江苏省南京市2020高三数学上学期期初联考试题试题(含解析)
- 格式:doc
- 大小:934.06 KB
- 文档页数:11
江苏省南京市2020年高三上学期数学第三次调研试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019高一上·辽宁月考) 已知集合,则()A .B .C .D .2. (2分)在复平面内,复数对应的点的坐标为()A .B .C .D .3. (2分)数列前n项和为,已知,且对任意正整数,都有,若恒成立,则实数的最小值为()A .B .C .D . 44. (2分) (2018高二下·湛江期中) 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则()A . 乙可以知道两人的成绩B . 丁可能知道两人的成绩C . 乙、丁可以知道自己的成绩D . 乙、丁可以知道对方的成绩5. (2分) (2018高二下·河池月考) 如图所示,正四棱锥的底面积为3,体积为,为侧棱的中点,则与所成的角为()A .B .C .D .6. (2分)(2018·南宁模拟) 已知半径为2的扇形中,,是的中点,为弧上任意一点,且,则的最大值为()A . 2B .C .D .7. (2分)(2017·揭阳模拟) 某棱柱的三视图如图示,则该棱柱的体积为()A . 3B . 4C . 6D . 128. (2分) (2019高二下·上海月考) 已知直线、,平面、,给出下列命题:①若,,且,则②若,,且,则③若,,且,则④若,,且,则其中正确的命题是()A . ①③B . ②④C . ③④D . ①9. (2分) (2018高一下·开州期末) 已知,,若,则的最小值为()A .B .C .D .10. (2分) (2019高二上·柳林期末) 给出四个命题:①若x2﹣3x+2=0,则x=1或x=2;②若x=y=0,则x2+y2=0;③已知x,y∈N,若x+y是奇数,则x、y中一个是奇数,一个是偶数;④若x1 , x2是方程x2﹣2 x+2=0的两根,则x1 , x2可以是一椭圆与一双曲线的离心率,那么()A . ③的否命题为假B . ①的逆否命题为假C . ②的逆命题为真D . ④的逆否命题为假11. (2分)在△ABC中,a=bsinA,则△ABC一定是()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等腰三角形12. (2分)在数列{}中,已知且当n ≥2时,,则a3 + a5等于()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2017高一下·卢龙期末) 若函数f(x)= 的定义域为R,则实数m的取值范围是________.14. (1分)(2017·浙江模拟) 已知向量 =(﹣2,x), =(y,3),若∥ 且• =12,则x=________,y=________.15. (1分) (2017高三上·赣州期中) 在△ABC中,a,b,c为∠A,∠B,∠C的对边,a,b,c成等比数列,,则 =________.16. (1分)(2017·嘉兴模拟) 已知点P是平面区域M:内的任意一点,P到平面区域M 的边界的距离之和的取值范围为________.三、解答题 (共6题;共60分)17. (10分)已知数列{an}中,a1=1,a1+2a2+3a3+…+nan= (n∈N*)(Ⅰ)证明当n≥2时,数列{nan}是等比数列,并求数列{an}的通项an;(Ⅱ)求数列{n2an}的前n项和Tn;(Ⅲ)对任意n∈N* ,使得≤(n+6)λ 恒成立,求实数λ的最小值.18. (10分)如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°,点E,F分别是AC,AD的中点.(1)求证:EF∥平面BCD;(2)求三棱锥A﹣BCD的体积.19. (10分)(2018·宁德模拟) 如图,岛、相距海里.上午9点整有一客轮在岛的北偏西且距岛海里的处,沿直线方向匀速开往岛,在岛停留分钟后前往市.上午测得客轮位于岛的北偏西且距岛海里的处,此时小张从岛乘坐速度为海里/小时的小艇沿直线方向前往岛换乘客轮去市.(Ⅰ)若,问小张能否乘上这班客轮?(Ⅱ)现测得,.已知速度为海里/小时()的小艇每小时的总费用为()元,若小张由岛直接乘小艇去市,则至少需要多少费用?20. (10分)(2017·抚顺模拟) 选修4-5:不等式选讲已知函数f(x)=|a﹣x|(a∈R)(Ⅰ)当a= 时,求使不等式f(2x﹣)>2f(x+2)+2成立的x的集合A;(Ⅱ)设x0∈A,证明f(x0x)≥x0f(x)+f(ax0).21. (10分) (2019高二上·德惠期中) 如图,四棱锥中,平面,底面是正方形 , 为中点.(1)求证:平面;(2)求点到平面的距离;(3)求二面角的余弦值.22. (10分)(2017·巢湖模拟) 已知函数f(x)=2lnx﹣2mx+x2(m>0).(1)讨论函数f(x)的单调性;(2)当m≥ 时,若函数f(x)的导函数f'(x)的图象与x轴交于A,B两点,其横坐标分别为x1,x2(x1<x2),线段AB的中点的横坐标为x0,且x1,x2恰为函数h(x)=lnx﹣cx2﹣bx零的点,求证:(x1﹣x2)h'(x0)≥﹣ +ln2.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分)17-1、18-1、19-1、20-1、21-1、21-2、21-3、22-1、22-2、。
江苏省2020届“百校大联考”高三年级第一次考试数学试卷2019.9一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知全集U =R ,集合A ={}12x x -<≤,集合B ={}0x x >,则A I (∁U B)= . 答案:(﹣1,0] 考点:集合的运算解析:因为全集U =R ,集合B ={}0x x >,则∁U B ={}0x x ≤,又因为集合A ={}12x x -<≤,所以A I(∁U B)=(﹣1,0]2.已知复数22i 1iz =++,i 为虚数单位,则z 的虚部为 . 答案:1 考点:复数 解析:222(1i)22i 2i 2i 2i 1i 1i (1i)(1i)1iz --=+=+=+=+++--. 3.函数:lg(1)y x =-的定义域是 .答案:[0,1)考点:定义域 解析:10x x ⎧->⎪⎨≥⎪⎩,所以0≤x <1.4.执行如图所示的伪代码,其结果为 .答案:30考点:算法初步,伪代码解析:3+2+3+4+5+6+7=305.在甲、乙两个盒子中都各有大小相同的红、黄、白三个小球,现从甲、乙两个盒子中各取一个小球,则两个小球颜色相同的概率为 . 答案:13考点:古典概型解析:从甲、乙两个盒子中各取一个小球共有9种情况,其中两个小球颜色相同共有3种情况,则两个小球颜色相同的概率为3÷9=13. 6.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取24人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为 .答案:4考点:统计(分层抽样)解析:先求得a =0.030,24÷[(0.030+0.020+0.010)×10]×(0.010×10)=47.已知圆224x y +=过椭圆C :22221x y a b+=(a >0,b >0)的焦点与短轴端点,则椭圆C 的标准方程为 .答案:22184x y += 考点:椭圆的标准方程解析:由题意可得,2b c ==,所以2228a b c =+=,所以椭圆C 的标准方程为22184x y +=. 8.如右图,在体积为12的三棱锥A —BCD 中,点M 在AB 上,且AM =2MB ,点N 为 CD的中点,则三棱锥C —AMN 的体积为 .答案:4考点:棱锥的体积解析:由题意可得V C —AMN =13V A —BCD =4. 9.已知{}n a 为等比数列,设数列{}n a 的前n 项和为n S 且6328a a -=,37S =,则{}n a 的通项公式为 . 答案:12n n a -=考点:等比数列解析:因为6328a a -=,所以521128a q a q -=①,因为37S =,所以31(1)71a q q -=-②, ①÷②得:3240q q --=,解得q =2,11a = 所以12n n a -=10.若()f x 为R 上的奇函数,当0x >时,2()3f x x x =-+,则()0f x ≥的解集为 . 答案:(-∞,﹣3]U [0,3] 考点:函数的奇偶性解析:根据数形结合的方法得()0f x ≥的解集为(-∞,﹣3]U [0,3]11.若非零向量a r 与b r满足22a b a b +=+=r r r r ,则a r 与b r的夹角为 .答案:23π 考点:平面向量的数量积解析:由22a b a b +=+=r r r r ,得212a ba b a ⎧=⎪⎨⋅=-⎪⎩r r r r rcos<a r ,b r >=221122a a b a b a-⋅==-⋅r r r r r r ,得a r 与b r 的夹角为23π.12.若5cos 26sin()04παα++=,(2πα∈,)π,则sin 2α= .答案:﹣1考点:三角恒等变换 解析:由5cos 26sin()04παα++=,得(cos sin )[5(cos sin )0αααα+-+=,所以cos sin 0αα+=或cos sin 5αα-=- 得sin 21α=-或725因为(2πα∈,)π,则sin 2α=2sin cos 0αα<,所以sin 21α=-.13.已知函数22(23)320()4ln 20x m x m m x f x x m x xe ⎧+++++≤⎪=⎨+->⎪⎩,,在区间R 上有四个不同的零点,则实数m 的取值范围为 .