑高电平为“1”时≥2.4V,低电平为“0”时≤0.4V。
它们的逻辑表达式分别为:图 1.2.1 分别是本次实验所用基本逻辑门电路的逻辑符号图。
图 TTL 基本逻辑门电路与门的逻辑功能为“有0 则0,全1 则1”;或门的逻辑功能为“有1则1,全0 则0”;非门的逻辑功能为输出与输入相反;与非门的逻辑功能为“有0 则1,全1 则0”;或非门的逻辑功能为“有1 则0,全0 则1”;异或门的逻辑功能为“不同则1,相同则0”。
三、实验设备与器件1、仪器数字逻辑实验箱2、器件74LS00 二输入端四与非门四、实验内容及实验步骤(包括数据记录)1、测试74LS00(四2输入端与非门)逻辑功能将74LS00正确接入DIP插座,注意识别1脚位置(集成块正面放置且缺口向左,则左下角为1脚),输入端接逻辑电平输出插口,输出端接逻辑电平显示,拨动逻辑电平开关,根据LED发光二极管亮与灭,检测非门的逻辑功能,结果填入下表中。
数字逻辑实验报告心得5篇数字逻辑是数字电路逻辑设计的简称,其内容是应用数字电路进行数字系统逻辑设计。
电子数字计算机是由具有各种逻辑功能的逻辑部件组成的,这些逻辑部件按其结构可分为组合逻辑电路和时序逻辑电路。
下面是带来的有关数字逻辑实验报告心得,希望大家喜欢数字逻辑实验报告心得1数字电路中,最基本的逻辑门可归结为与门、或门和非门。
实际应用时,它们可以独立使用,但用的更多的是经过逻辑组合组成的复合门电路。
目前广泛使用的门电路有TTL 门电路和CMOS门电路。
1、TTL门电路TTL门电路是数字集成电路中应用最广泛的,由于其输入端和输出端的结构形式都采用了半导体三极管,所以一般称它为晶体管-晶体管逻辑电路,或称为TTL电路。
这种电路的电源电压为+5V,高电平典型值为3.6V(≥2.4V合格);低电平典型值为0.3V(≤0.45合格)。
常见的复合门有与非门、或非门、与或非门和异或门。
有时门电路的输入端多余无用,因为对TTL电路来说,悬空相当于“1”,所以对不同的逻辑门,其多余输入端处理方法不同。
(1)TTL与门、与非门的多余输入端的处理如图1-1为四输入端与非门,若只需用两个输入端A和B,那么另两个多余输入端的处理方法是:并联悬空通过电阻接高电平请点击输入图片描述图1-1 TTL与门、与非门多余输入端的处理并联、悬空或通过电阻接高电平使用,这是TTL型与门、与非门的特定要求,但要在使用中考虑到,并联使用时,增加了门的输入电容,对前级增加容性负载和增加输出电流,使该门的抗干扰能力下降;悬空使用,逻辑上可视为“1”,但该门的输入端输入阻抗高,易受外界干扰;相比之下,多余输入端通过串接限流电阻接高电平的方法较好。
(2)TTL或门、或非门的多余输入端的处理请点击输入图片描述如图1-2为四输入端或非门,若只需用两个输入端A和B,那么另两个多余输入端的处理方法是:并联、接低电平或接地。
并联低电平或接地请点击输入图片描述图1-2 TTL或门、或非门多余输入端的处理(3)异或门的输入端处理异或门是由基本逻辑门组合成的复合门电路。
数字电路技术实验报告一、学号: 姓名: 日期:实验目的:(1).用数码显示管实现0.1.2.3.4.0.3.0.3.4;(2).用74LS90,5421BCD码实现模十计数;二、实验设备:(1).数字电路试验箱;(2).数字双踪示波器;(3).函数信号发生器;(4).集成电路: 74LS90;(5).集成电路: 74LS00;三、实验原理:计数是一种最简单的基本运算计数器在数字系统中主要是对脉冲的个数进行计数以实现测量、计数和控制的功能同时兼有分频功能。
