几种双向凝胶电泳蛋白质检测方法的比较
- 格式:doc
- 大小:42.00 KB
- 文档页数:14
SDS-PAGE电泳是一种常用的蛋白质分析技术,通过电泳分离蛋白质样品的方法得到了广泛的应用。
本文将着重介绍SDS-PAGE电泳的基本原理。
一、SDS-PAGE电泳的概念SDS-PAGE是一种已经被广泛应用的蛋白质分离技术,它的全称是聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate-polyacrylamide gel electrophoresis)。
这种电泳技术利用聚丙烯酰胺凝胶作为分离介质,通过直流电场将蛋白质样品分离出不同电荷和大小的蛋白质成分。
二、SDS-PAGE电泳的原理1. 聚丙烯酰胺凝胶SDS-PAGE电泳中所使用的凝胶是由聚丙烯酰胺构成的。
聚丙烯酰胺凝胶具有一定的孔隙结构,可以根据蛋白质的大小和电荷来调整孔隙的大小,从而实现不同大小的蛋白质的分离。
2. SDS处理SDS是指月桂基硫酸钠,它是一种阴离子表面活性剂。
在SDS-PAGE 电泳中,将样品中的蛋白质经过SDS处理后,蛋白质表面都会均匀地吸附一定数量的SDS分子,并且使蛋白质呈负电荷。
这样,所有的蛋白质分子都会带有类似的电荷密度,可以消除蛋白质的本身的电荷特性,使蛋白质在电场作用下只受到电场力的作用,而不受到其他因素干扰。
3. 蛋白质分离将经过SDS处理的蛋白质样品加载到聚丙烯酰胺凝胶上,然后通过电泳进行分离。
经电泳分离后,蛋白质会根据其大小和电荷迁移到不同位置,从而使不同的蛋白质分离开来。
三、SDS-PAGE电泳的应用SDS-PAGE电泳技术在生物化学和分子生物学研究领域应用广泛。
它可以用于研究蛋白质的分子量、纯度和比例,也可以用于检测蛋白质的存在和表达水平,同时还可以用于鉴定蛋白质的异构体等。
四、SDS-PAGE电泳的发展SDS-PAGE电泳技术自问世以来,经过不断的改进和完善,在蛋白质分离和分析领域一直处于领先地位。
未来,随着科学技术的不断进步,SDS-PAGE电泳技术也将会迎来新的发展,并在更广泛的领域得到应用。
蛋白互作几种方法比较IP与CO-IP的关系:IP就是用抗体把你要的蛋白免疫沉淀下来,然后去检测它。
例如蛋白A在细胞内的蛋白量不同,或者有着不同的翻译后修饰,这是可以用A蛋白的抗体+prorein A beads来IP,从细胞中把A拉下,再用特异的抗体(如磷酸化,泛素化抗体)来检测A的变化。
co-ip的原理和IP是一样的,但是它检测的是和A相互作用的蛋白,也就是说用A的抗体把A拉下来后,用和A相互作用蛋白B的抗体去检测,来证明A和B之间的相互作用。
就是说只要用A的抗体把B拉下来就能证明A和B之间有相互作用。
这种关系只能说是存在相互作用,但这种相互作用并不能确定是直接的还是间接的,也就是所也许是A与c作用,而B也和C作用,这样,用A的抗体可以把C拉下来,但同时C 又把B也拉下来了。
要确定A和B之间直接的相互作用,你可以做体外的GST PULL DOWN实验。
GST pull-down实验是一个行之有效的验证酵母双杂交系统的体外试验技术,近年来越来越受到广大学者的青睐。
其基本原理是将靶蛋白-GST融合蛋白亲和固化在谷胱甘肽亲和树脂上,作为与目的蛋白亲和的支撑物,充当一种“诱饵蛋白”,目的蛋白溶液过柱,可从中捕获与之相互作用的“捕获蛋白”(目的蛋白),洗脱结合物后通过SDS-PAGE电泳分析,从而证实两种蛋白间的相互作用或筛选相应的目的蛋白,“诱饵蛋白”和“捕获蛋白”均可通过细胞裂解物、纯化的蛋白、表达系统以及体外转录翻译系统等方法获得。
此方法简单易行,操作方便。
(GST:谷胱甘肽巯基转移酶(glutathione S-transferase))GST pull down 和 Coim munoprecipitation关系问题啥叫GST pull down , Coimmunoprecipitation呢? 学过生物的地球人都知道. 这是研究蛋白质相互作用的两种方法。
简单通俗的打个比方, GST pull down 就像把一男一女放在孤岛上, 除非蜂马牛不相及, 同类男女之间该发生的一般都会发生. 这种关系是直接的。
蛋白质各种定量方法的优缺点的比较(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除蛋白质各种定量方法的优缺点的比较1.蛋白质的常规检测方法1.1 凯氏(Kjeldahl)定氮法一种最经典的蛋白质检测方法。
原理:样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化,含氮有机物分解产生氨,氨又与硫酸作用变成硫酸铵。
然后加碱蒸馏放出氨,氨用过量的硼酸溶液吸收,再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。
优点:范围广泛、测定结果准确、重现性好缺点:操作复杂费时、试剂消耗量大1.2 双缩脲法常用于需要快速但并不需要十分精确的蛋白质检测。
