极限应力及材料力学基础
- 格式:ppt
- 大小:956.50 KB
- 文档页数:18
第1篇一、前言材料力学作为工科院校的一门基础课程,旨在使学生掌握材料力学的基本理论、基本知识和基本技能,为后续的专业课程打下坚实的基础。
在大学期间,我有幸学习了材料力学这门课程,通过这段时间的学习,我对材料力学有了更加深入的了解,以下是我对材料力学课程的心得体会。
二、材料力学课程概述材料力学课程主要研究材料在外力作用下的变形和破坏规律,包括应力、应变、强度、刚度、稳定性等方面。
通过学习材料力学,我们可以了解不同材料的力学性能,为工程设计提供理论依据。
材料力学课程主要包括以下几个部分:1. 应力和应变:介绍应力、应变的概念,分析应力与应变之间的关系,以及不同类型应力的计算方法。
2. 材料力学性能:研究不同材料的力学性能,如弹性、塑性、韧性、硬度等。
3. 强度计算:分析材料的破坏规律,研究不同受力状态下的强度计算方法。
4. 刚度计算:研究结构在受力时的变形,分析影响结构刚度的因素。
5. 稳定性分析:研究结构在受力过程中的稳定性,防止结构发生失稳现象。
三、材料力学课程心得体会1. 理论与实践相结合材料力学课程是一门理论与实践相结合的课程。
在学习过程中,我深刻体会到理论知识的重要性。
只有掌握了扎实的理论基础,才能在实际工程中正确运用所学知识。
同时,通过实验和工程案例的学习,我认识到实践是检验真理的唯一标准。
在实验过程中,我学会了如何操作实验设备,如何观察实验现象,如何分析实验数据,使我对材料力学有了更加直观的认识。
2. 培养严谨的科学态度材料力学课程要求学生具备严谨的科学态度。
在分析问题时,我们要从多个角度考虑,全面分析问题。
在实验过程中,我们要严格按照实验步骤进行,确保实验数据的准确性。
这种严谨的科学态度不仅适用于材料力学课程,也适用于我们今后的学习和工作。
3. 提高创新能力材料力学课程要求学生具备一定的创新能力。
在课程学习中,我学会了如何运用所学知识解决实际问题。
例如,在学习强度计算时,我了解到不同材料的强度计算方法,并尝试将这些方法应用于实际工程案例中。
材料力学材料力学研究材料在各种外力作用下产生的应变、应力、强度、刚度和导致各种材料破坏的极限。
材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。
学习材料力学一般要求学生先修高等数学和理论力学。
材料力学(mechanics of materials)是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。
材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。
学习材料力学一般要求学生先修高等数学和理论力学。
材料力学与理论力学、结构力学并称三大力学。
材料力学(mechanics of materials)主要研究杆件的应力、变形以及材料的宏观力学性能的学科。
材料力学是固体力学的一个基础分支。
它是研究结构构件和机械零件承载能力的基础学科。
其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。
材料力学是工程设计的基础之一,即结构构件或机器零件的强度、刚度和稳定性分析的基础。
在工程设计中,要求构件或零件在给定外力作用下,具有足够的强度、刚度和稳定性。
构件或零件在外力作用下,不发生破坏,也不发生塑性变形,则称其具有足够的强度;若弹性变形不超过一定限度,则称其具有足够的刚度;若在特定外力(如细长杆承受轴向压力)作用下,其平衡和变形形式无突然转变,则称其具有足够的稳定性。
在结构承受载荷或机械传递运动时,为保证各构件或机械零件能正常工作,构件和零件必须符合如下要求:不发生断裂,即具有足够的强度;弹性变形应不超出允许的范围,即具有足够的刚度;在原有形状下的平衡应是稳定平衡,也就是构件不会失去稳定性。
对强度、刚度和稳定性这三方面的要求,有时统称为“强度要求”,而材料力学在这三方面对构件所进行的计算和试验,统称为强度计算和强度试验。
一.是非题:(对的在括号中打“√”、错误打“×”) (60小题)1.材料力学研究重要问题是微小弹性变形问题,因而在研究构件平衡与运动时,可不计构件变形。
( √ )2.构件强度、刚度、稳定性与其所用材料力学性质关于,而材料力学性质又是通过实验测定。
( √ )3.在载荷作用下,构件截面上某点处分布内力集度,称为该点应力。
(√ )4.在载荷作用下,构件所发生形状和尺寸变化,均称为变形。
( √ )5.截面上某点处总应力p 可分解为垂直于该截面正应力σ和与该截面相切剪应力τ,它们单位相似。
( √ )6.线应变ε和剪应变γ都是度量构件内一点处变形限度两个基本量,它们都是无量纲量。
( √ )7.材料力学性质是指材料在外力作用下在强度方面体现出来性能。
( )8.在强度计算中,塑性材料极限应力是指比例极限p σ,而脆性材料极限应力是指强度极限b σ。