答案:[﹣1,2) 考点:函数与方程解析:首先22(23)32x m x m m +++++=0最多两个零点,一个是﹣m ﹣1,﹣m ﹣2;而4ln 2x m x e+-=0最多也是两个零点,由于原函数在R 上有四个零点,则两个方程在各自的区间分别有两个零点,可得不等式组如下:10240m m e e --≤⎧⎪+⎨<<⎪⎩,解得﹣1≤m<2.14.已知正实数x ,y 满足()4xy x y -=,则x y +的最小值为 .答案:考点:函数与最值解析:()x y +==xy t =,(0, )t ∈+∞ 设24()f t t t =+,38()1f t t '=-,可知t =2时,()f t 取最小值为3,所以x y +的最小值为二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知函数()sin()(0f x x ωϕω=+>,)2πϕ<的图像上两个相邻的最高点之间的距离为2π且直线6x π=是函数()f x 图像的一条对称轴.(1)求()f x 的解析式; (2)若α满足()3()3f f παα=+,求tan 2α.16.(本小题满分14分)在直三棱柱ABC—A1B1C1中,D是棱A1B1的中点.(1)证明:直线B1C∥平面AC1D;(2)若AC=AA1,A1B1⊥A1C1,证明:平面AC1D⊥平面A1B1C.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率为32,点A 1分别为椭圆C 与坐标轴的交点,且AB =5.过x 轴上定点E(1,0)的直线与椭圆C 交于M ,N 两点,点Q 为线段MN 的中点.(1)求椭圆C 的方程;(2)求△QAB 面积的最大值.18.(本小题满分16分)某农场灌溉水渠长为1000米,横截面是等腰梯形,如图,在等腰梯形ABCD中,BC∥AD,AB=CD,其中渠底BC宽为1米,渠口AD宽为3米,渠深34米.根据国家对农田建设补贴的政策,该农场计划在原水渠的基础上分别沿射线AD方向加宽、AB方向加深,若扩建后的水渠横截面AB1C1D1仍是等腰梯形,且面积是原面积的2倍.设扩建后渠深为h米,若挖掘费用为每立方米ah2万元,水渠的内壁(渠底和梯形两腰,AB端也要重新铺设)铺设混凝土的费用为每平方米3a万元.(1)用h 表示渠底B 1C 1的长度,并求出h 的取值范围; (2)问渠深h 为多少米时,建设费用最低?19.(本小题满分16分)已知数列{}n a 的前n 项和为n S ,12a =,24a =,且满足1136n n n a a S +-+=+(n ≥2). (1)证明:{}n a 是等比数列,并求数列{}n a 的通项公式;(2)设(21)nn n b t n a =⋅-⋅,0t ≠,若数列{}n b 是等差数列,求实数t 的值;(3)在(2)的条件下,设1212()2321n n n nc n N +*+=∈-⋅+,记数列{}n c 的前n 项和为 n T .若对任意的n ,k N *∈,存在实数λ,使得1n k T b λ+⋅<,求实数λ的最大值.20.(本小题满分16分)已知函数(1)()ln ()kk f x x x a x x-=-+. (1)当a =1时,求1()f x 在1x =处的切线方程;(2)对于任意x ∈[1,+∞),1()f x ≥0 恒成立,求a 的取值范围; (3)试讨论函数0()()F x f x x =-的极值点的个数.。
江苏省2019—2020学年高三上学期八校联考数学试卷2019.10一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1.已知集合A ={1},B ={1,5},则A U B = . 答案:{1,5} 考点:集合的运算解析:因为集合A ={1},B ={1,5},所以A U B ={1,5}. 2.i 是虚数单位,复数15i1i--= . 答案:2i 3-+ 考点:复数解析:2215i (15i)(1i)5i 4i 164i2i 31i (1i)(1i)1i 2--+--+-====-+--+-. 3.如图伪代码的输出结果为 .答案:11考点:算法初步(伪代码) 解析:第一步:S =1+1=2 第二步:S =2+2=4第三步:S =4+3=7 第四步:S =7+4=114.为了解学生课外阅读的情况,随机统计了n 名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50,75)中的频数为100,则n 的值为 .答案:1000考点:频率分布直方图S←1For i from 1 to 4 S←S+i End For Print S解析:100÷(0.004×25)=10005.某校有A ,B 两个学生食堂,若a ,b ,c 三名学生各自随机选择其中的一个食堂用餐,则三人在同一个食堂用餐的概率为 . 答案:14考点:古典概型解析:a ,b ,c 三名学生各自随机选择其中的一个食堂用餐共有8种情况,其中三人在同一个食堂用餐共有2种情况,故概率为2÷8=14. 6.已知α是第二象限角,其终边上一点P(x ,5),且2cos 3α=-,则x 的值为 . 答案:﹣2考点:三角函数的定义解析:由α终边上一点P(x ,5),得22cos 35x α==-+,解得:24x =,α是第二象限角,所以x 的值为﹣2.7.将函数sin()3y x π=-的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移3π个单位,得到的图像对应的解析式是 . 答案:1sin()26y x π=-考点:三角函数的图像与性质解析:函数sin()3y x π=-的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得y =1sin()23y x π=-,将所得的图像向左平移3π个单位得11sin[()]sin(2332y x x ππ=+-=)6π-.8.已知函数23log (1)3()213x x x f x x -+>⎧⎪=⎨+≤⎪⎩,,,满足()3f a =,则a = .答案:7考点:指对数函数解析:当a >3时,2log (1)3a +=,得a =7;当a ≤3时,3213a -+=,解得a =4>3(舍);所以a 的值为7.9.已知实数a ,b 满足224549a ab b -+=,则a +b 最大值为 . 答案:23考点:基本不等式解析:由224549a ab b -+=得24()913a b ab +-=,由基本不等式得2()2a b ab +≤,则可发现224()9()132a b a b +-+≤,解得a b +≤a +b最大值为 10.已知θ∈[0,4π],且1cos43θ=-,则44sin ()sin ()44ππθθ+--= .考点:三角恒等变换解析:因为θ∈[0,4π],所以2θ∈[0,π],所以sin20θ≥,因为1cos43θ=-,即2112sin 23θ-=-,所以sin 2θ=442222sin ()sin ()[sin ()sin ()][sin ()sin ()]444444ππππππθθθθθθ+--=++-+--=1cos(2)1cos(2)1cos(2)1cos(2)2222[][]2222ππππθθθθ-+---+--+- =1sin 21sin 21sin 21sin 2()()sin 22222θθθθθ+-+-+-== 11.直角△ABC 中,点D 为斜边BC 中点,AB =AC =6,1AE ED 2=u u u r u u u r,则AE EB⋅u u u r u u u r= .答案:14考点:平面向量数量积解析:以O 为坐标建立平面直角坐标系即可,建系后可得A(0,0),B(0,,C(6,0),D(3,,E(1,所以AE =u u u r (1),EB =u u u r (﹣1,),则AE EB ⋅u u u r u u u r=﹣1+15=14.12.已知奇函数()f x 满足(1)(1)f x f x -=+,若当x ∈(﹣1,1)时,1()lg1xf x x+=-且(2019)1f a -=-(0<a <1),则实数a = .答案:211考点:函数奇偶性与周期性解析:根据(1)(1)f x f x -=+,()f x 是奇函数,可得()f x 是周期为4的函数,所以(2019)(50541)(1)(1)(1)f a f a f a f a f a -=⨯--=--=-+=-- 因为0<a <1,所以0<1﹣a <1,所以2(1)lg1af a a ---=-=-,解得211a =. 13.已知a ≠0,函数()x f x ae =,()ln g x ea x b =+(e 为自然对数的底数),若存在一条直线与曲线()y f x =和()y g x =均相切,则ba最大值是 . 答案:e考点:导数的几何意义,导数与切线解析:因为()x f x ae =,()ln g x ea x b =+,所以()x f x ae '=,()ea g x x'=, 设曲线()y f x =和()y g x =的切点坐标分别为(1x ,1xae ),(2x ,2ln ea x b +),则112122(ln )x x ae ea x b eaae x x x -+==-,可得122ln 1ln e x x x ==-,代入上式可得:222(1)ln e x x be a x -=-,构造函数2222(1)ln ()e x x h x x -=,求得最小 值为0,所以222(1)ln e x x be a x -=-的最大值为e . 14.若关于x 的方程222(2)x x a x ae x e ---=-有且仅有3个不同实数解,则实数a 的取值范围是 .