原理:双缩脲(NH3CONHCONH3)是 3 分子的脲经180℃左右加热,放出1分子氨后得到的产物。
在强碱性溶液中,双缩脲与硫酸铜形成紫色络合物(肽键中的氮原子和铜离子配价结合),称为双缩脲反应。
紫色络合物颜色的深浅与蛋白质浓度成正比,因此可用来测定蛋白质含量。
测定范围:1~10mg(有的文献记载为1~20mg)优点:较快速,干扰物质少,不同蛋白质产生的颜色深浅相近缺点:①灵敏度差;②③三羟甲基氨基甲烷、一些氨基酸和EDTA等会干扰该反应。
1.3 Folin-酚试剂法原理:Folin-酚法的原理与双缩脲法大体相同,利用蛋白质中的肽键与铜结合产生双缩脲反应。
同时也由于Folin-酚试剂中的磷钼酸-磷钨酸试剂被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深蓝色的钼蓝和钨蓝的混合物。
在一定的条件下,蓝色深度与蛋白的量成正比,由此可测定蛋白质的含量。
测定范围:20~250ug优点:灵敏度高,对水溶性蛋白质含量的测定很有效缺点:①费时,要精确控制操作时间;②Folin -酚法试剂的配制比较繁琐,且酚类和柠檬酸、硫酸铵、Tris缓冲液、甘氨酸、糖类、甘油、还原剂(二硫代苏糖醇、巯基乙醇)、EDTA和脲素均会干扰反应。
鉴别蛋白质的方法
鉴别蛋白质的方法主要有以下几种:
1. SDS-PAGE(聚丙烯酰胺凝胶电泳):通过对蛋白质进行电泳分离,根据蛋白质分子量的差异在凝胶中形成不同的条带,可以确定蛋白质的存在与否以及其分子量大小。
2. Western blotting(免疫印迹):通过将蛋白质从电泳凝胶转移到膜上,然后用特定的抗体与目标蛋白发生特异性结合,通过检测抗体与目标蛋白的结合情况来确定蛋白质的存在与否及其相对数量。
3. 质谱:使用质谱仪对蛋白质进行分析,通过解析蛋白质的质荷比特征峰,可以确定蛋白质的分子量、序列和修饰(如糖基化、磷酸化等)等信息。
4. 免疫染色:利用特异性抗体标记蛋白质,通过显色检测方法(如免疫组化染色、免疫荧光染色等),可以直观地观察蛋白质的位置和表达情况。
5. X射线衍射:通过将蛋白质晶体暴露在X射线下,通过测量晶体中X射线的衍射模式,可以解析出蛋白质的结晶结构,从而确定其原子级别的构造。
以上方法的选择取决于研究的目的和所需的信息深度,常常结合使用,来确保对蛋白质进行全面的鉴别分析。
双向电泳的应用及研究进展摘要:双向电泳是蛋白质组学研究中最常用的技术,具有简便、快速、高分辨率和重复性等优点。
本文重点介绍了双向电泳的基本原理及其应用。
同时对当前双向电泳技术面临的挑战和发展前景进行了讨论。
关键词: 双向电泳,应用,前景1.1双向电泳技术概述双向电泳(two-dimensional gel electrophoresis, 2-DE)是蛋白分离的黄金标准,由此可以分析生物样品的显著差别,产生的结果用于诊断疾病、发现新的药物靶标和分析潜在的环境和药物的毒性。
双向电泳分离技术利用复杂蛋白混合物中单个组分的电泳迁移,第一向通过电荷的不同分离,另一向通过质量的不同分离。
双向电泳协同质谱技术是正在出现的蛋白组学领域的中心技术。
双向电泳是一种分析从细胞、组织或其他生物样本中提取的蛋白质混合物的有力手段,是目前唯一能将数千种蛋白质同时分离与展示的分离技术,其高分辨率、高重复性和兼具微量制备的性能是其他分离方法所无与伦比的。
双向电泳技术、计算机图像分析与大规模数据处理技术以及质谱技术被称为蛋白质组研究的三大基本支撑技术。
可见双向电泳在蛋白质组学研究中的重要性。
就像Fey和Larsen在他们的综述中提到:“尽管人们都想有新技术取代它,可是如果希望对细胞活动有全面的认识,其他技术无法在分辨率和灵敏度上与双向电泳相媲美”。
1.2双向电泳基本原理1975年,意大利生化学家O’Farrell发明了双向电泳技术[1],双向电泳是指利用蛋白质的带电性和分子量大小的差异,通过两次凝胶电泳达到分离蛋白质群的技术。
双向电泳技术依据两个不同的物理化学原理分离蛋白质。
第一向电泳依据蛋白质的等电点不同,通过等电聚焦将带不同净电荷的蛋白质进行分离。
在此基础上进行第二向的SDS聚丙烯酰胺凝胶电泳,它依据蛋白质分子量的不同将之分离。
双向电泳所得结果的斑点序列都对应着样品中的单一蛋白。
因此,上千种蛋白质均能被分离开来,并且各种蛋白质的等电点,分子量和含量的信息都能得到。
蛋白质分子量测定方法的比较梁永达(复旦大学药学院,上海)摘要:分子量是蛋白质主要的特征参数之一,近年来其测试方法发展十分迅速。
该文概述了目前蛋白质分子量测定中最常用的几种方法,包括粘度法、凝胶过滤层析法、凝胶渗透色谱法、SDS-凝胶电泳法、渗透压法、电喷雾离子化质谱技术、基质辅助激光解吸电离质谱技术、光散射法、超速离心沉降法,并比较了这几种方法的优缺点。