计数器按计数进制分为二进制计数器十进制计数器和任意进制计数器按计数单元中触发器所接收计数脉冲和翻转顺序分为异步计数器同步计数器按计数功能分有加法计数器减法计数器可逆双向计数器等。
异步清零2-5-10进制异步计数器74LS9074LS90是一块2-5-10进制异步计数器它由四个主从JK触发器和一些附加门电路组成其中一个触发器构成一位二进制计数器另三个触发器构成异步五进制计数器。
在74LS90计数器电路中设有专用置0端R01 R02和置9端S91 S92 当R1=R2=S1=S2=0时时钟从CP1引入Q0输出为二进制时钟从CP2引入Q3输出为五进制时钟从CP1引入Q0接CP2即二进制的输出与五进制的输入相连则Q3Q2Q1Q0输出为十进制8421BCD 码时钟从CP2引入而Q3接CP1即五进制的输出与二进制的输入相连Q0Q3Q2Q1输出为十进制5421BCD码。
74LS90管脚定义74LS00管脚定义74LS90功能表四、实验内容:(1).用74LS90实现0123403034 (2).用5421BCD实现计数;五、实验结果:(1).列出真值表;(2).画出卡诺图;(3).按化简结果连接图;(循环数字列表)(1).F8=0;.四变量卡诺图:F 2=Q .Q .Q .Q 1020;F 1=Q 1;(5).把F 8接地;F 4接Q3;F 2与相接Q .Q .Q .Q 1020;F 1与Q 1链接;六、心得体会:这次实验综合性较强, 主要考察了我们从实际问题中抽象出逻辑函数的能力。
一、实验背景数字逻辑是电子技术与计算机科学的基础课程,它研究数字电路的设计与实现。
为了加深对数字逻辑电路的理解,我们进行了本次实验,通过实际操作和仿真,验证数字逻辑电路的理论知识,并掌握数字逻辑电路的设计与实现方法。
二、实验目的1. 理解数字逻辑电路的基本原理和组成。
2. 掌握逻辑门电路、组合逻辑电路和时序逻辑电路的设计方法。
3. 通过实验验证数字逻辑电路的功能,提高动手能力和分析问题能力。
三、实验内容1. 逻辑门电路实验(1)实验目的:学习分析基本的逻辑门电路的工作原理,掌握与门、或门、非门等基本逻辑门电路的逻辑功能。
(2)实验步骤:①按照实验指导书的要求,连接实验电路;②根据输入信号,观察输出信号,验证逻辑门电路的逻辑功能;③记录实验结果,分析实验现象。
(3)实验结果与分析:实验结果显示,与门、或门、非门等基本逻辑门电路的逻辑功能符合预期。
通过实验,我们加深了对逻辑门电路工作原理的理解。
2. 组合逻辑电路实验(1)实验目的:掌握组合逻辑电路的设计方法,验证组合逻辑电路的功能。
(2)实验步骤:①根据实验要求,设计组合逻辑电路;②按照实验指导书的要求,连接实验电路;③根据输入信号,观察输出信号,验证组合逻辑电路的功能;④记录实验结果,分析实验现象。
(3)实验结果与分析:实验结果显示,设计的组合逻辑电路功能符合预期。
通过实验,我们掌握了组合逻辑电路的设计方法,提高了逻辑思维能力。
3. 时序逻辑电路实验(1)实验目的:掌握时序逻辑电路的设计方法,验证时序逻辑电路的功能。
(2)实验步骤:①根据实验要求,设计时序逻辑电路;②按照实验指导书的要求,连接实验电路;③根据输入信号,观察输出信号,验证时序逻辑电路的功能;④记录实验结果,分析实验现象。
(3)实验结果与分析:实验结果显示,设计的时序逻辑电路功能符合预期。
通过实验,我们掌握了时序逻辑电路的设计方法,提高了逻辑思维能力。
四、实验总结通过本次实验,我们完成了以下任务:1. 理解了数字逻辑电路的基本原理和组成;2. 掌握了逻辑门电路、组合逻辑电路和时序逻辑电路的设计方法;3. 通过实验验证了数字逻辑电路的功能,提高了动手能力和分析问题能力。