答案:0a <或1a = 考点:函数与方程解析:原方程可转化为2(2)2(2)0x x x e a x e a ⎡⎤---+=⎣⎦,令(2)xt x e =-,当方程220t at a -+=有且只有一个根时,0a =或1a =,发现1a =符合题意, 当方程220t at a -+=有且只有两个根时,此时1a >或0a <,且两根1t ∈(0,e ),2t ∈(-∞,0),此时2020a e ae a <⎧⎨-+>⎩,解得0a <,综上实数a 的取值范围是0a <e或1a =.二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知集合A ={}22log (4159)x y x x x R =-+-∈,,B ={}1x x m x R -≥∈,.(1)求集合A ;(2)若p :x ∈A ,q :x ∈B ,且p 是q 的充分不必要条件,求实数m 的取值范围. 解:(1)集合A 即为函数22log (4159)y x x =-+-定义域,即需241590x x -+->----2分,即241590,x x -+<即(3)(43)0x x --<---5分,得3(,3)4A = -------7分(2)由111,11x m x m x m x m x m -≥⇔-≥-≤-≥+≤-或即或,------9分 则[1,)(,1]B m m =+∞⋃-∞-----10分因为p 是q 的充分不必要条件,所以A 是B 的真子集------11分即需31314m m +≤≤-或得144m m ≤-≥或-------13分所以实数m 的取值范围是1(,][4,)4-∞-⋃+∞------14分16.(本小题满分14分)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是直角梯形,DC ∥AB ,∠BAD =90°,且AB =2AD =2DC =2PD ,E 为PA 的中点.(1)证明:DE ∥平面PBC ; (2)证明:DE ⊥平面PAB .证明:(1)设PB 的中点为F ,连结EF 、CF ,EF ∥AB ,DC ∥AB ,所以EF ∥DC ,------2分 ,且EF =DC =12AB . 故四边形CDEF 为平行四边形,-----4分 可得ED ∥CF------5分又ED ⊄平面PBC ,CF ⊂平面PBC ,-------6分 故DE ∥平面PBC --------------7分注:(证面面平行也同样给分)(2)因为PD ⊥底面ABCD ,AB ⊂平面ABCD ,所以AB ⊥PD 又因为AB ⊥AD ,PD I AD =D ,AD ⊂平面PAD ,PD ⊂平面PAD ,所以AB ⊥平面PAD ----11分ED ⊂平面PAD ,故ED ⊥AB .-------12分又PD =AD ,E 为PA 的中点,故ED ⊥PA ;---------13分PA I AB =A ,PA ⊂平面PAB ,AB ⊂平面PAB ,所以ED ⊥平面PAB ----------14分 17.(本小题满分14分)在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c .已知cosC =35. (1)若9CB CA 2⋅=u u u r u u u r ,求△ABC 的面积;(2)设向量x r =(B 2sin 2,y u r =(cos B ,Bcos 2),且x r ∥y u r ,b=,求a的值.解(1)由CB →·CA →=92,得ab cos C =92. ………2分又因为cos C =35,所以ab =92cos C=152. ………4分 又C 为△ABC 的内角,所以sin C =45. 所以△ABC 的面积S =12ab sin C =3. (6)分(2)因为x //y ,所以2sin B 2cos B2=3cos B ,即sin B =3cos B . ………………8分因为cos B ≠0,所以tan B =3.因为B 为三角形的内角,0B π<<,------9分 所以B =3π. ………………10分所以314sin sin()sin cos cos sin 525A B C B C B C =+=+=+⨯=----12分由正弦定理,4sin sin a b a A B =⇒=⇒=+------14分 18.(本小题满分16分)已知梯形ABCD 顶点B ,C 在以AD 为直径的圆上,AD =4米.(1)如图1,若电热丝由三线段AB ,BC ,CD 组成,在AB ,CD 上每米可辐射1单位热量,在BC 上每米可辐射2单位热量,请设计BC 的长度,使得电热丝的总热量最大,并求总热量的最大值;(2)如图2,若电热丝由弧»AB,»CD 和弦BC 这三部分组成,在弧»AB ,»CD 上每米可辐射1单位热量,在弦BC 上每米可辐射2单位热量,请设计BC 的长度,使得电热丝辐射的总热量最大.图1 图2【解】设, -------1分(1),------2分,----------3分总热量单位--------5分当时,取最大值, 此时米,总热量最大9(单位).-----6分答:应设计长为米,电热丝辐射的总热量最大,最大值为9单位.-----7分(2)总热量单位,,----10分 ()48sin g θθ'=------11分 令,即,因,所以,-------12分 当时,,为增函数,当时,,为减函数,----14分当时,取最大值,此时米.-----15分答:应设计长为米,电热丝辐射的总热量最大.----16分19.(本小题满分16分)设常数a ∈R ,函数2()2x x af x a +=-.(1)当a =1时,判断()f x 在(0,+∞)上单调性,并加以证明; (2)当a ≥0时,研究()f x 的奇偶性,并说明理由;(3)当a ≠0时,若存在区间[m ,n ](m <n )使得()f x 在[m ,n ]上的值域为[2m ,2n],求实数a 的取值范围.解(1)1a =时,12212()1,,(0,),2121x xx f x x x +==+∀∈+∞--且12x x < 21121212222(22)()()02121(21)(21)x x x x x x f x f x --=-=>----所以()y f x =在(0,)+∞上递减。
江苏省2020版高三上学期期中数学试卷(理科)A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知全集U=R,集合,则(∁UA)∩B=()A . (0,+∞)B . (0,1]C . (1,+∞)D . (1,2)2. (2分)(2017·新课标Ⅱ卷文) (1+i)(2+i)=()A . 1﹣iB . 1+3iC . 3+iD . 3+3i3. (2分)偶函数f(x)满足f(x-2)=f(x+2),且在时,则关于x的方程,在上解的个数是()A . lB . 2C . 3D . 44. (2分) (2016高一下·东莞期中) 已知平面向量 =(﹣6,2), =(3,m),若⊥ ,则m的值为()A . ﹣9B . ﹣1C . 1D . 95. (2分)把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成三棱锥C﹣ABD的正视图与俯视图如图所示,则侧视图的面积为()A .B .C .D . -6. (2分)在等差数列中,,则前13项之和等于()A . 26B . 13C . 52D . 1567. (2分)已知函数的一部分图象如下图所示。
如果,则()A . A=4B . B=4C .D .8. (2分)某程序框图如图,则该程序运行后输出的值为()A . 6B . 7C . 8D . 99. (2分) (2016高一下·邵东期末) 已知实数x,y满足约束条件,则的最小值是()A . -2B . 2C . -1D . 110. (2分) (2018高二上·黑龙江期末) 设抛物线的焦点为,过点的直线与抛物线相交于两点,与抛物线的准线相较于点,,则与的面积之()A .B .C .D .11. (2分)用1,2,3,4,5这五个数字,可以组成比20000大,并且百位数不是数字3的没有重复数字的五位数,共有()A . 96个B . 78个C . 72个D . 64个12. (2分) (2017高二下·武汉期中) 若曲线f(x,y)=0上两个不同的点处的切线重合,则称这条切线为曲线f(x,y)=0的自公切线,则下列方程对应的曲线中存在自公切线的为()①y=x2﹣|x|+1;②y=sinx﹣4cosx;③ ;④ .A . ②③B . ①②C . ①②④D . ①②③二、填空题 (共4题;共4分)13. (1分) (2016高一下·南沙期末) 已知cosα+sinα= ,则sin2α=________.14. (1分)(2017·石嘴山模拟) 设抛物线y2=4x的焦点为F,过点F作直线l与抛物线分别交于两点A,B,若点M满足 = ( + ),过M作y轴的垂线与抛物线交于点P,若|PF|=2,则M点的横坐标为________.15. (1分) (2020高一下·吉林期末) 在数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n(n∈N*),则a1+a2+…+a51=________.16. (1分)定义在R上的奇函数f(x)满足f(x+1)=f(1﹣x),且x∈[0,1]时,f(x)= ,则f(11.5)=________.三、解答题 (共8题;共65分)17. (10分) (2019高一下·三水月考) 已知等差数列的公差为,是它的前项和,,,成等比数列,(1)求和;(2)设数列的前项和为,求.18. (10分)(2014·山东理) 如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(1)求证:C1M∥平面A1ADD1;(2)若CD1垂直于平面ABCD且CD1= ,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.19. (5分) (2015高二下·黑龙江期中) 一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.