关键词:蛋白质分子量粘度法凝胶过滤层析法凝胶渗透色谱法SDS-凝胶电泳法渗透压法电喷雾离子化质谱技术基质辅助激光解吸电离质谱技术光散射法超速离心沉降法Comparison of the methods of molecular weightdetermination of proteinsLiangYongda(School of Pharmacy in Fudan University, Shanghai)Abstract: Molecular weight is one of the most important characteristic parameters of proteins,which leads the methods to determine protein molecular weight to develope rapidly in recent years. In this paper,the mechanism and application are briefly overviewed for the most widely used technologies including viscosity method, gel filtration chromatography, gel permeation chromatography, SDS-gel electrophoresis, osmotic pressure method, electrospray ionization mass spectrometry, matrix-assisted laser desorption ionization mass spectrometry, light scattering, ultracentrifugation sedimentation. Plus, we compare these methods’advantages and disadvantages.Key words:molecular weight determination of proteins, viscosity method, gel filtration chromatography, gel permeation chromatography, SDS-gel electrophoresis, osmotic pressure method, electrospray ionization mass spectrometry, matrix-assisted laser desorption ionization mass spectrometry, light scattering, ultracentrifugation sedimentation分子量是蛋白质的主要特征参数之一,当发现一种新的蛋白质时,首先应准确测定其分子量。
列举5种分离纯化蛋白质的方法。
一、凝胶电泳法(Gel Electrophoresis):凝胶电泳是一种常用的蛋白质分离纯化方法。
它利用蛋白质的电荷和大小差异,在电场作用下,将蛋白质分离成不同迁移速度的带状物。
常见的凝胶电泳有聚丙烯酰胺凝胶电泳(SDS-PAGE)和聚丙烯酰胺糖凝胶电泳(PAGE)等。
凝胶电泳具有分离速度快、样品适用范围广、易于操作等特点。
二、离子交换层析法(Ion Exchange Chromatography):离子交换层析是根据蛋白质表面带电性的差异来分离纯化蛋白质的方法。
通过将样品加入装有离子交换树脂的层析柱中,通过控制洗脱缓冲液的离子浓度和pH,实现带正电荷或负电荷的蛋白质与树脂之间的相互作用,从而实现分离纯化。
三、亲和层析法(Affinity Chromatography):亲和层析是利用蛋白质与某种亲和剂之间的特异性相互作用来分离纯化蛋白质的方法。
常见的亲和层析方法包括亲和纸层析、亲和树脂层析等。
该方法具有选择性强、纯化效果好的优点,广泛应用于蛋白质纯化领域。
四、凝胶渗透层析法(Gel Filtration Chromatography):凝胶渗透层析也被称为分子筛层析,是一种以分子大小差异作为分离依据的方法。
通过在层析柱中加入一种孔隙较小的凝胶,利用蛋白质分子大小的差异,在经过柱体后,较小的蛋白质分子进入凝胶孔隙中,分离出来,而较大的蛋白质则能够直接流出。
五、逆流层析法(Reverse Phase Chromatography):逆流层析是基于蛋白质与固定相之间的亲疏水性相互作用进行纯化的方法。
固定相常为亲疏水性的碳链,样品在不同的流动相条件下,通过调节流动相的成分和性质,来实现对蛋白质的分离纯化。
此外,还有疏水相互作用色谱(Hydrophobic Interaction Chromatography)、互补杂交法(Complementary Hybridization)等方法。
双向电泳的应用和原理应用双向电泳是一种常用的生物分析技术,常用于蛋白质分析和DNA分析等领域。
以下是双向电泳的一些主要应用:1.蛋白质分析:双向电泳被广泛用于蛋白质分析。