数字逻辑实验报告数字逻辑是一门关于数字电路与计算机硬件的专业学科,数学与电子学是数字逻辑的主要支撑学科。
数字逻辑实验则是数字逻辑课程中重要的一环,通过数字逻辑实验,学生们可以更加直观地了解数字电路的原理与构造,掌握数字逻辑设计和模拟的基本方法和技能。
在这次数字逻辑实验中,我们使用了FPGA平台和Verilog HDL编程语言进行数字电路的设计和模拟。
在实验中,我们以设计一个给定数码在七段显示器上输出的电路为例,具体实现方法如下。
首先,我们需要了解七段显示器的原理。
七段显示器是一种基于数码管工作原理的显示设备,它由七个LED元件(排列成了基本的数字“8”形状)和数码控制器组成。
每个LED元件可以显示数字“0”到“9”以及一些字母和特殊符号。
某个数字或字母在七段数码管上的显示是由对应的七段LED元件亮灭状态的组合来实现的。
接着,我们需要确定给定数字在七段显示器上显示的亮灭状态的对应表。
例如,数字“0”的亮灭状态可以表示为1111110,其中1表示亮,0表示灭。
通过查找资料或自行设计,我们可以获得数字0到9的显示亮灭状态的对应表。
然后,我们需要根据数字的输入和输出设计电路。
电路的输入是一个N位二进制数码,输出是控制七段数码管显示的亮灭状态。
我们可以使用Verilog HDL语言描述电路的模块,如下所示:```module seven_segment_display(input [N-1:0] num, output [6:0] seg);assign seg = {~num[3], num[2], num[1], ~(num[0] & num[2]), num[0] & num[1], ~(num[0] | num[1]), num[0] ^ num[1] ^ num[2]};endmodule```在这个Verilog HDL模块中,我们使用assign关键字将七段数码管的亮灭状态seg与输入num进行绑定。
数字逻辑JK触发器实验报告.doc
JK触发器实验报告
一、实验综述
本实验的目的是熟悉JK触发器,其中包括JK触发器的模型,以及JK触发器工作原理,以及如何利用JK触发器构成T型延迟线。
二、实验过程及结果
1、JK触发器模型
JK触发器是一种时序逻辑锁存器,也称为记忆器、单端锁存器或延时器,由两个输入J、K和一个输出Q共构成的三角型逻辑结构组成,且该触发器的输入J和K引脚可以为高电平或低电平。
2、JK触发器的工作原理
JK触发器以及其工作原理的机理可以归纳为:若J与K均为高电平时,Q变化,若J、K均为低电平时,Q不变化,若K为低电平,J为高电平时,Q变化,若K为高电平,J为
低电平时,Q变化。
3、如何利用JK触发器构成T型延迟线
本实验将JK触发器及时间开关利用起来,构成T型延时线,以实现对输入的按键信
号的定时操作,经过实验我们知道给定间隔时间后即可得到一段延时是输出与输入相同的
信号,定时作用,实现了定时控制。
三、实验结论
1、本实验通过理论分析及实验验证,熟悉了JK触发器的模型,以及JK触发器的工
作原理。
2、本实验搭建了一个T型延迟线,并验证了JK触发器可以实现定时操作,实现定时
控制。
四、实验总结
本实验通过JK触发器,理解了它的模型和工作原理,并将其用于搭建定时器,实现
定时控制,学到了JK触发器的理论知识和实际功能。
本实验也为今后更深入的探索和学
习预备了良好的基础。
基于Libero的数字逻辑仿真实验1.基本门电路一、实验目的1.了解基于Verilog的基本门电路的设计及其验证。
2.熟悉利用EDA工具进行设计及仿真的流程。
二、实验环境Libero仿真软件。
