北师大版八年级下册数学第一章三角形的证明第3节《线段的垂直平分线(1)》参考课件
- 格式:pdf
- 大小:2.26 MB
- 文档页数:23
北师大版8年级下册第1章第3节线段的垂直平分线(1)教案一、教学目标:1.能够运用公理和所学过的定理证明线段的垂直平分线的性质定理和判定定理.2.能够利用尺规作已知线段的垂直平分线.3.经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力.二、教学过程:<一>创设情境,引入新课师:(课件演示)如图,A、B表示两个仓库,要在一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置?生:作线段AB的垂直平分线,码头应建在线段AB的垂直平分线与河岸边的交点上.师:语言非常准确.这节课我们就来研究线段的垂直平分线.(板书课题——线段的垂直平分线)师:刚才这位同学说码头应建在线段AB的垂直平分线与河岸边的交点上,谁能说出这样做的道理吗?生:线段垂直平分线上的点到这条线段的两个端点的距离相等.师:非常好,这是我们七年级时学过的一句话。
还记得当时我们是怎样得到的吗?生:不记得了.师:那我来帮大家回忆一下。
(教师通过演示折纸过程,验证线段垂直平分线的性质)师:七年级时我们用折纸的方法得到了“线段垂直平分线上的点到这条线段的两个端点的距离相等”.同学们知道这是不够的,还必须利用公理及已学过的定理、推论证明它.这节课我们一起用所学的公理、定理来证明线段的垂直平分线的性质定理.教师板书:定理线段垂直平分线上的点到线段两个端点的距离相等.<二>、自主探究,感受新知1.线段垂直平分线性质定理的证明师:现在就请同学们自己思考证明的思路和方法,并尝试写出证明过程.(学生画图,写出已知、求证. 证明方法和过程对于学生来说不是很困难的,可以找程度比较差的同学回答)生:口答已知、求证、证明.师:课件演示.已知:如图,直线MN ⊥AB ,垂足是C ,且AC =BC ,P 是MN 上的点.求证:PA =PB .N A PB CM证明:∵MN ⊥AB , ∴∠PCA =∠PCB =90°.∵AC =BC ,PC =PC , ∴△PCA ≌PCB(SAS).∴PA =PB (全等三角形的对应边相等).师:若直线MN 上还有一点Q ,根据线段垂直平分线性质定理,能得出什么结论?生:QA =QB.(教师在图形中找出几个不同位置的点P ,学生分别说出结论,就是为了让学生熟悉图形,能熟练应用垂直平分线性质定理找出相等的线段)师:从图形中,你还能找出哪些相等的线段、相等的角呢?生:∠ A =∠B ,∠CPA =∠CPB .(挖掘基本图形中其它的等量关系,使学生认识到学习知识不要局限于定理,为以后应用线段垂直平分线的性质定理进行证明、计算打下基础.)2.线段垂直平分线判定定理的证明师:你能写出上面这个定理的逆命题吗?生: 思考.师:这个命题不是“如果……那么……”的形式,要写出它的逆命题,可以先将原命题写成“如果……那么……”的形式,逆命题就容易写出.谁来分析一下原命题的条件和结论?生:原命题的条件是“有一个点是线段垂直平分线上的点”,结论是“这个点到线段两个端点的距离相等”. 师:有了这位同学的精彩分析,逆命题就很容易写出来.生:如果有一个点到线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上.师:谁能把它描述得更简捷?生:到线段两个端点的距离相等的点在这条线段的垂直平分线上.师:当我们写出逆命题时,就应想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明,这个命题是真还是假呢?生:真命题.师:要证明这一定理,先要写出已知、求证。
北师大初中数学八年级重点知识精选掌握知识点,多做练习题,基础知识很重要!北师大初中数学和你一起共同进步学业有成!1.3 线段的垂直平分线第1课时线段的垂直平分线学习目标:1.证明线段垂直平分线的性质定理和判定定理.(重难点)2.经历探索、猜测、证明的过程,进一步发展学生的推理证明能力,丰富对几何图形的认识.3.通过小组活动,学会与人合作,并能与他人交流思维的过程和结果.合作探究探究一:线段的垂直平分线的性质定理性质定理:线段垂直平分线上的点到线段两个端点的距离相等.已知:如右图,直线MN⊥AB,垂足是C,且AC=BC,P是MN上的点.求证:PA=PB.证明:∵MN⊥AB,∴∠PCA=∠PCB=90°∵AC=BC,PC=PC,∴△PCA≌△PCB(SAS) ;∴PA=PB(全等三角形的对应边相等).定理运用时的数学语言:∵∴探究二:线段的垂直平分线的判定定理你能写出上面这个定理的逆命题吗?它是真命题吗?当我们写出逆命题时,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明。
例题:已知:如图,在△ABC 中,AB = AC,O 是△ABC 内一点,且OB = OC.求证:直线AO 垂直平分线段BC。
.证明:∵ AB = AC,∴ 点 A 在线段 BC 的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).同理,点 O 在线段 BC 的垂直平分线上.∴ 直线 AO 是线段 BC 的垂直平分线(两点确定一条直线).学生是第一次证明一条直线是已知线段的垂直平分线,因此老师要引导学生理清证明的思路和方法并给出完整的证明过程。
三.当堂检测1.如图,在△ABC 中,∠C = 90°,DE 是AB 的垂直平分线,则 (1)BD =;(2)若∠B = 40°,则∠BAC = °,∠DAB =°, ∠DAC =°。
(3)若AC= 4, BC = 5,则DA + DC =, △ACD 的周长为 。