通过将样品中的蛋白质分离成不同的带,可以进一步研究蛋白质的结构和功能。
2.DNA测序:双向电泳也可以用于DNA测序。
通过将DNA片段分离成不同的带,可以确定DNA的序列。
3.肿瘤标记物检测:双向电泳可以用于检测肿瘤标记物,从而帮助早期诊断和治疗。
4.药物筛选:双向电泳可以用于筛选新药物的研究。
通过比较不同试验条件下的蛋白质表达,可以确定新药物的作用机制。
5.疾病研究:双向电泳可以用于研究不同疾病的发生机制和治疗靶点。
通过比较患者样本和正常对照的蛋白质表达,可以发现与疾病相关的蛋白质变化。
原理双向电泳是将电泳技术应用于两个方向的分离,以实现更高分辨率的分析。
以下是双向电泳的基本原理:1.等位点电泳:双向电泳始于等位点电泳(IEF),即根据蛋白质的等电点将其分离成不同的带。
蛋白质在直流电场下会在电极之间移动,直到达到与环境中的离子浓度相等的位置。
这样,蛋白质就能被固定在凝胶中的特定位置。
2.SDS-PAGE:随后,使用聚丙烯酰胺凝胶电泳(SDS-PAGE)将蛋白质按照其分子量进一步分离。
在SDS-PAGE中,SDS(十二烷基硫酸钠)会使蛋白质带负电荷,从而使蛋白质按照其分子量在电场下移动。
3.双向电泳:在双向电泳中,IEF和SDS-PAGE两个步骤结合在一起。
首先,将样品在一维的IEF凝胶中进行等位点电泳分离。
然后,将等位点电泳的凝胶旋转90度,将其置于SDS-PAGE凝胶上。
这样,样品就可以在两个方向上进行电泳分离。
4.分析结果:双向电泳结束后,可以通过染色或质谱分析等方法来可视化和分析分离的蛋白质带。
比较不同样品的带的强度和位置可以得出有关蛋白质表达和组成的信息。
双向电泳的原理和应用使其成为生物学和生物医学研究中不可或缺的工具。
蛋白凝胶电泳蛋白凝胶电泳是一种常用的生物化学实验技术,用于分离和检测蛋白质样品中的不同成分。
它通过电场作用使蛋白质在凝胶中移动,根据其大小和电荷的不同,形成不同的带状图案,从而实现蛋白质的分离和定量。
蛋白凝胶电泳的原理是利用凝胶作为分离介质,将蛋白质样品加载在凝胶上,然后在电场作用下,蛋白质离子会向着电场方向移动。
凝胶中的孔隙大小可以根据需要进行调整,以使不同大小的蛋白质能够被有效分离。
当电场通电一段时间后,蛋白质会在凝胶中形成一系列的带状图案,这些带状图案代表着不同大小的蛋白质。
蛋白凝胶电泳可以分为两种常用的方法:聚丙烯酰胺凝胶电泳(SDS-PAGE)和琼脂糖凝胶电泳(native PAGE)。
其中,SDS-PAGE 是最常用的一种方法,通过添加SDS(十二烷基硫酸钠)等表面活性剂,使蛋白质变为负电荷,消除了蛋白质的电荷差异,以蛋白质的分子量为基础进行分离。
而native PAGE则不添加SDS,保持蛋白质的天然构象,通过电场作用下蛋白质的电荷差异实现分离。
蛋白凝胶电泳在生物化学研究中有着广泛的应用。
它可以用来分离混合蛋白质样品中的不同成分,从而得到单一的蛋白质。
这对于研究蛋白质的结构和功能至关重要。
通过蛋白凝胶电泳,可以快速、准确地确定蛋白质的分子量,进而研究其结构和功能。
此外,蛋白凝胶电泳还可以用于检测蛋白质样品中的异常蛋白质,如肿瘤标志物等,从而为临床诊断提供重要的依据。
除了在研究和临床领域的应用外,蛋白凝胶电泳还被广泛应用于食品、农业和环境科学等领域。
例如,蛋白凝胶电泳可以用来检测食品中的蛋白质成分,判断食品的质量和安全性。
在农业领域,蛋白凝胶电泳可以用来鉴定和筛选作物中的蛋白质,研究作物的抗病性和适应性。
在环境科学领域,蛋白凝胶电泳可以用来监测水体和土壤中的蛋白质污染,评估环境的污染程度。
蛋白凝胶电泳是一种重要的生物化学实验技术,通过分离和检测蛋白质样品中的不同成分,可以为蛋白质的研究和应用提供重要的信息。
双向凝胶电泳的原理双向凝胶电泳是一种常用的蛋白质分离技术,其原理基于电泳的原理和凝胶电泳的原理。
电泳原理:电泳是利用物质在电场中的带电性质而产生的运动现象。
在电场中,带电的分子或离子会受到电场力的作用而向相对带电性质相反的极移动。
电泳实验中,通常使用平行的电极极板,形成一个电场,分子或离子会在电场中进行迁移和分离。
凝胶电泳原理:凝胶电泳是在分离过程中使用凝胶作为介质,使得被分离物质在凝胶中进行迁移和分离。
凝胶是具有三维网状结构的聚合物或芯粒,可以提供一定的分子筛效应,使得分子按照大小逐渐沉积。
分子越大,迁移速度越慢,分离效果越好。
双向凝胶电泳原理:双向凝胶电泳是在凝胶电泳的基础上,通过在电泳过程中改变电场方向,实现不同方向上的分离。
通常情况下,第一维电泳是水平电场电泳,第二维电泳是垂直电场电泳。
具体步骤如下:1. 首先,将样品加入到凝胶电泳样品槽内,通常是在蛋白质样品中加入还原剂和样品缓冲液,使其在电泳过程中具有一定的带电性质。
2. 准备两个平行的平板凝胶,其中一个用于第一维电泳,另一个用于第二维电泳。
凝胶通常是聚丙烯酰胺凝胶或聚丙烯酰胺-琼脂糖双层凝胶。
第一维电泳凝胶的方向通常是水平的,第二维电泳凝胶的方向通常时垂直的。
