当前位置:文档之家› 软化材料的弹塑性有限元分析

软化材料的弹塑性有限元分析

软化材料的弹塑性有限元分析
软化材料的弹塑性有限元分析

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

岩土类材料的弹塑性力学模型及本构方程 摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。 关键词:岩土类材料,弹塑性力学模型,本构方程 不同的固体材料,力学性质各不相同。即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。 第一章岩土类材料 地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。 岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。归纳起来,岩土材料有3点基本特性:1.摩擦特性。2.多相特性。3.双强度特性。另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。4.土体的塑性变形依赖于应力路径。 对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。 固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。物体在变形过程中,外力所做的功以能量(应变能)的形式贮存在物体内,当卸载时,弹性应变能将全部释放出来,物体的变形得以完全恢复;(2)无论材料是处于单向应力状态,还是复杂应力状态,在线弹性变形阶段,应力和应变成线性比例关系;(3)对材料加载或卸载,其应力应变曲线路径相同。因此,应力与应变是一一对应的关系。 固体材料的塑性变形具有以下特点:(l)塑性变形不可恢复,所以外力功不可逆。塑性变形的产生过程,必定要消耗能量(称耗散能或形变功);(2)在塑性变形阶段,应力和应变关系是非线性的。因此,不能应用叠加原理。又因为加载与卸载的规律不同,应力与应变也不再存在一一对应的关系,也即应力与相应的应变不能唯一地确定,而应当考虑到加载的路径(即加载历史);(3)当受力固体产生塑性变形时,将同时存在有产生弹性变形的弹性区域和产生塑性变形的塑性区域。并且随着载荷的变化,两区域的分界面也会产生变化。 第二章弹塑性力学中常用的简化力学模型 对于不同的材料,不同的应用领域,可以采用不同的变形体模型。在确定力学模型时,要特别注意使所选取的力学模型必须符合材料的实际情况,这是非常重要的,因为只有这样才能使计算结果反映结构或构件中的真实应力及应

静力弹塑性分析方法与与动力弹塑性分析方法的优缺点

静力弹塑性分析方法与与动力弹塑性分析方法的优缺点 Pushover)分析法 1、静力弹塑性分析方法(Pushover)分析法优点: (1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。 (2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。 2、静力弹塑性分析方法(Pushover)分析法缺点: (1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。 (2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。(3)只能从整体上考察结构的性能,得到的结果较为粗糙。且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。不能完全真实反应结构在地震作用下性状。 二、弹塑性时程分析法

1、时程分析法优点: (1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量对高层建筑的不利影响。 (2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。 (3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。 (4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。 2、时程分析法缺点: (1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。 (2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。所以此法的计算工作十分繁重,必须借助于计算机才能完成。而且对于大型复杂结构对计算机要求更高,耗时耗力。 (3)对工程技术人员素质要求较高,工程应用要求较高。从结构模型建立,材料本构的选取、地震波选取,到参数控制及庞大计算结果的整理及甄别都要求技术人员具有扎实的专业素质以及丰厚的工程经验。

有限元与数值方法-讲稿19 弹塑性增量有限元分析课件

材料非线性问题有限元方法 教学要求和内容 1.掌握弹塑性本构关系和塑性力学的基本法则; 2.掌握弹塑性增量分析的有限元格式; 3.学习常用非线性方程组的求解方法: (1)直接迭代法; (2) Newton-Raphson 方法,修正的N-R 方法; (3)增量法等。 请大家预习,争取对相关内容有大概的了解和把握。

弹塑性增量有限元分析 一.材料弹塑性行为的描述 弹塑性材料进入塑性的特点:存在 不可恢复的塑性变形; 卸载时:非线性弹性材料按原路径 卸载; 弹塑性材料按不同的路径卸载,并 且有残余应变,称为塑性应变。

1.单向加载 1) 弹性阶段: 卸载时不留下残余变形; 2) 初始屈服:s σσ= 3) 强化阶段:超过初始屈服之后,按弹性规律卸载,再加载弹性范 围扩大:ss σσ'>,s σ'为相继屈服应力。

4) 鲍氏现象(Bauschinger ): 二.塑性力学的基本法则 1.初始屈服准则: 00(,)0ij F k σ= 已经建立了多种屈服准则: (1) V . Mises 准则:000(,)()0ij ij F k f k σσ=-= 2 2 001 1 ()(),()2 3ij ij ij s f s s J k σσ===第二应力不变量1122221 ,() 3 ij ij ij m m s σδσσσσσ=-=++偏应力张量:平均应力: (2) Tresca 准则(最大剪应力准则): 0max ()0ij s F S ττ=-=

2.流动法则 V . Mises 流动法则: 0(,)()ij ij p ij ij ij F k f d d d σσελ λ σσ??==??, 0d λ> 待定有限量 塑性应变增量 p ij d ε 沿屈服面当前应力点的法线方向增加。 因此,称为法向流动法则。 3.硬化法则: (1)各向同性硬化:(,)()0ij ij F k f k σσ=-=

