材料力学斜截面应力分析
- 格式:pdf
- 大小:82.21 KB
- 文档页数:7
材料力学大连理工大学王博平面应力状态分析一、平面应力状态的一般情形先确定特殊微元体的应力状态再确定特殊到一般的关系 σxσyxy τyx τxy二、任意斜截面上的应力基本方法——只要知道微元体六个面上的应力,任意斜截 面上的应力便可通过局部平衡求出。
x y z xσyσxy τyxτατασn x x σyσασxy τyxταταα面 —— 自x 轴正向逆时针转到α面外法线 n 时,α角定义为正。
2. 应力的正负号规定正应力 —— 拉为正压为负1. 任意斜截面的表示方法xα n 切应力 ——对研究对象(微元体或截开部分)内任一点呈顺时针力矩为正逆时针为负3. 任意斜截面上的应力 平衡对象——平衡方程 参加平衡的量—— 力 (应力乘以其作用的面积) 微元体局部 x α α n t∑=0 tF ∑=0n Fxα α nt 0=∑=0n F()αατsin cos d A xy +()αατcos sin d A yx +()αασsin sin d A y -A d ασ()αασcos cos d A x -∑=0 t F A d ατ()αασsin cos d A x -()αατcos cos d A xy -()αατsin sin d A yx +()αασcos sin d A y +0=整理后得到一点应力状态:1. 取微元体2. 任一斜截面应力 有界、周期函数ατασσσσσα2sin 2cos 22xy y x y x --++=ατασστα2cos 2sin 2xy y x +-=。
轴向拉压杆横截面上的应力:正应力:σ=N/A;应力单位N/m2,即Pa。
轴向拉压杆斜截面上的应力:总应力:pα=N/Aα=σcosα;正应力:σα=σcos2α;剪应力:τα= =(σsin2α)/2。
α:由横截面外法线转至斜截面外法线的转角,以逆时针转动为正;Aα:斜截面的面积;σα:拉应力为正,压应力为负;τα:以其对脱离体内一点产生顺时针转动为正,反之为负。
最大剪应力发生在α=±45°处的斜截面上。
轴向拉伸的变形:轴向变形△L=L’-L;ε=△L /L;横向变形:△a=a’-a;ε’=△a/a;虎克定律:应力不超过材料比例极限时,应力与应变成正比。
即:σ= Eε;△L= NL/ EA;EA为杆件的抗压(拉)刚度,表示杆件抵抗拉、压弹性变形的能力。
泊松比ν:应力不超过材料的比例极限时,ν=|ε’/ε|,ν是材料的弹性常数之一,无量纲。
变形能:杆件在外力作用下因变形而存储的能量。
轴向抗压杆的弹性变形能:U=N△L/2。
比能:单位体积存储的变形能。
u=σε/2。
单位:J/m3。
名义剪应力:假定剪应力沿剪切面均匀分布的。
则:τ=V/A V。
A V:剪切面面积。
纯剪切:单元体各个侧面上只有剪应力而无正应力称为纯剪切。
纯剪应力引起剪应变γ,即相互垂直的两线段间角度的改变。
单位为rad。
规定以单元体左下直角增大时,γ为正,反之为负。
剪应力互等定律:在互相垂直的两个平面上,垂直于两平面交线的剪应力,总是大小相等,且共同指向或背离这一交线。
τ=τ’。
剪切虎克定律:剪应力不超过材料的剪切比例极限时,剪应力τ与剪应变γ成正比,即τ=Gγ;G:剪切模量。
对各向同性材料,G=E/2(1+ν)。
扭转:杆两端受到一对力偶矩相等,转向相反,作用平面与杆件轴线相垂直的外力偶作用。
变形特征:杆件表面纵向线变成螺旋线,即杆件任意两横截面绕杆件轴线发生相对转动。
扭转角φ:杆件任意两横截面间相对转动的角度。
扭矩M T:受扭截面上的内力,是一个在截面平面内的的力偶,其力偶称为力偶矩。
材料⼒学习题第六章应⼒状态分析答案详解第6章应⼒状态分析⼀、选择题1、对于图⽰各点应⼒状态,属于单向应⼒状态的是(A )。