3. 将第一维电泳凝胶浸泡在浸泡液中,然后将电泳样品加入到凝胶中定位。
开启电源,施加电场使样品在凝胶中迁移并分离,直至达到预期的分离效果。
可以根据需要调整电场的强度和时间。
4. 当第一维电泳结束后,将凝胶取出并固定,然后将其放入第二维电泳凝胶中。
将电泳样品加入到第一维凝胶的上方定位。
5. 开启电源,施加电场使样品在第二维凝胶中迁移并分离,直至达到预期的分离效果。
6. 最终,根据分子的大小和电荷,样品中的蛋白质会在凝胶中形成一系列分离带,可以通过染色等方法观察和分析分离结果。
通过双向凝胶电泳,可以实现对复杂混合物中的蛋白质的分离和分析,便于进一步的研究和应用。
双向电泳双向电泳(two-dimensional electrophoresis)是等电聚焦电泳和SDS-PAGE 的组合,即先进行等电聚焦电泳(按照pI分离),然后再进行SDS-PAGE(按照分子大小),经染色得到的电泳图是个二维分布的蛋白质图。
蛋白质组研究蛋白质组研究的发展以双向电泳技术作为核心. 双向电泳由O’Farrell’s于1975年首次建立并成功地分离约1 000个E.coli蛋白,并表明蛋白质谱不是稳定的,而是随环境而变化. 双向电泳原理简明,第一向进行等电聚焦,蛋白质沿pH梯度分离,至各自的等电点;随后,再沿垂直的方向进行分子量的分离. 目前,随着技术的飞速发展,已能分离出10 000个斑点(spot). 当双向电泳斑点的全面分析成为现实的时候,蛋白质组的分析变得可行.样品制备(sample prepareation)和溶解同样事关2-DE的成效,目标是尽可能扩大其溶解度和解聚,以提高分辨率. 用化学法和机械裂解法破碎以尽可能溶解和解聚蛋白,两者联合有协同作用. 对IEF(isoelectric focusing)样品的预处理涉及溶解、变性和还原来完全破坏蛋白间的相互作用,并除去如核酸等非蛋白物质. 理想的状态是人们应一步完成蛋白的完全处理. 而离液剂2 mol/L硫脲和表面活性剂4%CHAPS的混合液促使疏水蛋白从IPG(immobilized pH gradients)胶上的转换. 三丁基膦(Tributyl phosphine,TBP )取代β-巯基乙醇或DTT完全溶解链间或链内的二硫键,增强了蛋白的溶解度,并导致转至第二向的增加]. 两者通过不同的方法来增加蛋白的溶解度,作为互补试剂会更有效. 在保持样品的完整性的前提下,可利用超离和核酸内切酶去除核酸(DNA). 除此之外,机械力被用来对蛋白分子解聚,如超声破碎]等. 另外,添加PMSF等蛋白酶抑制剂,可保持蛋白完整性. 由于商品化的IPG胶条是干燥脱水的,可在其水化的过程中加样,覆盖整个IPG胶,避免在样品杯中的沉淀所致的样品丢失]. 此外,低丰度蛋白(low abundance protein)在细胞内可能具有重要的调节功能,代表蛋白质组研究的“冰山之尖”,故分离低丰度蛋白是一种挑战. 亚细胞分级和蛋白质预分级、提高加样量(已达到1~15 mg级的标准)、应用敏感性检测,可以提高其敏感性. 如一种多肽免疫2-DE印迹(MI-2DE)是利用几种单克隆抗体技术来分析和检测. 提高组蛋白和核糖体蛋白等碱性蛋白(basic proteins)的分离是另一难点. 由于碱性pH 范围内凝胶基质的不稳定及逆向电渗流(EOF)的产生,对PI(等电点)超过10的碱性蛋白,通过产生?0~10%?的山梨醇梯度和16%的异丙醇可减少之. 亦可用双甲基丙烯酰胺来增加基质的稳定性.蛋白质组研究蛋白质组研究的发展以双向电泳技术作为核心. 双向电泳由O’Farrell’s于1975年首次建立并成功地分离约1 000个E.coli蛋白,并表明蛋白质谱不是稳定的,而是随环境而变化. 双向电泳原理简明,第一向进行等电聚焦,蛋白质沿pH梯度分离,至各自的等电点;随后,再沿垂直的方向进行分子量的分离. 目前,随着技术的飞速发展,已能分离出10 000个斑点(spot). 当双向电泳斑点的全面分析成为现实的时候,蛋白质组的分析变得可行.样品制备(sample prepareation)和溶解同样事关2-DE的成效,目标是尽可能扩大其溶解度和解聚,以提高分辨率. 用化学法和机械裂解法破碎以尽可能溶解和解聚蛋白,两者联合有协同作用. 对IEF(isoelectric focusing)样品的预处理涉及溶解、变性和还原来完全破坏蛋白间的相互作用,并除去如核酸等非蛋白物质. 理想的状态是人们应一步完成蛋白的完全处理. 而离液剂2 mol/L硫脲和表面活性剂4%CHAPS的混合液促使疏水蛋白从IPG(immobilized pH gradients)胶上的转换. 三丁基膦(Tributyl phosphine,TBP )取代β-巯基乙醇或DTT完全溶解链间或链内的二硫键,增强了蛋白的溶解度,并导致转至第二向的增加]. 两者通过不同的方法来增加蛋白的溶解度,作为互补试剂会更有效. 在保持样品的完整性的前提下,可利用超离和核酸内切酶去除核酸(DNA). 除此之外,机械力被用来对蛋白分子解聚,如超声破碎]等. 