(Ⅰ)若袋中共有10个球,(i)求白球的个数;(ii)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ.(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于.并指出袋中哪种颜色的球个数最少.20. (10分) (2020高二下·遂宁期末) 已知,是椭圆:的左右两个焦点,过的直线与交于,两点(在第一象限),的周长为8,的离心率为 .(1)求的方程;(2)设,为的左右顶点,直线的斜率为,的斜率为,求的取值范围.21. (5分) (2019高二上·桥西月考) 设函数(I)求函数f(x)的单调区间;(II)若,求证:时, .22. (10分)(2016·湖南模拟) 选修4﹣1:平面几何如图AB是⊙O的直径,弦BD,CA的延长线相交于点E,EF垂直BA的延长线于点F.(1)求证:∠DEA=∠DFA;(2)若∠EBA=30°,EF= ,EA=2AC,求AF的长.23. (10分) (2016高二下·肇庆期末) 在平面直角坐标系xOy中,曲线C1的参数方程为(θ为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=﹣2.(1)求C1和C2在直角坐标系下的普通方程;(2)已知直线l:y=x和曲线C1交于M,N两点,求弦MN中点的极坐标.24. (5分)关于x的不等式|x﹣1|+|x+m|>3的解集为R,求实数m的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共8题;共65分) 17-1、17-2、18-1、18-2、19-1、20-1、20-2、22-1、22-2、23-1、23-2、24-1、。
江苏省2020版高三上学期数学10月联考试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016高一上·黄冈期末) 已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁UB)为()A . {1,4,6}B . {2,4,6}C . {2,4}D . {4}2. (2分)已知复数Z满足(1﹣i)z=1+i,则复数|Z|=()A .B . 1C .D . 23. (2分)双曲线的渐近线方程是()A .B .C .D .4. (2分)设a,b,c分别是的三个内角ABC所对的边,若,则是的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5. (2分) (2020高一下·天津期中) 在中,角所对的边分别为,已知,则边为()A .B .C .D .6. (2分) (2018高三上·嘉兴期末) 实数满足,若的最小值为1,则正实数()A . 2B . 1C .D .7. (2分)某几何体的三视图如下图所示,则该几何体可以是()A . 圆柱B . 圆台C . 棱柱D . 棱台8. (2分) (2019高二上·德惠期中) 已知椭圆C的方程为,焦距为,直线与椭圆C相交于A,B两点,若,则椭圆C的离心率为()A .B .C .D .9. (2分) (2019高二下·浙江期中) 已知函数是定义在上的奇函数,且,当时,,则()A . 2B .C . 1D .10. (2分) (2019高一上·金台期中) 若函数f(x)=ln(ax2-2x+3)的值域为R,则实数a的取值范围是()A .B .C .D .二、双空题 (共4题;共5分)11. (2分) (2016高一上·东海期中) lg +2lg2﹣()﹣1=________.12. (1分) (2016高二下·长春期中) (1﹣ x)(1+2 )5展开式中x2的系数为________.13. (1分) (2020高二上·台州期末) 如图,在四棱锥中,底面是底边为的菱形,,,,当直线与底面所成角为时,二面角的正弦值为________.14. (1分) (2017高二下·山西期末) 一盒中有12个质地均匀的乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为________(用数字作答)三、填空题 (共2题;共2分)15. (1分) (2016高一下·北京期中) 向量 =(1,2), =(x,1),当( +2 )⊥(2 ﹣)时,则x的值为________.16. (1分) (2020高一上·延寿期中) 关于x的不等式在实数集上恒成立,则实数m的取值范围是________.四、解答题 (共6题;共51分)17. (1分)(2016·大连模拟) 己知a(3﹣a)>0,那么的最小值是________.18. (10分) (2018高二下·无锡月考) 在△ABC中,AB=AC,点P为线段AB上的一点,且.(1)若,求的值;(2)若∠A=120°,且,求实数的取值范围.19. (10分)如图,已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,且∠DAB=90°,∠ABC=45°,CB=, AB=2,PA=1(1)求证:AB∥平面PCD;(2)求证:BC⊥平面PAC;(3)若M是PC的中点,求三棱锥C﹣MAD的体积.20. (10分)(2017·鞍山模拟) 已知数列{an}的前n项和为Sn , Sn=2an﹣3.(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{nan}的前n项和Tn .21. (10分) (2019高二上·田东期中) 已知椭圆C:的离心率为,且过点.(1)求椭圆的标准方程;(2)设直线l经过点且与椭圆C交于不同的两点M,N试问:在x轴上是否存在点Q,使得直线QM与直线QN的斜率的和为定值?若存在,求出点Q的坐标及定值,若不存在,请说明理由.22. (10分)(2020·镇江模拟) 已知函数,其中.(1)①求函数的单调区间;②若满足,且.求证:.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、双空题 (共4题;共5分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、填空题 (共2题;共2分)答案:15-1、考点:解析:答案:16-1、考点:解析:四、解答题 (共6题;共51分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:。
江苏省2020届高三上学期八校联考模拟试卷数学(理科)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知集合A ={1},B ={1,5},则A U B= . 答案:{1,5} 2.i 是虚数单位,复数15i1i--= . 答案:2i 3-+3.如图伪代码的输出结果为 .答案:114.为了解学生课外阅读的情况,随机统计了n 名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50,75)中的频数为100,则n 的值为 .答案:10005.某校有A ,B 两个学生食堂,若a ,b ,c 三名学生各自随机选择其中的一个食堂用餐,则三人在同一个食堂用餐的概率为 . 答案:146.已知α是第二象限角,其终边上一点P(x ,5),且2cos 3α=-,则x 的值为 . 答案:﹣27.将函数sin()3y x π=-的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移3π个单位,得到的图像对应的解析式是 . 答案:1sin()26y x π=-S←1For i from 1 to 4 S←S+i End For Print S8.已知函数23log (1)3()213x x x f x x -+>⎧⎪=⎨+≤⎪⎩,,,满足()3f a =,则a = . 答案:79.已知实数a ,b 满足224549a ab b -+=,则a +b 最大值为 .答案:10.已知θ∈[0,4π],且1cos43θ=-,则44sin ()sin ()44ππθθ+--= .11.直角△ABC 中,点D 为斜边BC 中点,AB=AC =6,1AE ED 2=u u u r u u u r ,则AE EB ⋅u u u r u u u r= .答案:1412.已知奇函数()f x 满足(1)(1)f x f x -=+,若当x ∈(﹣1,1)时,1()lg1xf x x+=-且(2019)1f a -=-(0<a <1),则实数a = . 答案:21113.已知a ≠0,函数()x f x ae =,()ln g x ea x b =+(e 为自然对数的底数),若存在一条直线与曲线()y f x =和()y g x =均相切,则ba最大值是 . 答案:e14.若关于x 的方程222(2)x x a x ae x e ---=-有且仅有3个不同实数解,则实数a 的取值范围是 . 答案:0a <或1a =二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知集合A ={}22log (4159)x y x x x R =-+-∈,,B ={}1x x m x R -≥∈,.(1)求集合A ;(2)若p :x ∈A ,q :x ∈B ,且p 是q 的充分不必要条件,求实数m 的取值范围.