三、实验内容1.参考4.1基本门电路实验掌握Libero软件的使用方法。
2.参考74HC00的实验, 完成74HC00、74HC02.74HC04.74HC08、74HC32.74HC86相应的设计、综合及仿真3、提交针对74HC00、74HC02、74HC04、74HC08、74HC32、74HC86(任选一个)的综合结果, 以及相应的功能仿真结果。
4.自选一个器件演示其布线后仿真过程。
四、实验结果和数据处理1.模块及测试平台代码清单(a) 74HC32:(b)模块代码// main.vmodule HC32(a,b,y);input [4:1]a,b;output[4:1]y;assign y=a|b;endmodule(c)测试平台代码// testbench.v`timescale 1ns/1nsmodule testbench;reg [4:1]a,b;wire [4:1]y;HC32 ul(a,b,y);initialbegina=4'b0000;b=4'b0001;#10 b=b<<1;#10 b=b<<1;#10 b=b<<1;#10 b=b<<1;endendmodule2.第三次仿真结果(布局布线后)2.组合逻辑电路一、实验目的1.了解基于Verilog的组合逻辑电路的设计及其验证。
2.熟悉利用EDA工具进行设计及仿真的流程。
二、实验环境Libero仿真软件。
三、实验内容1.参考74HC00的实验, 完成74HC283.74HC85.74HC138、74HC148、74HC15.相应的设计、综合及仿真。
2、记录74HC85的综合结果, 以及相应的功能仿真结果。
数字逻辑心得体会数字逻辑实验报告心得体会数字逻辑实验是我们计算机科学专业的一门必修课程,通过学习数字逻辑实验可以让我们从硬件设计的角度更加深入地理解计算机组成原理。
在多次实验的过程中,我养成了细心认真的做实验的习惯,印证了实践出真知的道理,也深深地感受到了数字逻辑在现代计算机系统中的重要性。
首先,做实验前必须认真阅读实验指导书和理解相应的电路原理,而且还需要画出具体的电路图。
由于数字逻辑的电路原理比较复杂,需要细心地阅读指导书上的电路原理,并了解各个元器件的功能和特点。
接着,应该跟着实验指导书一步一步地模拟电路,并利用麻烦的数字电路计算的知识,进行相关计算和验算。
只有这样才能对实验结果进行正确地判断和分析,同时还能够更好地理解数字逻辑的实际应用。
其次,在实验中需要认真记录每一步的操作、电路图和实验数据。
这样做的好处是可以保证实验结果更加稳定可靠,并能够及时发现和解决潜在问题。
有时候,在实验过程中可能因为一些细节没有注意到而导致实验结果不稳定,如果没有及时记录实验过程,就很难去纠正错误。
因此,认真记录实验过程至关重要。
最后,多思考、多讨论、多交流。
数字逻辑实验需要思维缜密和分析运用的能力,多思考能够让我们更好的理解电路结构的原理并且搞清每一个器件的作用。
而多交流则可以让我们了解到其他同学的电路设计,甚至可以从中获得更加深入的思考。
在实验过程中,我也发现了许多潜在问题,通过与同学及实验教师的讨论,才得以充分理解并找出正确的解决方法。
总的来说,数字逻辑实验对于我们理解计算机组成原理、提高实际操作能力、培养团队合作能力都是非常有指导意义的。
良好的实验习惯和精神,则更是对我们整个职业生涯的培养和锻炼。
一、实验目的本次实验旨在通过实际操作,加深对数字逻辑基本原理和设计方法的理解,提高学生在数字电路设计、仿真和调试方面的实践能力。
通过完成以下实验任务,使学生掌握以下技能:1. 理解数字逻辑电路的基本概念和原理。
2. 掌握数字逻辑电路的设计方法和步骤。