另外,添加PMSF等蛋白酶抑制剂,可保持蛋白完整性. 由于商品化的IPG胶条是干燥脱水的,可在其水化的过程中加样,覆盖整个IPG胶,避免在样品杯中的沉淀所致的样品丢失]. 此外,低丰度蛋白(low abundance protein)在细胞内可能具有重要的调节功能,代表蛋白质组研究的“冰山之尖”,故分离低丰度蛋白是一种挑战. 亚细胞分级和蛋白质预分级、提高加样量(已达到1~15 mg级的标准)、应用敏感性检测,可以提高其敏感性. 如一种多肽免疫2-DE印迹(MI-2DE)是利用几种单克隆抗体技术来分析和检测. 提高组蛋白和核糖体蛋白等碱性蛋白(basic proteins)的分离是另一难点. 由于碱性pH范围内凝胶基质的不稳定及逆向电渗流(EOF)的产生,对PI(等电点)超过10的碱性蛋白,通过产生?0~10%?的山梨醇梯度和16%的异丙醇可减少之. 亦可用双甲基丙烯酰胺来增加基质的稳定性.2-DE面临的挑战2-DE面临的挑战是高分辨率和重复性. 高分辨率确保蛋白最大程度的分离,高重复性允许进行凝胶间配比(match). 对2-DE而言,有3种方法分离蛋白:1)ISO-DALT(isoelectric focus)以O’Farrell’s技术为基础. 第一向应用载体两性电解质(carrier ampholyte, CA),在管胶内建立pH梯度. 随着聚焦时间的延长,pH梯度不稳,易产生阴极漂移. 2) NEPHGE(non-equilibrium pH gradient electrophoresis)用于分离碱性蛋白(pH>7.0). 如果聚焦达到平衡状态,碱性蛋白会离开凝胶基质而丢失. 因此,在等电区域的迁移须在平衡状态之前完成,但很难控制. 3)IPG-DALT 发展于80年代早期. 由于固相pH梯度(Immobilized pH gradient, IPG)的出现解决了pH梯度不稳的问题. IPG通过immobiline共价偶联于丙烯酰胺产生固定的pH梯度,克服了IEF的缺点,从而达到高度的重复性. 目前可以精确制作线性、渐进性和S型曲线,范围或宽或窄的pH梯度. 新的酸性pH 3~5或碱性pH 6~11的IPG凝胶梯度联合商品化的pH 4~7的梯度可对蛋白质形成蛋白质组重叠群(proteomic contigs)从而有效分离.分离后的斑点检测分离后的斑点检测(spot detection)亦很重要. 所采用的检测策略和分离后所采用的方法的相互作用是很重要的. 此外,还需考虑反应的线性、饱和阈/动态范围、敏感性、对细胞蛋白群的全体定量分析的适应性、可行性. 目前,没有一种蛋白染色覆盖广泛的浓度和PI及分离后分析技术. 银染已成为一种检测2-DE的流行方法,可检测少到2~5ng的蛋白,因此较考马斯亮蓝R-250敏感. 多数糖蛋白不能被考马斯亮蓝染色,一些有机染料不适于PVDF膜. 放射性标记不依赖其代谢的活性,并仅适于对合成的蛋白质检测. 另有一种改良的2-DE(差异凝胶电泳),即应用两种不同的染料荧光标记两个样品,使在同一凝胶上电泳后的凝胶图象为两个,避免了几种2-DE的比较,可在纳克级进行检测.较早期相比,2-DE有两个主要的进步:首先,极高的重复性使有机体的参考图谱,可通过Internet获得,来比较不同组织类型、不同状态的基因表达;其次,高加样量使得2-DE成为一项真正的制备型技术.常见问题及其解答重泡胀后的胶可以不用转移到另一个电泳槽,直接跑2D 的一向吗?一般情况下是可以的。
纳米粒子蛋白质相互作用的评估方法纳米科技在生物医学领域的应用越来越广泛,其中纳米粒子与蛋白质的相互作用评估尤为重要。
本文将介绍七种主要的评估方法:沉淀法、凝胶电泳法、表面等离子共振法、纳米粒子追踪分析、流式细胞术、质谱分析和X射线光电子能谱法。
1.沉淀法沉淀法是一种简单且常用的蛋白质相互作用评估方法。
通过向纳米粒子溶液中加入适量的蛋白质,观察纳米粒子与蛋白质混合后的沉淀情况。
如果混合后出现明显的沉淀,说明纳米粒子与蛋白质之间存在相互作用。
2.凝胶电泳法凝胶电泳法是通过电泳技术分离蛋白质的一种方法。
将纳米粒子与蛋白质混合后,加入凝胶电泳介质中进行电泳分离。
如果纳米粒子与蛋白质之间存在相互作用,会导致蛋白质的迁移率发生变化,从而在电泳图谱上表现出差异。
3.表面等离子共振法表面等离子共振法是一种高灵敏度的光学检测方法,可用于评估纳米粒子与蛋白质之间的相互作用。
该方法利用金属表面反射的光线,监测蛋白质在金属表面上的吸附和结合过程。
通过分析反射光的变化,可以确定纳米粒子与蛋白质之间的结合常数和亲和力。
4.纳米粒子追踪分析纳米粒子追踪分析是一种利用动态光散射技术监测纳米粒子运动轨迹的方法。
将蛋白质与纳米粒子混合后,通过追踪纳米粒子的运动轨迹,可以分析出纳米粒子与蛋白质之间的相互作用。
通过比较实验组和对照组的运动轨迹,可以定量评估纳米粒子与蛋白质之间的结合作用。
5.流式细胞术流式细胞术是一种在液流中快速检测和分离细胞的技术。