5弹塑性_弹性材料特性_2009_813509407

弹性材料的广义胡克定律 2 Robert Hooke (1635-1703)第三章一、固体材料的本构关系 ((( 描述材料特性的本构关系是固体力学模型的重要组成部分

第三章一、固体材料的本构关系 固体材料本构关系的实验基础 低碳钢单向拉伸应力应变曲线第三章弹性材料的广义胡克定律 一、固体材料的本构关系 固体材料本构关系的实验基础 高强度合金钢单向拉伸应力应变曲线弹性模量 单向拉伸ε′横向应变 单值σ~ε′单值νε泊松比Poisson’s ratio (1829ν——1/6~1/3Simon Denis Poisson (1781-1840)法国第三章弹性材料的广义胡克定律 一、固体材料的本构关系 固体材料本构关系的实验基础 在线性弹性范围内一般工程材料σ = E ε

薄壁圆管扭转单向压缩 第三章一、固体材料的本构关系 固体材料本构关系的实验基础 无法直接试验得到 6 个独立的εij 之间的关系。 第三章一、固体材料的本构关系 固体材料本构关系的实验基础 由材料力学实验得到了 第三章二、功、能与弹性材料的应变能 热力学第一定律(能量守恒定律)

第三章 二、功、能与弹性材料的应变能 热力学第一定律(能量守恒定律) 动能 第三章 二、功、能与弹性材料的应变能 热力学第一定律(能量守恒定律) 第三章 二、功、能与弹性材料的应变能 热力学第一定律(能量守恒定律) 外力所做的功

第三章二、功、能与弹性材料的应变能 热力学第一定律(能量守恒定律) 外界传给的热量U Δ=Δ∫+=第三章二、功、能与弹性材料的应变能 热力学第一定律(能量守恒定律)任意时间段均应成立上式,等价于任意时刻成立下式任意子区域成立上式,等价于每点成立下式 U Δ=Δ∫+=第三章二、功、能与弹性材料的应变能 热力学第一定律(能量守恒定律)任意时间段均应成立上式,等价于任意时刻成立下式 任意子区域成立上式,等价于每点成立下式

弹塑性力知识学习题汇总题库加标准答案

试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。 解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1 =-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0 代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0; OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0 cos sin 0x xy yx y σβτβτβσβ+=??+=?……………………………… (a ) 将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: ()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=?? ? --+-=?? L L L L L L L L L L L L L L L L L L 化简(b )式得:d =γ1ctg 2β; 试求该点的最大主应力及其主方向。 解:由题意知该点处于平面应力状态,且知:σx =12× 103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: (()() 3 1.2333 3 121010 2217.0831******* 6.082810 4.9172410x y Pa σσσ?++?=±=????=?=±?=? 则显然: 3312317.08310 4.917100Pa Pa σσσ=?=?= σ1 与x 轴正向的夹角为:(按材力公式计算) ()22612 sin 226 12102 cos 2xy x y tg τθθσσθ--?-++ = = ==+=--+ 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 题图 1-3

弹塑性时程分析

弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接动力法。 基本原理 多自由度体系在地面运动作用下的振动方程为: 式中、、分别为体系的水平位移、速度、加速度向量;为地面运动水平加速度,、、 分别为体系的刚度矩阵、阻尼矩阵和质量矩阵。将强震记录下来的某水平分量加速度-时间曲线划分为很小的时段,然后依次对各个时段通过振动方程进行直接积分,从而求出体系在各时刻的位移、速度和加速度,进而计算结构的内力。 式中结构整体的刚度矩阵、阻尼矩阵和质量矩阵通过每个构件所赋予的单元和材料类型组装形成。动力弹塑性分析中对于材料需要考虑包括:在往复循环加载下,混凝土及钢材的滞回性能、混凝土从出现开裂直至完全压碎退出工作全过程中的刚度退化、混凝土拉压循环中强度恢复等大量非线性问题。 基本步骤 弹塑性动力分析包括以下几个步骤: (1) 建立结构的几何模型并划分网格; (2) 定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构的质量、刚度和阻尼矩阵; (3) 输入适合本场地的地震波并定义模型的边界条件,开始计算; (4) 计算完成后,对结果数据进行处理,对结构整体的可靠度做出评估。 计算模型 在常用的商业有限元软件中,ABAQUS、ADINA、ANSYS、MSC.MARC都内置了混凝土的本构模型,并提供了丰富的单元类型及相应的前后处理功能。在这些程序中一般都有专用的钢筋模型,可以建立组合式或整体式钢筋。 以ABAQUS为例,它提供了混凝土弹塑性断裂和混凝土损伤模型以及钢筋单元。其中弹塑性断裂和损伤的混凝土模型非常适合于钢筋混凝土结构的动力弹塑性分析。它的主要优