3. 学会使用仿真软件进行电路设计和仿真测试。
4. 掌握数字逻辑电路的调试和优化方法。
二、实验内容本次实验主要包含以下三个部分:1. 组合逻辑电路设计:设计一个四位加法器,并使用Logisim软件进行仿真测试。
2. 时序逻辑电路设计:设计一个简单的计数器,并使用Verilog语言进行描述和仿真。
3. 数字逻辑电路综合应用:设计一个简单的数字信号处理器,实现基本的算术运算。
三、实验步骤1. 组合逻辑电路设计(1)分析题目要求,确定设计目标和输入输出关系。
(2)根据输入输出关系,设计四位加法器的逻辑电路。
(3)使用Logisim软件搭建电路,并设置输入信号。
(4)观察仿真结果,验证电路功能是否正确。
2. 时序逻辑电路设计(1)分析题目要求,确定设计目标和状态转移图。
(2)使用Verilog语言描述计数器电路,包括模块定义、输入输出定义、状态定义和状态转移逻辑。
(3)使用仿真软件进行测试,观察电路在不同状态下的输出波形。
3. 数字逻辑电路综合应用(1)分析题目要求,确定设计目标和功能模块。
(2)设计数字信号处理器电路,包括算术运算单元、控制单元和存储单元等。
(3)使用仿真软件进行测试,验证电路能否实现基本算术运算。
四、实验结果与分析1. 组合逻辑电路设计实验结果:通过仿真测试,四位加法器电路功能正常,能够实现两个四位二进制数的加法运算。
分析:在设计过程中,遵循了组合逻辑电路设计的基本原则,确保了电路的正确性。
2. 时序逻辑电路设计实验结果:通过仿真测试,计数器电路功能正常,能够实现从0到9的计数功能。
分析:在设计过程中,正确描述了状态转移图,并使用Verilog语言实现了电路的功能。
本次数字逻辑实验旨在通过实际操作,加深对数字逻辑基本原理和电路设计的理解,掌握数字逻辑电路的基本分析方法,提高动手能力和创新意识。
二、实验内容本次实验主要包括以下内容:1. 逻辑门电路实验:观察逻辑门电路的逻辑功能,验证其真值表。
2. 组合逻辑电路实验:设计并搭建组合逻辑电路,验证其逻辑功能。
3. 时序逻辑电路实验:设计并搭建时序逻辑电路,验证其逻辑功能。
4. 数值电路实验:设计并搭建数值电路,验证其逻辑功能。
三、实验结果与分析1. 逻辑门电路实验实验结果表明,逻辑门电路具有确定的逻辑功能,其输出信号与输入信号之间具有明确的逻辑关系。
在实验过程中,我们观察到了各种逻辑门电路(如与门、或门、非门、异或门等)的输出波形,验证了其真值表。
2. 组合逻辑电路实验实验结果表明,组合逻辑电路的输出信号仅与当前输入信号有关,与电路的历史状态无关。
在实验过程中,我们设计并搭建了各种组合逻辑电路(如全加器、译码器、编码器等),验证了其逻辑功能。
3. 时序逻辑电路实验实验结果表明,时序逻辑电路的输出信号不仅与当前输入信号有关,还与电路的历史状态有关。
在实验过程中,我们设计并搭建了各种时序逻辑电路(如触发器、计数器、寄存器等),验证了其逻辑功能。
4. 数值电路实验实验结果表明,数值电路在完成数值运算时,能够保证运算结果的正确性。
在实验过程中,我们设计并搭建了各种数值电路(如加减法器、乘法器、除法器等),验证了其逻辑功能。
1. 数字逻辑电路的基本原理是清晰的,通过实验操作可以加深对基本原理的理解。
2. 数字逻辑电路的设计方法具有实用性,可以应用于实际电路的设计。
3. 实验过程中,我们掌握了数字逻辑电路的基本分析方法,提高了动手能力和创新意识。
4. 本次实验为我们提供了宝贵的实践机会,有助于我们更好地理解数字逻辑课程内容,为后续课程的学习打下坚实基础。
五、实验建议1. 在实验过程中,应注重实验步骤的规范性,确保实验结果的准确性。