将纳米粒子与蛋白质混合后,利用流式细胞仪检测纳米粒子与蛋白质结合后的细胞表面抗原表达情况。
通过比较实验组和对照组的抗原表达水平,可以确定纳米粒子与蛋白质之间的相互作用。
6.质谱分析质谱分析是一种高灵敏度的分析方法,可以用于鉴定蛋白质和肽段的分子量和序列信息。
将纳米粒子与蛋白质混合后,通过质谱分析可以检测到纳米粒子与蛋白质之间的相互作用导致的蛋白质序列变化或修饰情况。
通过比较实验组和对照组的质谱图谱,可以确定纳米粒子与蛋白质之间的结合位点和亲和力。
sds聚丙烯酰胺凝胶电泳测定蛋白质实验报告实验报告:SDS聚丙烯酰胺凝胶电泳测定蛋白质1. 实验目的:本实验旨在使用SDS聚丙烯酰胺凝胶电泳技术对蛋白质进行分离和测定,并研究样品中蛋白质的分子量。
2. 实验原理: SDS聚丙烯酰胺凝胶电泳是一种常用的蛋白质分离和测定方法。
在此方法中,蛋白质样品首先与SDS(十二烷基硫酸钠)反应,使蛋白质在电泳过程中带有负电荷。
然后,蛋白质样品被加载到聚丙烯酰胺凝胶中,经过电泳分离。
由于SDS的作用,蛋白质在凝胶中的迁移速度与其分子量成反比。
最后,通过染色或蛋白质标记物检测,可以确定蛋白质的相对分子量。
3. 实验步骤: a. 准备SDS聚丙烯酰胺凝胶:按照制备凝胶的方法制备所需的聚丙烯酰胺凝胶,包括配制凝胶溶液、注射样品孔和负载样品等步骤。
b. 样品制备:将待测蛋白质样品加入SDS缓冲液,并加热至高温,使蛋白质与SDS反应,使其带负电荷。
c. 电泳操作:将样品加载到凝胶中,连接电源进行电泳,设定合适的电压和时间进行分离。
d. 染色和可视化:电泳完成后,将凝胶染色以可视化蛋白质条带,常用的染色方法包括银染、共染等。
e. 分析和测定:根据标准蛋白质的移动距离和相对分子量,通过比较和分析样品中蛋白质的相对分子量。
4. 实验结果:在实验中,通过SDS聚丙烯酰胺凝胶电泳分离和染色,观察到样品中的蛋白质条带。
根据标准蛋白质的移动距离和相对分子量,可以推断样品中蛋白质的相对分子量。
实验结果可以用图表形式展示,包括蛋白质条带的位置和相对分子量的估计。
1/ 25. 结果分析与讨论:分析实验结果,比较样品中蛋白质的相对分子量与已知标准蛋白质的相对分子量之间的差异。
根据条带的位置和相对分子量的估计,可以推断样品中的蛋白质组成和含量。
讨论实验中可能出现的误差和不确定性,并提出改进的建议。
6. 结论:根据实验结果,可以得出关于样品中蛋白质的相对分子量和组成的结论。
总结实验的目的、方法和结果,并指出实验的局限性和未来的研究方向。
1CAU. HHT聚丙烯酰胺凝胶双向电泳分离血清蛋白质
CAU. HANHAITANG蛋白质组及蛋白质组学2CAU. HANHAITANG
蛋白质组与蛋白质组学(1)蛋白质组:1994年提出,最早见于文献是1995年7月的“Electrophoresis”杂志上。指基因组表达的所有相应的蛋白质,也可说是指细胞或机体全部蛋白质的存在及其活动方式。
(2)蛋白质组学:研究细胞内全部蛋白质的组成及其活动规律的科学。
CAU. HANHAITANG1. 细胞或组织内蛋白质的表达模式及修饰(表达蛋白质组学):关键技术:2-DE
2. 蛋白质的序列和高级结构(结构蛋白质组学):X-射线单晶衍射分析(晶体结构分析)、多维核磁共振波谱分析、电镜二维晶体三维重构术(电子晶体学)。
3. 蛋白质的功能模式(功能蛋白质组学):蛋白质与蛋白质及其与其他分子的相互作用。
蛋白质组学的研究内容3
CAU. HANHAITANG双向电泳(Two-dimensional gel electrophoresis, 2-DE)
双向电泳法是根据不同组分之间的等电点差异和分子量差异建立的。第一向根据蛋白质的等电点(pI)不同,用等电聚焦电泳(Isoelectricfocusing, IEF)分离蛋白质。第二向则按蛋白质分子量大小的差异,通过蛋白质与SDS形成复合物后在聚丙烯酰胺凝胶(SDS-PAGE)中迁移率的不同而达到分离的目的。
CAU. HANHAITANG等电聚焦(isoelectricfocusing)4CAU. HANHAITANG
CAU. HANHAITANG5CAU. HANHAITANG
1) ISO-DALT第一向应用载体两性电解质,在管胶内建立pH梯度。随着聚焦时间的延长,pH梯度不稳定,易产生阴极漂移。
分类
CAU. HANHAITANG载体两性电解质在电场中形成pH梯度的模式图6
CAU. HANHAITANG
2) NEPHGE (nonequilibriumpH gradient electrophoresis)
1
几种双向凝胶电泳蛋白质检测方法的比较
作者:秦慧,刘霆,柳斌,宋鑫,黄欣,杨金亮,赵霞,魏
于全
【摘要】 本研究对蛋白质染色法进行比较和分析,以求获得满足
蛋白质组研究所需的适宜的蛋白质检测法。实验采用2-D电泳分离急
性早幼粒白血病细胞株NB4的全蛋白及1-D电泳分离蛋白质分子量标
准物,从蛋白质检测的灵敏性、质谱兼容性、操作的简便性等角度,