解:(1)集合A 即为函数22log (4159)y x x =-+-定义域,即需241590x x -+->----2分,即241590,x x -+<即(3)(43)0x x --<---5分,得3(,3)4A = -------7分(2)由111,11x m x m x m x m x m -≥⇔-≥-≤-≥+≤-或即或,------9分 则[1,)(,1]B m m =+∞⋃-∞-----10分因为p 是q 的充分不必要条件,所以A 是B 的真子集------11分即需31314m m +≤≤-或得144m m ≤-≥或-------13分所以实数m 的取值范围是1(,][4,)4-∞-⋃+∞------14分16.(本小题满分14分)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是直角梯形,DC ∥AB ,∠BAD =90°,且AB =2AD =2DC =2PD ,E 为PA 的中点.(1)证明:DE ∥平面PBC ; (2)证明:DE ⊥平面PAB .证明:(1)设PB 的中点为F ,连结EF 、CF ,EF ∥AB ,DC ∥AB ,所以EF ∥DC ,------2分 ,且EF =DC =12AB . 故四边形CDEF 为平行四边形,-----4分 可得ED ∥CF------5分又ED ⊄平面PBC ,CF ⊂平面PBC ,-------6分 故DE ∥平面PBC --------------7分注:(证面面平行也同样给分)(2)因为PD ⊥底面ABCD ,AB ⊂平面ABCD ,所以AB ⊥PD 又因为AB ⊥AD ,PD I AD =D ,AD ⊂平面PAD ,PD ⊂平面PAD , 所以AB ⊥平面PAD ----11分ED ⊂平面PAD ,故ED ⊥AB .-------12分又PD =AD ,E 为PA 的中点,故ED ⊥PA ;---------13分PA I AB =A ,PA ⊂平面PAB ,AB ⊂平面PAB ,所以ED ⊥平面PAB ----------14分 17.(本小题满分14分)在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c .已知cosC =35. (1)若9CB CA 2⋅=u u u r u u u r ,求△ABC 的面积;(2)设向量x r =(B 2sin 2,3),y u r =(cos B ,Bcos 2),且x r ∥y u r ,b =53,求a 的值.解(1)由CB →·CA →=92,得ab cos C =92. ………2分又因为cos C =35,所以ab =92cos C=152. ………4分 又C 为△ABC 的内角,所以sin C =45. 所以△ABC 的面积S =12ab sin C =3. ………6分(2)因为x //y ,所以2sin B 2cos B2=3cos B ,即sin B =3cos B . ………………8分因为cos B ≠0,所以tan B =3.因为B 为三角形的内角,0B π<<,------9分 所以B =3π. ………………10分 所以3314433sin sin()sin cos cos sin 525A B C B C B C +=+=+=⨯+⨯=----12分 由正弦定理,53433sin sin 4333a b a A B =⇒=⇒=++------14分 18.(本小题满分16分)已知梯形ABCD 顶点B ,C 在以AD 为直径的圆上,AD =4米.(1)如图1,若电热丝由三线段AB ,BC ,CD 组成,在AB ,CD 上每米可辐射1单位热量,在BC 上每米可辐射2单位热量,请设计BC 的长度,使得电热丝的总热量最大,并求总热量的最大值;(2)如图2,若电热丝由弧»AB,»CD 和弦BC 这三部分组成,在弧»AB ,»CD 上每米可辐射1单位热量,在弦BC 上每米可辐射2单位热量,请设计BC 的长度,使得电热丝辐射的总热量最大.图1 图2【解】设, -------1分(1),------2分,----------3分总热量单位--------5分当时,取最大值, 此时米,总热量最大9(单位).-----6分答:应设计长为米,电热丝辐射的总热量最大,最大值为9单位.-----7分(2)总热量单位,,----10分 ()48sin g θθ'=------11分 令,即,因,所以,-------12分 当时,,为增函数,当时,,为减函数,----14分当时,取最大值,此时米.-----15分答:应设计长为米,电热丝辐射的总热量最大.----16分19.(本小题满分16分)设常数a ∈R ,函数2()2x x af x a +=-.(1)当a =1时,判断()f x 在(0,+∞)上单调性,并加以证明; (2)当a ≥0时,研究()f x 的奇偶性,并说明理由;(3)当a ≠0时,若存在区间[m ,n ](m <n )使得()f x 在[m ,n ]上的值域为[2m ,2n ],求实数a 的取值范围.解(1)1a =时,12212()1,,(0,),2121x x x f x x x +==+∀∈+∞--且12x x <21121212222(22)()()02121(21)(21)x x x x x x f x f x --=-=>----所以()y f x =在(0,)+∞上递减。
江苏省2020届“百校大联考”高三年级第一次考试数学试卷2019.9一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知全集U =R ,集合A ={}12x x -<≤,集合B ={}0x x >,则A I (∁U B)= . 答案:(﹣1,0] 考点:集合的运算解析:因为全集U =R ,集合B ={}0x x >,则∁U B ={}0x x ≤,又因为集合A ={}12x x -<≤,所以A I(∁U B)=(﹣1,0]2.已知复数22i 1iz =++,i 为虚数单位,则z 的虚部为 . 答案:1 考点:复数 解析:222(1i)22i 2i 2i 2i 1i 1i (1i)(1i)1i z --=+=+=+=+++--.3.函数:lg(1y =-的定义域是 .答案:[0,1) 考点:定义域解析:100x ⎧>⎪⎨≥⎪⎩,所以0≤x <1.4.执行如图所示的伪代码,其结果为 .答案:30考点:算法初步,伪代码 解析:3+2+3+4+5+6+7=305.在甲、乙两个盒子中都各有大小相同的红、黄、白三个小球,现从甲、乙两个盒子中各取一个小球,则两个小球颜色相同的概率为 .答案:13考点:古典概型解析:从甲、乙两个盒子中各取一个小球共有9种情况,其中两个小球颜色相同共有3种情况,则两个小球颜色相同的概率为3÷9=13.6.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取24人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为 .答案:4考点:统计(分层抽样)解析:先求得a =0.030,24÷[(0.030+0.020+0.010)×10]×(0.010×10)=47.已知圆224x y +=过椭圆C :22221x y a b+=(a >0,b >0)的焦点与短轴端点,则椭圆C 的标准方程为 .答案:22184x y += 考点:椭圆的标准方程解析:由题意可得,2b c ==,所以2228a b c =+=,所以椭圆C 的标准方程为22184x y +=. 8.如右图,在体积为12的三棱锥A —BCD 中,点M 在AB 上,且AM =2MB ,点N 为 CD的中点,则三棱锥C —AMN 的体积为 .答案:4考点:棱锥的体积解析:由题意可得V C —AMN =13V A —BCD =4. 9.已知{}n a 为等比数列,设数列{}n a 的前n 项和为n S 且6328a a -=,37S =,则{}n a 的通项公式为 . 答案:12n n a -=考点:等比数列解析:因为6328a a -=,所以521128a q a q -=①,因为37S =,所以31(1)71a q q -=-②, ①÷②得:3240q q --=,解得q =2,11a =所以12n n a -=10.若()f x 为R 上的奇函数,当0x >时,2()3f x x x =-+,则()0f x ≥的解集为 .答案:(-∞,﹣3]U [0,3] 考点:函数的奇偶性解析:根据数形结合的方法得()0f x ≥的解集为(-∞,﹣3]U [0,3]11.若非零向量a r 与b r满足22a b a b +=+=r r r r ,则a r 与b r的夹角为 .答案:23π 考点:平面向量的数量积解析:由22a b a b +=+=r r r r ,得212a ba b a ⎧=⎪⎨⋅=-⎪⎩r r r r rcos<a r ,b r >=221122a a b a b a-⋅==-⋅r r r r r r ,得a r 与b r 的夹角为23π. 12.若5cos 26sin()04παα++=,(2πα∈,)π,则sin 2α= . 答案:﹣1考点:三角恒等变换 解析:由5cos 26sin()04παα++=,得(cos sin )[5(cos sin )0αααα+-+=,所以cos sin 0αα+=或cos sin 5αα-=-得sin 21α=-或725因为(2πα∈,)π,则sin 2α=2sin cos 0αα<,所以sin 21α=-.13.已知函数22(23)320()4ln 20x m x m m x f x x m x xe ⎧+++++≤⎪=⎨+->⎪⎩,,在区间R 上有四个不同的零点,则实数m 的取值范围为 . 答案:[﹣1,2) 考点:函数与方程解析:首先22(23)32x m x m m +++++=0最多两个零点,一个是﹣m ﹣1,﹣m ﹣2;而4ln 2x m x e+-=0最多也是两个零点,由于原函数在R 上有四个零点,则两个方程在各自的区间分别有两个零点,可得不等式组如下:10240m m e e --≤⎧⎪+⎨<<⎪⎩,解得﹣1≤m<2.14.