常用弹塑性料模型

常用弹塑性材料模型下表列出了ANSYS/LS-DYNA材料模型以及相应的LS-DYNA命令 B.2.1. Isotropic Elastic Example: High Carbon Steel MP,ex,1,210e9 ! Pa MP,nuxy,1,.29 ! No units MP,dens,1,7850 ! kg/m3

B.2.7. Bilinear Isotropic Plasticity Example: Nickel Alloy MP,ex,1,180e9 ! Pa MP,nuxy,1,.31 ! No units MP,dens,1,8490 ! kg/m3 TB,BISO,1 TBDA TA,1,900e6 ! Yield stress (Pa) TBDA TA,2,445e6 ! Tangent modulus (Pa) B.2.10. Bilinear Kinematic Plasticity Example: Titanium Alloy MP,ex,1,100e9 ! Pa MP,nuxy,1,.36 ! No units MP,dens,1,4650 ! kg/m3 TB,BKIN,1 TBDA TA,1,70e6 ! Yield stress (Pa) TBDA TA,2,112e6 ! Tangent modulus (Pa)

B.2.11. Plastic Kinematic Example: 1018 Steel MP,ex,1,200e9 ! Pa MP,nuxy,1,.27 ! No units MP,dens,1,7865 ! kg/m3 TB,PLAW,,,,1 TBDA TA,1,310e6 ! Yield stress (Pa) TBDA TA,2,763e6 ! Tangent modulus (Pa) TBDA TA,4,40.0 ! C (s-1) TBDA TA,5,5.0 ! P TBDA TA,6,.75 ! Failure strain

弹塑性力学有限单元法-交通运输工程学院-中南大学

中南大学2014年博士研究生入学考试 《弹塑性力学有限单元法》考试大纲 本考试大纲由交通运输工程学院教授委员会于2013年7月通过。 I.考试性质 弹塑性力学有限单元法是我校“载运工具运用工程”专业博士生入学考试的专业基础课,它是为我校招收本专业博士生而实施的具有选拔功能的水平考试;其目的是科学、公平、有效地测试考生掌握弹性力学、塑性力学及有限单元数值方法课程的基本知识、基本理论,以及相关理论和方法分析解决实际问题的能力;评价的标准是高等学校优秀硕士毕业生能达到的及格或及格以上水平,以保证被录取者能较好的掌握了本专业必备的基础知识。 II.考查目标 弹塑性力学有限单元法课程考试弹性力学、塑性力学及有限单元数值方法等内容,重点在检查力学基本概念与基本方法的掌握和应用,难度适中,覆盖主要章节,能区分学生优劣层次。要求考生:(1)掌握弹塑性力学的基本知识、结构有限元分析的基本方法和过程,要求学生具备使用有限元方法进行车辆结构强度分析的能力。 Ⅲ.考试形式和试卷结构 1、试卷满分及考试时间 本试卷满分为100 分,考试时间为180 分钟 2、答题方式 答题方式为闭卷,笔试。 3、试卷内容结构 弹性力学约30 % 30 有限单元法约50 % 50

塑性力学基本理论约20 % 20 Ⅳ.考查内容 1. 弹性力学 (1)掌握弹性力学问题基本方程及边界条件。 (2)掌握应力理论及变形理论、二阶张量的坐标转换; (3)掌握使用位移法和应力法求解弹性力学问题; (4)掌握使用半逆解法求解简单平面问题; 2. 有限单元法 (1)掌握有限元方法的基本概念; (2)掌握平面、空间及等参单元分析的过程 (3)掌握有限单元位移模式的选取、刚度矩阵数值积分方法;(4)掌握结构刚度矩阵性质、边界条件处理; (5)掌握薄板弯曲问题有限元分析方法; (6)掌握车辆典型结构有限元分析的步骤和处理技巧; 3. 塑性力学 (1)掌握塑性力学的基本概念; (2)掌握Tresca和Mises屈服条件; (3)掌握几种常用的弹塑性力学模型; (4)掌握应力空间和屈服曲面的概念、加载曲面和塑性流动法则;

有限元分析材料塑性

有限元分析材料塑性 篇一:塑性成形有限元分析 贵州师范大学 《塑性成形有限元分析》 课程期末考查 学年第学期 学院:机电学院专业:材料成型及控制工程姓名:谭世波学号:111404010056科目:dEFoRm-3d塑性成形caE应用教程日期:20XX 年1月3日 塑性成形有限元分析 20XX级材料成型与控制工程 (谭世波111404010056) 摘要:本文主要是在dEFoRm-3d软件上模拟圆柱形毛坯的墩粗成型,对零件 进行有限元模拟分析。 引言:何为有限元模拟分析?如何完成一个墩粗的模拟 分析,运用dEFoRm-3d对毛坯进行分析的目的。 模拟直径为50mm,高度60mm的钢棒的镦粗成形工艺,工艺工序参数如下: (1)几何体与工具采用整体分析;(2)单位:公制