比较了传统考马斯亮蓝染色法、胶体考马斯亮蓝染色法、改良考马斯
亮蓝染色法和银染法4种蛋白质着色法对凝胶分离蛋白质的检测影
响,探讨了影响蛋白质染色与鉴定的影响因素。结果显示,银染检测
灵敏度最高,但质谱鉴定相容性差,鉴定率近10%;改良考马斯亮蓝
染色法检测灵敏度也高,可达4 ng/spot,质谱鉴定率可接近55%。结
论: 改良考马斯亮蓝染色法的蛋白质检测灵敏度高,与质谱兼容好,
能满足蛋白质组研究需要。
【关键词】 蛋白质组
Abstract The aim of this study was to compare and analyze
protein staining in order to select the optimal staining method
for proteomic research. Proteins from acute promyelocytic
2
leukemia cell line NB4 and protein molecular weight marker were
separated respectively by 2-D or 1-D electrophoresis and
detected respectively by the typical Coomassie brilliant blue,
the colloidal Coomassie brilliant blue,the modified Coomassie
brilliant blue and the silver staining protocols. The protein
detection sensitivity,compatibility with mass spectrometry (MS)
and facility of the four staining protocols were compared. The
results indicated that the silver staining exhibited the highest
sensitivity and MS showed the lowest compatibility 10% of
protein identification rate. The detection sensitivity of the
modified Coomassie brilliant blue staining was superior to that
of other two Coomassie brilliant blue stainings,close to but
lower than the silver staining,however the compatibility with
MS was better (protein identification rate about 55%). It is
concluded that the protein detection sensitivity of the modified
Coomassie brilliant blue staining is high,and its compatibility
with MS is better,this modified Coomassie brilliant blue
staining is an optimal staining method for proteomic research.
Key words proteomics;two-dimensional gel
electrophoresis;protein detection;Coomassie brilliant blue
staining;silver staining
3
蛋白质组研究要求有高分辨率的蛋白质分离及准确、灵敏的
质谱鉴定技术。凝胶电泳中蛋白质的着色不仅影响蛋白质分离的分辨
率,同时也影响后续的质谱鉴定。选择适当的蛋白质染色法将有助于
提高蛋白质组学研究结果的质量。蛋白质的染色常用的有4类:有机
试剂染色、银染、荧光染色及同位素显色。其中有机试剂染色以考马
斯亮蓝染色法(Coomasie brilliant blue,CBB)为代表,在蛋白质
分析中常用,但对低丰度蛋白质的显现较差;银染灵敏度虽高,却常
与质谱不兼容;荧光染色以SYPRO试剂为主,蛋白质检测灵敏度高,
能兼容质谱,但由于需要配备特殊的检测仪器及试剂的昂贵,未被作
为常规方法使用;而同位素显色则存在安全性和操作局限性等问题
[1-4]。因此,筛选简便、节约、检测灵敏度高、质谱兼容的蛋白质
着色法是蛋白质组研究所需。由于考马斯亮蓝染色法的广泛运用,近
年来就考马斯亮蓝染色法在提高其灵敏性方面研究者们作了许多改
进,方法众多,评价不一 [5-7]。我们在作双向凝胶电泳时,将常用
的几种考马斯亮蓝染色
法及银染进行了比较,并就其染色影响因素作出分析。
材料和方法
试剂