已知正实数x ,y 满足()4xy x y -=,则x y +的最小值为 .答案:考点:函数与最值解析:()x y +==xy t =,(0, )t ∈+∞ 设24()f t t t =+,38()1f t t'=-,可知t =2时,()f t 取最小值为3,所以x y +的最小值为二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知函数()sin()(0f x x ωϕω=+>,)2πϕ<的图像上两个相邻的最高点之间的距离为2π且直线6x π=是函数()f x 图像的一条对称轴.(1)求()f x 的解析式;(2)若α满足()3()3f f παα=+,求tan 2α.16.(本小题满分14分)在直三棱柱ABC—A 1B 1C 1中,D 是棱A 1B 1的中点. (1)证明:直线B 1C ∥平面AC 1D ;(2)若AC =AA 1,A 1B 1⊥A 1C 1,证明:平面AC 1D ⊥平面A 1B 1C .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,点A 1分别为椭圆C 与坐标轴的交点,且AB x 轴上定点E(1,0)的直线与椭圆C交于M ,N 两点,点Q 为线段MN 的中点.(1)求椭圆C 的方程; (2)求△QAB 面积的最大值.18.(本小题满分16分)某农场灌溉水渠长为1000米,横截面是等腰梯形,如图,在等腰梯形ABCD中,BC∥AD,AB=CD,其中渠底BC宽为1米,渠口AD宽为3米,渠深34米.根据国家对农田建设补贴的政策,该农场计划在原水渠的基础上分别沿射线AD方向加宽、AB方向加深,若扩建后的水渠横截面AB1C1D1仍是等腰梯形,且面积是原面积的2倍.设扩建后渠深为h 米,若挖掘费用为每立方米ah2万元,水渠的内壁(渠底和梯形两腰,AB端也要重新铺设)铺设混凝土的费用为每平方米3a万元.(1)用h表示渠底B1C1的长度,并求出h的取值范围;(2)问渠深h为多少米时,建设费用最低?19.(本小题满分16分)已知数列{}n a 的前n 项和为n S ,12a =,24a =,且满足1136n n n a a S +-+=+(n ≥2). (1)证明:{}n a 是等比数列,并求数列{}n a 的通项公式;(2)设(21)nn n b t n a =⋅-⋅,0t ≠,若数列{}n b 是等差数列,求实数t 的值; (3)在(2)的条件下,设1212()2321n n n n c n N +*+=∈-⋅+,记数列{}n c 的前n 项和为 n T .若对任意的n ,k N *∈,存在实数λ,使得1n k T b λ+⋅<,求实数λ的最大值.20.(本小题满分16分) 已知函数(1)()ln ()kk f x x x a x x -=-+.(1)当a =1时,求1()f x 在1x =处的切线方程;(2)对于任意x ∈[1,+∞),1()f x ≥0 恒成立,求a 的取值范围;(3)试讨论函数0()()F x f x x =-的极值点的个数.。
江苏省2020届“百校大联考”高三年级第一次考试数学试卷2019.9一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知全集U =R ,集合A ={}12x x -<≤,集合B ={}0x x >,则A I (∁U B)= . 答案:(﹣1,0] 考点:集合的运算解析:因为全集U =R ,集合B ={}0x x >,则∁U B ={}0x x ≤,又因为集合A ={}12x x -<≤,所以A I(∁U B)=(﹣1,0]2.已知复数22i 1iz =++,i 为虚数单位,则z 的虚部为 . 答案:1 考点:复数 解析:222(1i)22i 2i 2i 2i 1i 1i (1i)(1i)1iz --=+=+=+=+++--. 3.函数:lg(1)y x =-的定义域是 .答案:[0,1)考点:定义域 解析:10x x ⎧->⎪⎨≥⎪⎩,所以0≤x <1.4.执行如图所示的伪代码,其结果为 .答案:30考点:算法初步,伪代码解析:3+2+3+4+5+6+7=305.在甲、乙两个盒子中都各有大小相同的红、黄、白三个小球,现从甲、乙两个盒子中各取一个小球,则两个小球颜色相同的概率为 . 答案:13考点:古典概型解析:从甲、乙两个盒子中各取一个小球共有9种情况,其中两个小球颜色相同共有3种情况,则两个小球颜色相同的概率为3÷9=13. 6.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取24人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为 .答案:4考点:统计(分层抽样)解析:先求得a =0.030,24÷[(0.030+0.020+0.010)×10]×(0.010×10)=47.已知圆224x y +=过椭圆C :22221x y a b+=(a >0,b >0)的焦点与短轴端点,则椭圆C 的标准方程为 .答案:22184x y += 考点:椭圆的标准方程解析:由题意可得,2b c ==,所以2228a b c =+=,所以椭圆C 的标准方程为22184x y +=. 8.如右图,在体积为12的三棱锥A —BCD 中,点M 在AB 上,且AM =2MB ,点N 为 CD的中点,则三棱锥C —AMN 的体积为 .答案:4考点:棱锥的体积解析:由题意可得V C —AMN =13V A —BCD =4. 9.已知{}n a 为等比数列,设数列{}n a 的前n 项和为n S 且6328a a -=,37S =,则{}n a 的通项公式为 . 答案:12n n a -=考点:等比数列解析:因为6328a a -=,所以521128a q a q -=①,因为37S =,所以31(1)71a q q -=-②, ①÷②得:3240q q --=,解得q =2,11a = 所以12n n a -=10.若()f x 为R 上的奇函数,当0x >时,2()3f x x x =-+,则()0f x ≥的解集为 . 答案:(-∞,﹣3]U [0,3] 考点:函数的奇偶性解析:根据数形结合的方法得()0f x ≥的解集为(-∞,﹣3]U [0,3]11.若非零向量a r 与b r满足22a b a b +=+=r r r r ,则a r 与b r的夹角为 .答案:23π 考点:平面向量的数量积解析:由22a b a b +=+=r r r r ,得212a ba b a ⎧=⎪⎨⋅=-⎪⎩r r r r rcos<a r ,b r >=221122a a b a b a-⋅==-⋅r r r r r r ,得a r 与b r 的夹角为23π.12.若5cos 26sin()04παα++=,(2πα∈,)π,则sin 2α= .答案:﹣1考点:三角恒等变换 解析:由5cos 26sin()04παα++=,得(cos sin )[5(cos sin )0αααα+-+=,所以cos sin 0αα+=或cos sin 5αα-=- 得sin 21α=-或725因为(2πα∈,)π,则sin 2α=2sin cos 0αα<,所以sin 21α=-.13.已知函数22(23)320()4ln 20x m x m m x f x x m x xe ⎧+++++≤⎪=⎨+->⎪⎩,,在区间R 上有四个不同的零点,则实数m 的取值范围为 .答案:[﹣1,2) 考点:函数与方程解析:首先22(23)32x m x m m +++++=0最多两个零点,一个是﹣m ﹣1,﹣m ﹣2;而4ln 2x m x e+-=0最多也是两个零点,由于原函数在R 上有四个零点,则两个方程在各自的区间分别有两个零点,可得不等式组如下:10240m m e e --≤⎧⎪+⎨<<⎪⎩,解得﹣1≤m<2.14.已知正实数x ,y 满足()4xy x y -=,则x y +的最小值为 .答案:考点:函数与最值解析:()x y +==xy t =,(0, )t ∈+∞ 设24()f t t t =+,38()1f t t '=-,可知t =2时,()f t 取最小值为3,所以x y +的最小值为二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知函数()sin()(0f x x ωϕω=+>,)2πϕ<的图像上两个相邻的最高点之间的距离为2π且直线6x π=是函数()f x 图像的一条对称轴.(1)求()f x 的解析式; (2)若α满足()3()3f f παα=+,求tan 2α.16.(本小题满分14分)在直三棱柱ABC—A1B1C1中,D是棱A1B1的中点.(1)证明:直线B1C∥平面AC1D;(2)若AC=AA1,A1B1⊥A1C1,证明:平面AC1D⊥平面A1B1C.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率为32,点A 1分别为椭圆C 与坐标轴的交点,且AB =5.过x 轴上定点E(1,0)的直线与椭圆C 交于M ,N 两点,点Q 为线段MN 的中点.(1)求椭圆C 的方程;(2)求△QAB 面积的最大值.18.(本小题满分16分)某农场灌溉水渠长为1000米,横截面是等腰梯形,如图,在等腰梯形ABCD中,BC∥AD,AB=CD,其中渠底BC宽为1米,渠口AD宽为3米,渠深34米.根据国家对农田建设补贴的政策,该农场计划在原水渠的基础上分别沿射线AD方向加宽、AB方向加深,若扩建后的水渠横截面AB1C1D1仍是等腰梯形,且面积是原面积的2倍.设扩建后渠深为h米,若挖掘费用为每立方米ah2万元,水渠的内壁(渠底和梯形两腰,AB端也要重新铺设)铺设混凝土的费用为每平方米3a万元.(1)用h 表示渠底B 1C 1的长度,并求出h 的取值范围; (2)问渠深h 为多少米时,建设费用最低?19.(本小题满分16分)已知数列{}n a 的前n 项和为n S ,12a =,24a =,且满足1136n n n a a S +-+=+(n ≥2). (1)证明:{}n a 是等比数列,并求数列{}n a 的通项公式;(2)设(21)nn n b t n a =⋅-⋅,0t ≠,若数列{}n b 是等差数列,求实数t 的值;(3)在(2)的条件下,设1212()2321n n n nc n N +*+=∈-⋅+,记数列{}n c 的前n 项和为 n T .若对任意的n ,k N *∈,存在实数λ,使得1n k T b λ+⋅<,求实数λ的最大值.20.(本小题满分16分)已知函数(1)()ln ()kk f x x x a x x-=-+. (1)当a =1时,求1()f x 在1x =处的切线方程;(2)对于任意x ∈[1,+∞),1()f x ≥0 恒成立,求a 的取值范围; (3)试讨论函数0()()F x f x x =-的极值点的个数.。