(3)材料:aiSi-1045(4)温度:20℃ (5)上模移动速度:2mm/s(6)模具行程:10mm; 模拟过程:先用UG画出钢棒的三维模型,导出为STL格 式。 1.在dEFoRm-3d软件中进行模拟分析,打开软件创建 一个新的问题。 2.设置模拟控制 3.设置材料基本属性 篇二:塑性成形有限元分析考查题目 《塑性成形有限元分析》课程期末考查试题 (20XX级材料成型与控制工程) 下面试题二选一,上交时间:20XX年1月5日上午9:00。 1、请模拟直径为50mm,高度60mm的钢棒的镦粗成形工序,工艺参数如下: (1)几何体与工具采用整体分析; (2)单位:公制 (3)材料:aiSi-1045 (4)温度:20℃ (5)上模移动速度:2mm/s (6)模具行程:10mm; 按照论文的格式撰写研究报告(打印),描述模拟过程,并详细解读分析模拟结果(注:交报告时带上演示模拟结果)。

弹塑性时程分析实例

80 第40卷 增刊 建 筑 结 构 2010年6月 北京某超高层商住楼动力弹塑性时程分析 徐晓龙,高德志,桂满树,姜毅荣,何四祥,王 侃 (北京迈达斯技术有限公司,北京 100044) [摘要] 基于梁柱塑性铰和剪力墙纤维模型,利用MIDAS Building 软件实现了超高层建筑结构的弹塑性时程分析。结合该结构研究了在大震作用下结构将出现的破坏模式、塑性发展特点等,并与弹性分析进行了对比,说明弹塑性分析更能反映实际情况,能对结构的抗震性能给出较为合理全面的评价,并对工程设计给出指导。 [关键词] 动力弹塑性时程分析;MIDAS Building ;纤维模型 Elastic-plastic time-history analysis on the super-high business-living building in Beijing Xu Xiaolong, Gao Dezhi, Gui Manshu, Jiang Yirong, He Sixiang, Wang Kan (Beijing MIDAS Technology Information Co.,Ltd,. Beijing 100044,China ) Abstract: Based on the theory of plastic hinges (beams and columns ) and fiber model (walls ), elastic-plastic time-history analysis is performed on the super-high business-living building in Beijing by MIDAS Building software under the scarce earthquake load. Failure Modes and plastic zone development are researched according to the feature of the structure. Through the comparison with the elastic analysis, it is considered that evaluation on the structure can be deduced from the elastic-plastic analysis more reasonably and comprehensively, and there will be better instruction to the projects. Keywords: dynamic elastic-plastic analysis; MIDAS Building; fiber model 1 结构特点 某50层的超高层商住两用建筑,地上50层,结构高度达到236.3m ,采用钢骨混凝土柱框筒结构形式,平面尺寸64.8m ×43.8m (轴线尺寸)。结构已经超过型钢混凝土框架-钢筋混凝土筒体结构8度(0.2g )抗震设防下的最大适用高度(150m ),该结构为抗震超限结构,故有必要对结构进行动力弹塑性时程分析,以考察其在罕遇地震作用下的响应、薄弱环节、破坏模式等。结构整体模型及首层平面见图1,2。 2 动力弹塑性时程分析 图1 结构模型图 图2 首层平面图 时程分析法[1]被认为是目前结构弹塑性分析的最可靠和最精确的方法,它不仅能对结构进行定性分析,同时又可给出结构在罕遇地震下的量化性能指标,并且得到结构在各个时刻的真实地震反应。弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过逐步积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接积分法。 弹塑性动力时程分析有如下优点:1)输入的是罕遇地震波的整个过程,可以真实反映各个时刻地震作用引起的结构响应,包括变形、内力、损伤状态(开裂和破坏)等;2)有些程序通过定义材料的本构关系来考虑结构的弹塑性性能,故可以准确模拟任何结构,计算模型简化较少;3)该方法基于塑性区的概念,对带剪力墙的结构,结果更为准确可靠。 基于MIDAS Building 动力弹塑性分析平台,对北京某超高层商住楼进行了罕遇地震作用下的动力时程分析,研究其各个抗震性能指标以及破坏模式。 2.1 弹塑性动力分析的基本方法 弹塑性动力分析包括以下几个步骤:1)建立结构