( )9.低碳钢在常温静载下拉伸,若应力不超过屈服极限s σ,则正应力σ与线应变ε成正比,称这一关系为拉伸(或压缩)虎克定律。
( )10.当应力不超过比例极限时,直杆轴向变形与其轴力、杆原长成正比,而与横截面面积成反比。
( √ )11.铸铁试件压缩时破坏断面与轴线大体成450,这是由压应力引起缘故。
( )12.低碳钢拉伸时,当进入屈服阶段时,试件表面上浮现与轴线成45o 滑移线,这是由最大剪应力max τ引起,但拉断时截面仍为横截面,这是由最大拉应力max σ引起。
( √ )13.杆件在拉伸或压缩时,任意截面上剪应力均为零。
( )14.EA 称为材料截面抗拉(或抗压)刚度。
( √ )15.解决超静定问题核心是建立补充方程,而要建立补充方程就必要研究构件变形几何关系,称这种关系为变形协调关系。
( √ )16.因截面骤然变化而使最小横截面上应力有局部陡增现象,称为应力集中。
(√ )17.对于剪切变形,在工程计算中普通只计算剪应力,并假设剪应力在剪切面内是均匀分布。
材料力学切应力材料力学是研究材料在外力作用下的力学性能和变形规律的学科,其中切应力是材料力学中的重要概念之一。
切应力是指材料内部受到的切削力,是材料在受到外力作用时发生形变的一种力学性质。
在材料力学中,切应力的研究对于材料的强度、塑性变形和破坏等方面具有重要的意义。
首先,我们来了解一下切应力的概念。
切应力是指材料内部受到的切削力,它是由于外力作用而引起的材料内部相对位移所产生的应力。
在材料受到外力作用时,内部各层之间会产生相对位移,从而产生切应力。
切应力的大小与外力的大小、材料的形状和材料的性质有关。
其次,我们来探讨一下切应力的计算方法。
在材料力学中,切应力的计算通常采用横截面上的切应力公式,τ=F/A,其中τ表示切应力,F表示作用力,A表示横截面积。
通过这个公式,我们可以计算出材料在外力作用下所受到的切应力大小。
除了切应力的计算方法,我们还需要了解切应力的影响因素。
切应力的大小受到多种因素的影响,包括外力的大小、作用角度、材料的性质、形状等。
在实际工程中,我们需要综合考虑这些因素,合理地选择材料和设计结构,以减小切应力对材料的影响,保证材料的强度和稳定性。
另外,切应力还与材料的塑性变形和破坏有着密切的关系。
在材料受到外力作用时,如果切应力超过了材料的极限强度,就会导致材料的塑性变形和最终的破坏。
因此,对于切应力的研究对于材料的强度和稳定性具有重要的意义。
在工程实践中,我们需要根据不同材料的特性和外力的作用情况,合理地计算和分析切应力,以保证材料的安全可靠性。
同时,我们还需要通过实验和模拟等手段,深入研究切应力对材料性能的影响规律,为材料的设计和应用提供科学依据。
总之,切应力是材料力学中的重要概念,它对于材料的强度、塑性变形和破坏等方面具有重要的影响。
通过对切应力的研究和分析,我们可以更好地理解材料的力学性能,为工程实践提供科学依据。
因此,我们需要深入研究切应力的计算方法、影响因素和对材料性能的影响规律,以提高材料的使用效率和安全可靠性。
材料力学知识点归纳总结(完整版)1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。
3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
构4.件应当满足以下要求:强度要求、刚度要求、稳定性要求5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。
任何固体在外力作用下都会发生形状和尺寸的改变——即变形。
因此,这些材料统称为变形固体。
第二章:内力、截面法和应力概念1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。
按照外力作用方式的不同,外力又可分为分布力和集中力。
2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。
已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。
首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。
因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。
由平衡条件就可以确定内力。
例如在左段杆上由平衡方程1 N -F =0 可得N=F 3.综上所述,截面法可归纳为以下三个步骤:1、假想截开、假想截开 在需求内力的截面处,假想用一截面把构件截成两部分。
在需求内力的截面处,假想用一截面把构件截成两部分。
2、任意留取、任意留取 任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N 来代替。
来代替。
3、平衡求力、平衡求力 对留下部分建立平衡方程,求解内力。
对留下部分建立平衡方程,求解内力。