20(MPa )20d20(A )a 点;(B )b 点;(C )c 点;(D )d 点。
2、在平⾯应⼒状态下,对于任意两斜截⾯上的正应⼒αβσσ=成⽴的充分必要条件,有下列四种答案,正确答案是( B )。
(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。
3、已知单元体AB 、BC ⾯上只作⽤有切应⼒τ,现关于AC ⾯上应⼒有下列四种答案,正确答案是( C )。
(A )AC AC /2,0ττσ==;(B )AC AC /2,/2ττσ==;(C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。
4、矩形截⾯简⽀梁受⼒如图(a )所⽰,横截⾯上各点的应⼒状态如图(b )所⽰。
关于它们的正确性,现有四种答案,正确答案是( D )。
(b)(a)(A)点1、2的应⼒状态是正确的;(B)点2、3的应⼒状态是正确的;(C)点3、4的应⼒状态是正确的;(D)点1、5的应⼒状态是正确的。
5、对于图⽰三种应⼒状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。
τ(a) (b)(c)(A)三种应⼒状态均相同;(B)三种应⼒状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图⽰主应⼒单元体的最⼤切应⼒作⽤⾯有下列四种答案,正确答案是( B )。
(A) (B) (D)(C)解答:maxτ发⽣在1σ成45o的斜截⾯上7、⼴义胡克定律适⽤范围,有下列四种答案,正确答案是( C )。
(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适⽤于( C )。
应⼒状态分析第⼆章应⼒状态分析⼀. 内容介绍弹性⼒学的研究对象为三维弹性体,因此分析从微分单元体⼊⼿,本章的任务就是从静⼒学观点出发,讨论⼀点的应⼒状态,建⽴平衡微分⽅程和⾯⼒边界条件。
应⼒状态是本章讨论的⾸要问题。
由于应⼒⽮量与内⼒和作⽤截⾯⽅位均有关。
因此,⼀点各个截⾯的应⼒是不同的。
确定⼀点不同截⾯的应⼒变化规律称为应⼒状态分析。
⾸先是确定应⼒状态的描述⽅法,这包括应⼒⽮量定义,及其分解为主应⼒、切应⼒和应⼒分量;其次是任意截⾯的应⼒分量的确定—转轴公式;最后是⼀点的特殊应⼒确定,主应⼒和主平⾯、最⼤切应⼒和应⼒圆等。
应⼒状态分析表明应⼒分量为⼆阶对称张量。
本课程分析中使⽤张量符号描述物理量和基本⽅程,如果你没有学习过张量概念,请进⼊附录⼀,或者查阅参考资料。
本章的另⼀个任务是讨论弹性体内⼀点-微分单元体的平衡。
弹性体内部单元体的平衡条件为平衡微分⽅程和切应⼒互等定理;边界单元体的平衡条件为⾯⼒边界条件。
⼆. 重点1.应⼒状态的定义:应⼒⽮量;正应⼒与切应⼒;应⼒分量;2.平衡微分⽅程与切应⼒互等定理;3.⾯⼒边界条件;4.应⼒分量的转轴公式;5.应⼒状态特征⽅程和应⼒不变量;§2.5 ⾯⼒边界条件学习思路:在弹性体内部,应⼒分量必须与体⼒满⾜平衡微分⽅程;在弹性体的表⾯,应⼒分量必须与表⾯⼒满⾜⾯⼒边界条件,以维持弹性体表⾯的平衡。
⾯⼒边界条件的推导时,参考了应⼒⽮量与应⼒分量关系表达式。
只要注意到物体边界任意⼀点的微分四⾯体单元表⾯作⽤应⼒分量和⾯⼒之间的关系就可以得到。
⾯⼒边界条件描述弹性体表⾯的平衡,⽽平衡微分⽅程描述物体内部的平衡。
当然,对于弹性体,这仅是静⼒学可能的平衡,还不是弹性体实际存在的平衡。
⾯⼒边界条件确定的是弹性体表⾯外⼒与弹性体内部趋近于边界的应⼒分量的关系。
学习要点:1. ⾯⼒边界条件。
物体在外⼒作⽤下处于平衡状态,不仅整体,⽽且任意部分都是平衡的。
在弹性体内部,应⼒分量必须与体⼒满⾜平衡微分⽅程;在弹性体的表⾯,应⼒分量须与表⾯⼒满⾜⾯⼒边界条件,以满⾜弹性体表⾯的平衡。