塑性成形过程中的有限元法

塑性成形过程中的有限元法 金属塑性成形技术是现代化制造业中金属加工的重要方法之一。它是金属材料在模具和锻压设备作用下发生变形,获得所需要求的形状、尺寸和性能的制件的加工过程。金属成形件在汽车、飞机仪表、机械设备等产品的零部件中占有相当大的比例。由于其具有生产效率高,生产费用低的特点,适合于大批量生产,是现代高速发展的制造业的重要成形工艺。据统计,在发达国家中,金属塑性成形件的产值在国民经济中的比重居行业之首,在我国也占有相当大的比例。 随着现代制造业的高速发展,对塑性成形工艺分析和模具设计方面提出了更高的要求。若工艺分析不完善、模具设计不合理或材料选择不当,则会造成产品达不到质量要求,造成大量的次品和废品,增加了模具的设计制造时间和费用。为了防止缺陷的产生,以提高产品质量,降低产品成本,国内外许多大公司企业及大专院校和研究机构对塑性成形件的性能、成形过程中的应力应变分布及变化规律进行了大量的理论分析、实验研究与数值计算,力图发现各种制件、产品成形工艺所遵循的共同规律以及力学失效所反映的共同特征。由于塑性成形工艺影响因素甚多,有些因素如摩擦与润滑、变形过程中材料的本构关系等机理尚未被人们完全认识和掌握,因而到目前为止还未能对各种材料各种形状的制件成形过程作出准确的定量判定。正因为大变形机理非常复杂,使得塑性成形研究领域一直成为一个充满挑战和机遇的领域。 一般来说,产品研究与开发的目标之一就是确定生产高质量产品的优化准则,而不同的产品要求不同的优化准则,建立适当的优化准则需要对产品制造过程的全面了解。如果不掌握诸如摩擦条件、材料性能、工件几何形状、成形力等工艺参数对成形过程的影响,就不可能正确地设计模具和选择加工设备,更无法预测和防止缺陷的生成。在传统工艺分析和模具设计中,主要还是依靠工程类比和设计经验,经过反复试模修模,调整工艺参数以期望消除成形过程中的产品缺陷如失稳起皱、充填不满、局部破裂等。仅仅依靠类比和传统的经验工艺分析和模具设计方法已无法满足高速发展的现代金属加工工业的要求。因此,现代金属成形工艺分析过程中,建立适当的“过程模拟”非常重要。随着计算机技术的发展,人们已经认识到数值模拟在金属成形工程中的重要价值,这一领域已成为现代国内外学者的研究热点。 应用塑性成形的数值模拟方法主要有上限法(Upper Bound Method)、边界元法(Boundary Element Method)和有限元法(Finite Element Method)。上限元法常用于分析较为简单的准稳态变形问题;而边界元法主要用于模具设计分析和温度计算。对于大变形的体积成形和板料成形,变形过程常呈非稳态,形状、边界、材料性质等都会发生很大的变化,有限元法可由实验和理论方法给出的本构关系、边界条件、摩擦关系式,按变分原理推导出场方程,根据离散技术建立计算模型,从而实现对复杂成形问题进行数值模拟。分析成形过程中的应力应变分布及其变化规律,由此提供较为可靠的主要成形工艺参数。因此基于有限元法的塑性成形数值模拟技术是当前国际上极具发展潜力的成形技术前沿研究课题之一。 正确设计和控制金属塑性成形过程的前提条件是充分掌握金属流动、应力应变状态、热传导、润滑、加热与冷却及模具结构设计等方面的知识。任何分析方法都是为工程技术人员服务的,其目的是帮助工程技术人员掌握金属流动过程中应力应变状态等方面知识,一个好的分析方法至少应包括以下几个功能: (1)在未变形体(毛坯)与变形体(产品)之间建立运动学关系,预测金属塑性成形过程中的金属流动规律,其中包括应力应变场量变化、温度变化及热传导等。 (2)计算金属塑性成形极限,即保证金属材料在塑性变形过程中不产生任何表面及内部缺陷的最大变形量可能性。 (3)预测金属塑性成形过程得以顺利进行所需的成形力及能量,为正确选择加工设备和进行模具设计提供依据。 当前,有限元法已成为分析和研究金属塑性成形问题的最重要的数值分析方法之一,它具有以下优点:(1)由于单元形状具有多样性,有限元法使用与任何材料模型,任意的边界条件,任意的结构形状,在原则上一般不会发生处理上的困难。金属材料的塑性加工过程,均可以利用有限元法进行分析,而其它的数值