江苏省2020届“百校大联考”高三年级第一次考试数学试卷2019.9一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知全集U =R ,集合A ={}12x x -<≤,集合B ={}0x x >,则A I (∁U B)= . 答案:(﹣1,0] 考点:集合的运算解析:因为全集U =R ,集合B ={}0x x >,则∁U B ={}0x x ≤,又因为集合A ={}12x x -<≤,所以A I(∁U B)=(﹣1,0]2.已知复数22i 1iz =++,i 为虚数单位,则z 的虚部为 . 答案:1 考点:复数 解析:222(1i)22i 2i 2i 2i 1i 1i (1i)(1i)1iz --=+=+=+=+++--. 3.函数:lg(1)y x =-的定义域是 .答案:[0,1)考点:定义域 解析:10x x ⎧->⎪⎨≥⎪⎩,所以0≤x <1.4.执行如图所示的伪代码,其结果为 .答案:30考点:算法初步,伪代码解析:3+2+3+4+5+6+7=305.在甲、乙两个盒子中都各有大小相同的红、黄、白三个小球,现从甲、乙两个盒子中各取一个小球,则两个小球颜色相同的概率为 . 答案:13考点:古典概型解析:从甲、乙两个盒子中各取一个小球共有9种情况,其中两个小球颜色相同共有3种情况,则两个小球颜色相同的概率为3÷9=13. 6.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取24人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为 .答案:4考点:统计(分层抽样)解析:先求得a =0.030,24÷[(0.030+0.020+0.010)×10]×(0.010×10)=47.已知圆224x y +=过椭圆C :22221x y a b+=(a >0,b >0)的焦点与短轴端点,则椭圆C的标准方程为 .答案:22184x y += 考点:椭圆的标准方程解析:由题意可得,2b c ==,所以2228a b c =+=,所以椭圆C 的标准方程为22184x y +=. 8.如右图,在体积为12的三棱锥A —BCD 中,点M 在AB 上,且AM =2MB ,点N 为 CD 的中点,则三棱锥C —AMN 的体积为 .答案:4考点:棱锥的体积 解析:由题意可得V C —AMN =13V A —BCD =4. 9.已知{}n a 为等比数列,设数列{}n a 的前n 项和为n S 且6328a a -=,37S =,则{}n a 的通项公式为 . 答案:12n n a -=考点:等比数列解析:因为6328a a -=,所以521128a q a q -=①,因为37S =,所以31(1)71a q q -=-②, ①÷②得:3240q q --=,解得q =2,11a = 所以12n n a -=10.若()f x 为R 上的奇函数,当0x >时,2()3f x x x =-+,则()0f x ≥的解集为 . 答案:(-∞,﹣3]U [0,3] 考点:函数的奇偶性解析:根据数形结合的方法得()0f x ≥的解集为(-∞,﹣3]U [0,3]11.若非零向量a r 与b r满足22a b a b +=+=r r r r ,则a r 与b r的夹角为 .答案:23π 考点:平面向量的数量积解析:由22a b a b +=+=r r r r ,得212a ba b a ⎧=⎪⎨⋅=-⎪⎩r r r r rcos<a r ,b r >=221122a a b a b a-⋅==-⋅r r r r r r ,得a r 与b r 的夹角为23π.12.若5cos 26sin()04παα++=,(2πα∈,)π,则sin 2α= .答案:﹣1考点:三角恒等变换 解析:由5cos 26sin()04παα++=,得(cos sin )[5(cos sin )0αααα+-+=,所以cos sin 0αα+=或cos sin 5αα-=- 得sin 21α=-或725因为(2πα∈,)π,则sin 2α=2sin cos 0αα<,所以sin 21α=-.13.已知函数22(23)320()4ln 20x m x m m x f x x m x xe ⎧+++++≤⎪=⎨+->⎪⎩,,在区间R 上有四个不同的零点,则实数m 的取值范围为 .答案:[﹣1,2) 考点:函数与方程解析:首先22(23)32x m x m m +++++=0最多两个零点,一个是﹣m ﹣1,﹣m ﹣2;而4ln 2x m x e+-=0最多也是两个零点,由于原函数在R 上有四个零点,则两个方程在各自的区间分别有两个零点,可得不等式组如下:10240m m e e --≤⎧⎪+⎨<<⎪⎩,解得﹣1≤m<2.14.已知正实数x ,y 满足()4xy x y -=,则x y +的最小值为 .答案:考点:函数与最值解析:()x y +==xy t =,(0, )t ∈+∞ 设24()f t t t =+,38()1f t t '=-,可知t =2时,()f t 取最小值为3,所以x y +的最小值为二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知函数()sin()(0f x x ωϕω=+>,)2πϕ<的图像上两个相邻的最高点之间的距离为2π且直线6x π=是函数()f x 图像的一条对称轴.(1)求()f x 的解析式; (2)若α满足()3()3f f παα=+,求tan 2α.16.(本小题满分14分)在直三棱柱ABC—A1B1C1中,D是棱A1B1的中点.(1)证明:直线B1C∥平面AC1D;(2)若AC=AA1,A1B1⊥A1C1,证明:平面AC1D⊥平面A1B1C.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率为32,点A 1分别为椭圆C 与坐标轴的交点,且AB =5.过x 轴上定点E(1,0)的直线与椭圆C 交于M ,N 两点,点Q 为线段MN 的中点.(1)求椭圆C 的方程;(2)求△QAB 面积的最大值.18.(本小题满分16分)某农场灌溉水渠长为1000米,横截面是等腰梯形,如图,在等腰梯形ABCD中,BC∥AD,AB=CD,其中渠底BC宽为1米,渠口AD宽为3米,渠深34米.根据国家对农田建设补贴的政策,该农场计划在原水渠的基础上分别沿射线AD方向加宽、AB方向加深,若扩建后的水渠横截面AB1C1D1仍是等腰梯形,且面积是原面积的2倍.设扩建后渠深为h米,若挖掘费用为每立方米ah2万元,水渠的内壁(渠底和梯形两腰,AB端也要重新铺设)铺设混凝土的费用为每平方米3a万元.(1)用h 表示渠底B 1C 1的长度,并求出h 的取值范围; (2)问渠深h 为多少米时,建设费用最低?19.(本小题满分16分)已知数列{}n a 的前n 项和为n S ,12a =,24a =,且满足1136n n n a a S +-+=+(n ≥2). (1)证明:{}n a 是等比数列,并求数列{}n a 的通项公式;(2)设(21)nn n b t n a =⋅-⋅,0t ≠,若数列{}n b 是等差数列,求实数t 的值;(3)在(2)的条件下,设1212()2321n n n nc n N +*+=∈-⋅+,记数列{}n c 的前n 项和为 n T .若对任意的n ,k N *∈,存在实数λ,使得1n k T b λ+⋅<,求实数λ的最大值.20.(本小题满分16分)已知函数(1)()ln ()kk f x x x a x x-=-+. (1)当a =1时,求1()f x 在1x =处的切线方程;(2)对于任意x ∈[1,+∞),1()f x ≥0 恒成立,求a 的取值范围; (3)试讨论函数0()()F x f x x =-的极值点的个数.。
1 江苏省南京市2020届高三数学上学期期初联考试题试题(含解析) 一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)
1.已知集合A=12xx,B=0xx,则AIB= . 答案:(﹣1,0] 考点:集合的运算 解析:(﹣1,0]
2.已知复数z=3i1i(i是虚数单位),则z的虚部是 . 答案:﹣2 考点:虚数
解析:z=223i(3i)(1i)i4i34i22i11i(1i)(1i)1i2,所以则z的虚部是﹣2. 3.对一批产品的质量(单位:克)进行抽样检测,样本容量为1600,检测结果的频率分布直方图如图所示.根据标准,单件产品质量在区间[25,30)内为一等品,在区间[15,20),[20,25)和[30,35)内为二等品,其余为三等品.则样本中三等品件数为 .
