材料力学——应力分析
- 格式:ppt
- 大小:4.85 MB
- 文档页数:143
材料力学与应力分析材料力学是研究物质的力学性能和变形行为的一门科学,它是工程学中的重要基础学科。
在工程学的相关领域中,材料力学的应用非常广泛,涵盖了结构设计、材料选择和材料制备等方面。
本文将介绍材料力学的基本概念,并深入探讨应力分析的相关理论和方法。
一、材料力学基本概念1. 应力与应变在材料力学中,应力和应变是两个非常重要的概念。
应力是物体受到的单位面积上的内力,通常用σ表示。
而应变则是物体单位初始长度的变化量,通常用ε表示。
根据应力和应变之间的关系,可以得到材料的本构关系,从而进一步研究其力学性能。
2. 弹性与塑性材料力学中,根据物体受力后的变形行为,可以将材料分为弹性和塑性两种类型。
弹性材料在受到外力作用后,能够恢复到原来的形状和尺寸,而塑性材料则会发生永久性变形。
通常通过应力应变曲线来描述材料的弹性和塑性行为。
3. 应变能与弹性模量应变能是材料在受到外力作用后所储存的能量,它是材料弹性变形能力的体现。
而弹性模量则是用来衡量材料在受力后产生的应变程度,它是材料的重要力学性能参数之一。
常见的弹性模量有Young's 模量、剪切模量和体积模量。
二、应力分析的理论和方法1. 静力学分析静力学分析是应力分析的基础,它主要研究物体在受到静力作用时的力学性质。
通过牛顿第二定律和力的平衡条件,可以得到物体的受力分布和力的作用方向。
静力学分析可以为后续的应力分析提供基本的力学参数。
2. 应力张量与应力变换应力是材料内部产生的力,通常被表示为一个张量。
应力张量的各个分量与物体的几何形状和受力情况密切相关。
应力变换则是将应力张量在不同坐标系下的表示进行转换,以便得到更方便的计算结果。
3. 应力集中与应力分布在实际工程中,常常会出现应力集中的情况,即物体的某个局部区域受到了较大的应力。
应力集中的分析是工程设计中十分重要的一环,它能够帮助工程师了解材料的破坏机理和确定结构的合理性。
4. 应力场的数值模拟对于复杂的材料力学问题,往往需要借助计算机的数值模拟方法进行分析。
应⼒状态分析第⼆章应⼒状态分析⼀. 内容介绍弹性⼒学的研究对象为三维弹性体,因此分析从微分单元体⼊⼿,本章的任务就是从静⼒学观点出发,讨论⼀点的应⼒状态,建⽴平衡微分⽅程和⾯⼒边界条件。
应⼒状态是本章讨论的⾸要问题。
由于应⼒⽮量与内⼒和作⽤截⾯⽅位均有关。
因此,⼀点各个截⾯的应⼒是不同的。
确定⼀点不同截⾯的应⼒变化规律称为应⼒状态分析。
⾸先是确定应⼒状态的描述⽅法,这包括应⼒⽮量定义,及其分解为主应⼒、切应⼒和应⼒分量;其次是任意截⾯的应⼒分量的确定—转轴公式;最后是⼀点的特殊应⼒确定,主应⼒和主平⾯、最⼤切应⼒和应⼒圆等。
应⼒状态分析表明应⼒分量为⼆阶对称张量。
本课程分析中使⽤张量符号描述物理量和基本⽅程,如果你没有学习过张量概念,请进⼊附录⼀,或者查阅参考资料。
本章的另⼀个任务是讨论弹性体内⼀点-微分单元体的平衡。
弹性体内部单元体的平衡条件为平衡微分⽅程和切应⼒互等定理;边界单元体的平衡条件为⾯⼒边界条件。
⼆. 重点1.应⼒状态的定义:应⼒⽮量;正应⼒与切应⼒;应⼒分量;2.平衡微分⽅程与切应⼒互等定理;3.⾯⼒边界条件;4.应⼒分量的转轴公式;5.应⼒状态特征⽅程和应⼒不变量;§2.5 ⾯⼒边界条件学习思路:在弹性体内部,应⼒分量必须与体⼒满⾜平衡微分⽅程;在弹性体的表⾯,应⼒分量必须与表⾯⼒满⾜⾯⼒边界条件,以维持弹性体表⾯的平衡。
⾯⼒边界条件的推导时,参考了应⼒⽮量与应⼒分量关系表达式。
只要注意到物体边界任意⼀点的微分四⾯体单元表⾯作⽤应⼒分量和⾯⼒之间的关系就可以得到。
⾯⼒边界条件描述弹性体表⾯的平衡,⽽平衡微分⽅程描述物体内部的平衡。
当然,对于弹性体,这仅是静⼒学可能的平衡,还不是弹性体实际存在的平衡。
⾯⼒边界条件确定的是弹性体表⾯外⼒与弹性体内部趋近于边界的应⼒分量的关系。
学习要点:1. ⾯⼒边界条件。
物体在外⼒作⽤下处于平衡状态,不仅整体,⽽且任意部分都是平衡的。
在弹性体内部,应⼒分量必须与体⼒满⾜平衡微分⽅程;在弹性体的表⾯,应⼒分量须与表⾯⼒满⾜⾯⼒边界条件,以满⾜弹性体表⾯的平衡。
材料力学——应力分析
材料力学,应力分析
材料力学是一门研究材料的力学特性和行为的学科,包括研究材料力
学性能,分析和评估风险以及设计制造过程中使用的材料。
应力分析是材
料力学的一个重要分支。
它分析造成材料在应用时受到外部载荷作用下形
成的应力和应变。
应力分析可以用来预测材料的行为,有助于材料设计师和工程师识别
可能出现的结构性问题,帮助他们改进设计和选择更合适的材料。
应力分
析不仅可以预测工程结构的强度,而且还可以预测可能出现的破坏模式。
应力分析的步骤包括:
1.选择结构中所有材料及其它形状的元素,并明确它们的几何尺寸和
物理性能。
2.明确结构所处的正常环境或加载条件,包括温度、湿度、表面润湿、化学污染、局部受力、机械损伤等因素。
3.建立结构的模型,并在模型中添加或移除材料元素。
4.确定受力元素的力学性能,例如应力应变曲线、塑性性能参数和破
坏限度。
5.运用有效的数值方法来模拟建立的模型,有助于预测结构应力和应
变水平以及破坏模式。
6.对模拟技术进行敏感性分析,以确定设计变量或参数的变化对结构
性能有多大影响。
7.对实际结构进行实验及诊断,以确定结构的实际应力和应变水平。