动力弹塑性时程分析的方法及其应用

动力弹塑性时程分析的方法及其应用 彪仿俊1 阎晓铭1 陈志强1王传甲1王庆扬1,2张劲2 (1 深圳市电子院设计有限公司;2 中国石油大学) 摘要:本文对现有的弹塑性分析方法进行了概述,重点介绍了动力弹塑性时程分析的理论、优点和基本方法,及该方法在东莞一实际工程中的成功应用,对于动力弹塑性时程分析方法在高层、特别是超限高层分析中的推广应用提供了有益的参考和借鉴。 关键词: 静力弹塑性分析动力弹塑性时程分析 ABAQUS 混凝土塑性损伤模型 1.引言 《建筑抗震设计规范》5.5.2条规定,对于特别不规则的结构、板柱-抗震墙、底部框架砖房以及高度不大于150m的高层钢结构、7度三、四类场地和8度乙类建筑中的钢筋混凝土结构和钢结构宜进行弹塑性变形验算。对于高度大于150m的钢结构、甲类建筑等结构应进行弹塑性变形验算。《高层建筑混凝土结构技术规程》5.1.13条也规定,对于B级高度的高层建筑结构和复杂高层建筑结构,如带转换层、加强层及错层、连体、多塔结构等,宜采用弹塑性静力或动力分析方法验算薄弱层弹塑性变形。 历史上的多次震害也证明了弹塑性分析的必要性:1968年日本的十橳冲地震中不少按等效静力方法进行抗震设防的多层钢筋混凝土结构遭到了严重破坏,1971年美国San Fernando地震、1975年日本大分地震也出现了类似的情况。相反,1957年墨西哥城地震中11~16层的许多建筑物遭到破坏,而首次采用了动力弹塑性分析的一座44层建筑物却安然无恙,1985年该建筑又经历了一次8.1级地震依然完好无损。 可以看出,随着建筑高度迅速增长,复杂程度日益提高,完全采用弹性理论进行结构分析计算和设计已经难以满足需要,弹塑性分析方法也就显得越来越重要。2.现有弹塑性分析方法综述 2.1 静力弹塑性分析 静力弹塑性分析(PUSH-OVER ANAL YSIS,以下简称POA)方法也称为推覆法,它基于美国的FEMA-273抗震评估方法和ATC-40报告,是一种介于弹性分析和动力弹塑性分析之间的方法,其理论核心是“目标位移法”和“承载力谱法”。 1.计算方法 (1)建立结构的计算模型、构件的物理 参数和恢复力模型等; (2)计算结构在竖向荷载作用下的内 力; (3)建立侧向荷载作用下的荷载分布形 式,将地震力等效为倒三角或与第 一振型等效的水平荷载模式。在结 构各层的质心处,沿高度施加以上 形式的水平荷载。确定其大小的原 则是:水平力产生的内力与前一步 计算的内力叠加后,恰好使一个或 一批杆件开裂或屈服; (4)对于开裂或屈服的杆件,对其刚度 进行修改后,再增加一级荷载,又 使得一个或一批杆件开裂或屈服; (5)不断重复步骤(3)、(4),直至结构 达到某一目标位移或发生破坏,将 此时的结构的变形和承载力与允许

弹塑性有限元方法

第三章 弹塑性有限元方法的实施 §3.1 增量平衡方程和切线刚度矩阵 1、 分段线性化的求解思想 塑性变形的特点决定了塑性本构关系的非线性和多值性,上面由塑性增量理论给 出了塑性应力—应变关系{}{}ep d D d σε=???? 其中 [][] {}{}[]{}[]{} T ep T F F D D D D F F A D σσ σ σ ????=- ??+ ?????? 说明当前应力状态不仅与当前应变有关,而且和达到这一变形状态的路径(加载历史)有关。这里包含了屈服准则、强化条件和加卸载准则。 由此,对物理非线性问题,通常采用分段线性化的纯增量法和逐次迭代的方法求解。即将加载过程分成若干个增量步,选择其中任意一个增量步建立它的增量平衡方程并求解,对整个过程的求解有普遍意义。 2、 增量平衡方程和切线刚度矩阵 设t 时刻(加载至i -1步终),结构(单元)在当前载荷(广义体力{}v f 和表面力{}s f ) 的作用下处于平衡状态,此时物体内一点的应力、应变状态为{}{}σε、。在此基础上,施加一个载荷增量{}{}v s f f ??和,即从t t t →+?时刻,则在体内必然引起一个位移增量{}u ?和相应的{}σ?、{}ε?,只要{}{}v s f f ??和足够小,就有{}{}ep D σε?=?????。 倘若初始状态{}σ已知,加载过程已知,则ep D ????可以确定(即p ij d ε?可以确定,然后 可在硬化曲线上得到1p ε所对应的硬化系数)于是上面的方程成为线性的。在t t t →+?这一增量过程中,应用于虚功原理可得到如下虚功方程: ()()()0e e T T T V V s s V S f f u dV f f u dS σσδεδδ??+?-+??-+??=?? ?? (1) 根据小变形几何关系u N q B q ε?=??=?和,再由虚位移()q δ?的任意性,并设 ()()e e T T v v s s V S P P N f f dV N f f dS +?= +?+ +?? ? ,展开后,其中单元在t 时刻载荷等效节点 力:e e T T v s V S P N f dV N f dS = + ? ? ;t ?内增量载荷的等效力e e T T v s V S P N f dV N f dS ?= ?+ ?? ? 。