答案:200 考点:统计,抽样调查 解析:200 4.现有三张卡片,分别写有“1”、“2”、“3”这三个数字.将这三张卡片随机排序组成一个三位数,则该三位数是偶数的概率是 .
答案:13 考点:古典概型 解析:将这三张卡片随机排序组成一个三位数如下:123,132,213,231,312,321,共6
种,其中偶数有2种,所以该三位数是偶数的概率是1263.
5.函数21logyx的定义域为 . 答案:[12,) 考点:函数的定义域
解析:由21log00xx,解得12x,所以原函数定义域为[12,). 2
6.运行如图所示的伪代码,其结果为 .
答案:17 考点:算法初步,伪代码 解析:根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=1+1+3+5+7的值,所以S=1+1+3+5+7=17.
7.在平面直角坐标系xOy中,双曲线C:222116xya(a>0)的右顶点到双曲线的一条渐近
线的距离为453,则双曲线C的方程为 . 答案:2212016xy 考点:双曲线的性质 解析:由题意可知双曲线的右顶点为(a,0),渐近线方程为4yxa,根据点到线的距离
公式求得右顶点到双曲线渐近线距离为:2416aa,即可得方程2416aa=453,
解得a2=20,所以双曲线C的方程为2212016xy. 8.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现,圆柱的表面积与球的表面积之比为 .
答案:32
考点:圆柱、球的表面积 解析:设球的半径为R,则圆柱的底面半径为R,高为2R,S圆柱=2πR×2R+2×πR2=6πR2,
S球=4πR2.所以22S63S42RR圆柱球. 3
9.函数()Asin()fxx(A>0,>0)的部分图象如图所示.若函数()yfx在区间[m,n]上的值域为[2,2],则n﹣m的最小值是 .
答案:3 考点:三角函数的图像与性质
解析:由函数的最大值为2,可得A=2.由12•2=4,可得4.由五点法作图可得4
×2+=2,∴=0,函数()2sin()4fxx.由于函数在[2,5]上是减函数,x=2时,()fx=2,x=5时,()fx=2,故n﹣m的最小值是5﹣2=3. 10.在公比为q且各项均为正数的等比数列na中,nS为na的前n项和.若121aq,且527SS,则首项1a的值为 . 答案:14 考点:等比数列
解析:因为527SS,所以3457aaa,则2341()7aqqq,将121aq代入
可得:260qq,因为q>0,所以q=2,从而首项1a的值为14. 11.已知()fx是定义在区间(﹣1,1)上的奇函数,当x<0时,()(1)fxxx.已知m满足不等式2(1)(1)0fmfm,则实数m的取值范围为 . 答案:(0,1) 考点:函数性质综合
解析:当x<0时,()(1)fxxx,可得()fx在(﹣1,0)单调递减;由()fx是定义在区
间(﹣1,1)上的奇函数,可得()fx也是区间(﹣1,1)上的减函数. 因为2(1)(1)0fmfm,所以2(1)(1)fmfm,可得如下不等式组: 4
2211111111mmmm,得02022021mmmm或,解得:01m.所以实数m的取值范围为(0,1). 12.已知圆O:x2+y2=4和圆O外一点P(0x,0y),过点P作圆O的两条切线,切点分别为A,B,且∠AOB=120°.若点C(8,0)和点P满足PO=PC,则的范围是 . 答案:113 考点:圆的方程 解析:首先求得PO=4,设P(x,y),则2216xy①,由PO=PC,得PO2=PC2,
则x2+y2=2[(x﹣8)2+y2],化简得222220(1)()1664xyx②,由①
②得:2251x,根据﹣4≤2251≤4,求得113. 13.如图,已知梯形ABCD,AD∥BC,BC2AD3,取BD中点E,连接AE并延长交CD于F,若ABAD2FACDuuuruuuruuuruuur,则ABAD= .
答案:33 考点:平面向量的数量积 解析:根据题意可得CF1FD3,21CDCBBAADADABADADAB33uuuruuuruuuruuuruuuruuuruuuruuuruuur,2331132FACD2(CDAD)CD2[(ADAB)AD](ADAB)AB44332
uuuruuuruuuruuuruuuruuuruuuruuuruuuruuuruuur
21ADABAD2uuuruuuruuur,所以由ABAD2FACDuuuruuuruuuruuur,得2231ABADABAD22uuuruuuruuuruuur ABADuuuruuur,所以22AD3ABuuuruuur,所以ABAD=33.
14.已知函数1ln1()11122xxfxxx,,,若12xx,且12()()2fxfx,则12xx的取 5
值范围是 . 答案:[32ln2,) 考点:函数与方程
解析:设121xx,则12111ln222xx,得:1212lnxx,所以12xx=1﹣22
lnx
+2x.令222()12lngxxx,2222()xgxx,当1<2x<2,2()gx<0,2
()gx
在(1,2)上单调递减,当2x>2,2()gx>0,2()gx在(2,)上单调递增,∴当x=2时,2()gx有最小值为32ln2,所以12xx≥32ln2,即12xx的取值范
围是[32ln2,). 二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分) 如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点. (1)证明:EF∥平面PAC; (2)证明:AF⊥PC.
解:
16.(本小题满分14分) 在△ABC中,A=34,AB=6,AC=32. 6
(1)求sinB的值; (2)若点D在BC边上,AD=BD,求△ABD的面积. 解:
(1)∵A=34,AB=6,AC=32 ∴由余弦定理可得:BC2=AB2+AC2﹣2AB·AC·cosA=90 ∴BC=310
由正弦定理可得:232ACsinA102sinBBC10310. (2)∵A=34,B为锐角 ∴cosB=31010 由余弦定理:AD2=AB2+BD2﹣2AB·BD·cosB 因为AD=BD,所以BD=AB6102cosB310210
所以S△ABD=12AB·BD·sinB=110610210=3 所以△ABD的面积为3. 17.(本小题满分14分) 窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一.图中的窗花是由一张圆形纸片剪去一个正十字形剩下的部分,正十字形的顶点都在圆周上.已知正十字形的宽和长都分别为x,y(单位:dm)且x<y,若剪去的正十字形部分面积为4dm2. (1)求y关于x的函数解析式,并求其定义域; (2)现为了节约纸张,需要所用圆形纸片面积最小.当x取何值时,所用到的圆形纸片面积最小,并求出其最小值.
解: (1)由题意可得:224xyx,则242xyx, ∵yx,∴0<x<2