F12312练习 1 绪论及基本概念1-1 是非题(1) 材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是)(3) 构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4) 应力是内力分布集度。
(是 )(5) 材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6) 若物体产生位移,则必定同时产生变形。
(非 ) (7) 各向同性假设认为,材料沿各个方向具有相同的变形。
(F ) (8) 均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9) 根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1) 根据材料的主要性质对材料作如下三个基本假设:连续性假设、均匀性假设 、各向同性假设 。
(2) 工程中的强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3) 保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性三个方面。
3(4) 图示构件中,杆 1 发生 拉伸 变形,杆 2 发生 压缩 变形,杆 3 发生 弯曲 变形。
(5) 认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6) 图示结构中,杆 1 发生 弯曲变形,构件 2发生 剪切 变形,杆件 3 发生 弯曲与轴向压缩组合。
变形。
(7) 解除外力后,能完全消失的变形称为 弹性变形,不能消失而残余的的那部分变形称为 塑性变形 。
(8) 根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。
2弹性比功:表示金属材料吸收弹性变形功的能力。
3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。
4包申格效应:金属材料通过预先加载产生少量塑性变形(残余应变小于1%-4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5塑性:金属材料断裂前发生塑性变形的能力。
常见塑性变形方式:滑移和孪生6弹性极限:以规定某一少量的残留变形为标准,对应此残留变形的应力。
7比例极限:应力与应变保持正比关系的应力最高限。
8屈服强度:以规定发生一定的残留变形为标准,如通常以0.2%的残留变形的应力作为屈服强度。
9韧性断裂是材料断裂前发生产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的断裂过程,在裂纹扩展过程中不断的消耗能量。
韧性断裂的断裂面一般平行于最大切应力并于主应力成45度角。
10脆性断裂是突然发生的断裂,断裂前基本上不发生塑形变形,没有明显征兆,危害性很大。
断裂面一般与主应力垂直,端口平齐而光亮,常呈放射状或结晶状。
11剪切断裂是金属材料在切应力作用下,沿着滑移面分离而造成的断裂,又分滑断和微孔聚集性断裂。
12解理断裂:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,总是脆性断裂。
13缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,产生所谓“缺口效应“①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。
②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。
8缺口敏感度:有缺口强度的抗拉强度σbm与等截面尺寸光滑试样的抗拉强度σb的比值. NSR=σbn / σs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。
材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾。
研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3. 材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。
5. 材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s p σσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=12塑性材料与脆性材料的比较:6. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数。
塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。