弹性、弹塑性时程分析

PKPM软件园地 建筑结构.技术通讯 2007年1月 弹性、弹塑性时程分析法在结构设计中的应用 杨志勇 黄吉锋 (中国建筑科学研究院 北京 100013) 0 前言 地震作用是建筑结构可能遭遇的最主要灾害作用之一。几十年来,人们积累了大量的实测地震资料,这些资料多以位移、速度或者加速度时程的形式体现。与此相对应,时程分析方法也被认为是最直接的一种计算建筑结构地震响应的方法。但是,由于地震作用随机性导致计算结果的不确定性,弹性时程分析方法只是结构设计的一种辅助计算方法;虽然如此,抗震规范为了增强重要结构的抗震安全性,还是将弹性时程分析方法规定为常遇地震作用下振型分解反应谱法的一种补充计算方法;尤其是考虑了结构的弹塑性性能后,弹塑性时程分析方法更是被普遍认为是一种仿真的罕遇地震作用响应计算方法。 《建筑抗震设计规范》(GB50011-2001)第3.6.2,5.1.2,5.5.1,5.5.2,5.5.3等条文规定了时程分析相关的内容。下面结合TAT ,SATWE ,PMSAP 和EPDA 等软件应用,探讨如何将弹性、弹塑性时程分析正确应用到结构设计中去。 1 弹性时程分析的正确应用 11 正确地在软件中应用弹性时程分析方法需要对规范的相关条文规定有正确的认识。以下几点是需要特别明确的: (1)抗震规范第5.1.2条第3点规定,“可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值”。在设计过程中,如何实现“较大值”有不同的做法:1)设计采用弹性时程分析的构件内力响应包络值的多波平均值与振型分解反应谱法计算结果二者的较大值直接进行构件设计;2)在实现振型分解反应谱方法时,放大地震力使得到的楼层响应曲线包住时程分析楼层响应曲线的平均值。 图1 SATWE 地震作用放大系数 前一种做法可能使得构件配筋较大,因为在时程分析过程中,构件内力的最大响应具有不同时性,采用包络值进行设计会使得构件内力,尤其是压弯构件内力偏于保守。因此, TAT ,SATWE ,PMSAP 等软件均提供了地震力放大功能。SATWE 地震作用放大系数见图1,可以通过适当地放大振型分解反应谱法的地震作用来满足相应的规范要求。TAT 软件给出了一种折中的做法,如果设计者进行了弹性时程分析,则程序会将弹性时程分析结果作为一种地震荷载工况进行组合、设计。但是为了避免设计结果过于保守,程序会进行构件弹性时程分析内力的预组合。 (2)“采用时程分析方法时,应按建筑场地类别和设计地震分组选用不少于两组的实际强震记录和一组人工模拟的加速度时程曲线”。建筑结构在不同地震波作用下的响应差别可能较大,选用多条地震波的平均值可在一定程度上避免离散性。人工模拟地震波一般是以规范反应谱为基础,通过蒙特卡罗方法来得到,更加贴近规范反应谱或反映场地土的当地特征。TAT ,SATWE ,PMSAP ,EPDA 等软件按照结构的特征周期给出多组天然波和人工波,见图2。无论是进行弹性还是进行弹塑性时程分析,均要选取足够数量的地震波进行计算,以得到有代表意义的结果。 图2 按照特征周期区分的地震波库 (3)“多波平均地震响应系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符”。其条文说明解释为二者在各个周期点上相差不大于20%。对于人工波来说,这一规定一般是天然满足的,因为人工波是拟合规范反应谱得到的。对于天然波来讲则较难满足,因为规范的反应谱是依据众多实际采集的地震动时程曲线通过平滑化后的概率平均意义上的结果。图3所示为上述软件地震波库0.45s 特征周期中的2条天然波的动力放大系数谱曲线,可见与规范反应谱的差异还是明显的。那么如何执行规范的这条规定呢?其实规范的规定从概念上讲是合理的,因为频谱特征是地震波的最重要特征之一,一定程度上会影响时程分析结果的合理性。一种可行的做法是判断某条实际地震波 第一作者简介:杨志勇,男,1974.6出生,工学博士,副研究员。

弹塑性有限元法与刚塑性有限元法

弹塑性有限元法与刚塑性有限元法 板料成形数值模拟涉及到连续介质力学中材料非线性、几何非线性、边界条件非线性三非线性问题的计算,难度很大。随着非线性连续介质力学理论、有限元方法和计算机技术的发展,通过高精度的数值计算来模拟板料成形过程已成为可能。从70年代后期开始,经过近二十年的发展,板料成形数值模拟逐渐走向成熟,并开始在汽车、飞机等工业领域得到实际应用。 本文评述了板料成形数值模拟的发展历史和最新进展,并指出了该领域的发展趋势。 1、板料成形的典型成形过程、物理过程与力学模型 典型成形过程 板料成形的具体过程多种多样,在模拟分析时,可归纳成如图1所示的典型成形过程。成形时,冲头在压力机的作用下向下运动,给板料一个作用压力,板料因此产生运动与变形。同时,冲头、压力圈和凹模按一定方式共同约束板料的运动与变形,从而获得所要求的形状与尺寸。 物理过程 板料成形的物理过程包括模具与板料间的接触与摩擦;由于金属的塑性变形而导致的加工硬化和各向异性化;加工中可能产生的皱曲、微裂纹与破裂及由于卸载而在零件中产生回弹。 力学模型 板料成形过程可归纳成如下的力学问题:

给定冲头位移、凹模位移及压边圈历程函数,求出板料的位移历程函数,使其满足运动方程、初始条件、边界条件、本构关系及接触摩擦条件。 2板料成形数值模拟的发展历史 塑性有限元方法的发展 根据材料的本构关系,用于板料成形分析的非线性有限元法大体上分为刚-(粘)塑性与弹-(粘)塑性两类。 粘塑性有限元法很早就在板料成形分析中应用过,只是未能推广。事实上,粘塑性有限元法适用于热加工。在热加工时,应变硬化效应不显著,材料形变对变形速率有较大敏感性。

刚粘塑性有限元法的基本原理

第二章 刚粘塑性有限元法的基本原理 在金属塑性成形过程中,对于大多数体积成形的问题,弹性变形量相对非弹性变形量来说很小,一般情况下是可以忽略不计的,也就是说可以将材料视为刚(粘)塑性材料。本章主要介绍刚粘塑性有限元法的理论基础,基于等效积分形式的虚功原理以及泛函变分法。 2.1刚粘塑性材料流动的基本方程 设变形体的体积为V ,在V 内给定体力i p ;表面积为S ,在S 的一部分力面t S 上给定面力i q ,在S 的另一部分速度(位移)面V S 上给定速度o i v ,则材料在流动过程中满足下列力学基本方程 1.力平衡方程 0,=+i j ij p σ (2.1) 2.力边界条件 即在t S 上 i j ij q n =σ (2.2) 3.几何方程 )(2 1,,i j j i ij v v +=ε (2.3) 4.速度边界条件 即在V S 上 0i i v v = (2.4) 5.体积不可压缩方程 0==ij ij v εδε (2.5) 6.屈服准则 采用Misers 屈服准则和等向强化模型,初始屈服准则为 0=-s σσ (2.6) 后继屈服条件,对于静态加载只考虑应变强化 )(,0? ==-εσd H K K (2.7) 式中H 可以由单向拉伸试验曲线确定。 对于粘塑性材料,加载还应考虑时间因素即变形速度的影响,瞬时屈服条件为 ),(,0ε εσ Y Y Y ==- (2.8) 式中Y 可以由一维动力试验确定。 7. 本构关系 对于粘塑性材料的本构关系将在下一章作详细的讨论。

通常我们把满足上述所有基本方程的应力场、应变率场、速度场称为真实应力场、应变率场、速度场。满足方程1、2、6即满足应力平衡方程,应力边界条件和屈服条件的应力场称为静力许可应力场;满足3、4、5的速度场称为运动许可速度场。 利用上述方程和边界条件,变形体在塑性成形时的场变量从理论上是可以求解的,但实际上很困难,只有在少数几种简单情况下才能求出较准确的解析解。对于大多数情况利用传统的解析方法如主应力法、滑移线法等往往需要对实际的问题进行简化,难以获得满意的计算结果。而塑性加工中的有限元法借助于虚功原理或变分法,采用离散化的方法将变形体进行离散,可以根据实际工程的需要得到较为满意的结果。下面着重阐述塑性加工有限元的基础,基于等效积分形式的近似方法:虚功原理和变分法。 2.2虚功原理 变形体的虚功原理可以叙述如下:变形体中满足平衡的力系在任意满足协调条件的变形状态上作的虚功等于零,即体系外力的虚功与内力的虚功之和等于零。 虚功原理是虚位移(功率)原理和虚应力(率)原理的总称,它们都是与某些控制方程相等效的积分“弱”形式,虚位移(功率)原理是平衡方程和力的边界条件的等效积分“弱”形式;虚应力原理则是几何方程和位移(速度)边界条件的等效积分“弱”形式。下面来推导虚功率原理。 首先考虑平衡方程 0,=+i j ij p σ (2.9) 以及力的边界条件 i j ij q n =σ (2.10) 我们可以采用相应的方法建立与他们等效的积分形式,在这里权函数不失一般地取速度的变分i v δ及其边界值(取负值)。这样就可得到上面两式的等效积分形式 0)()(,=--+??ds q n v dv p v i j ij s i i j ij i v t σδσδ (2.11) 对上式体积分中的第一项进行积分,并注意到应力张量是对称张量,以及由于i v δ是速度的变分,因而有在速度边界上0=i v δ,再考虑体积内部满足几何方程,则可以得到 ds n v dv dv v j ij s i ij v ij j ij v i t σδσεδσδ???+-= , (2.12) 将上式代入(2.11)式,就得到经分部积分后的“弱”形式虚功率方程 0=++-???ds q v dv p v dv i s i i v i ij v ij t δδσεδ (2.13) 上式第一项是变形体内应力在虚应变率上所作之功,即内力虚功率;第二、第三项分别为体积力、面力所作的虚功率。外力和内力的虚功率和为零。这就是虚功率原理。 应当指出虚功率原理是力系平衡的必要和充分条件。还应指出的是,在推导虚功效率方程时,并未涉及物理方程(应力—应变率)关系,所以虚功率方程不仅可以用于线弹性问题,而且还可用于非线性问题。所以虚功方程是建立塑性加工过程中有限元法的一个重要工具。

相关主题
文本预览
相关文档 最新文档