风冷热泵空调系统的设计方法
- 格式:doc
- 大小:6.71 KB
- 文档页数:3
风冷热泵系统施工方案1. 风冷热泵设备安装1.1开箱检验。
根据设备装箱清单说明书,合格证,检验记录和必要的装配图及其它技术文件,核对型号,规格以及全部零件、部件、附属材料和专用工具;主体和零件等的表面有没有缺损和锈蚀等情况;设备填充的保护气体有没有泄漏,油封是否完好,开箱检查后对设备采取保护措施,不宜过早或任意拆除包装,以免设备受损;设备的进出口应封闭完好,随机的零部件应齐全不缺损。
1.2在混凝土基础达到护养强度、表面平整、位置尺寸、标高、预留孔洞及预埋件等均符合设计要求后才可进行安装。
1.3制冷设备的搬运及吊装应符合下列规定:吊运前应该核对设备重量,吊运捆扎应该稳固,主要承力点应高于设备重点;吊装具有公共底座的机组,其承水平度允许偏差均为0.5/1000。
再调整好弹簧减震器,将减震器调节螺杆抹上黄油,做好配管前的准备工作且做好管口的保护工作,风冷式冷热水机组的进、出水管连接位置正确,严密不漏。
2. 水泵的安装2.1安装前检查泵叶轮是否有阻滞、卡涩现象,声音是否正常。
2.2水泵就位后进行找平找正。
通过调整垫铁,使之符合下列要求:整体泵安装以进出口法兰面为基准进行找平,水平度允许偏差纵向0.05mm/m,横向为0.10mm/m;解体安装的泵以泵体加工面或进出口法兰面为基准,纵向、横向的水平度允许偏差为0.05mm/m。
2.3采用联轴器传动的泵,两轴的对中偏差及两半联轴器两端面间隙要符合泵的技术文件要求和施工及验收规范要求。
2.4与泵连接的接管设置单独的支架,进出口应设减振用的橡胶软接头。
接管与水泵连接前,管路必须清洁;密封面和螺纹不能有损坏;相互连接的法兰端面或螺纹轴心必须平行、对中,不得借法兰螺栓或管接头强行连接。
配管中要注意保护密封面,以保证连接处的气密性。
2.5有拆检及清洗要求的泵体,须对泵进行拆检并编号,用机油清洗后再按编号重新组装。
2.6水泵试车前,先拆除联轴器的螺栓,使电机与机械分离(不可拆除的或不需拆除的例外),盘车应灵活,无阻卡现象。
EKAC系列模块式风冷热泵机组系统施工工法一、前言随着环保意识的提高和节能要求的日益严格,热泵技术逐渐得到广泛应用。
EKAC系列模块式风冷热泵机组系统是一种高效、节能的空调设备,其施工工法对于保障施工质量、提高施工效率具有重要意义。
本文将介绍EKAC系列模块式风冷热泵机组系统施工工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例等内容。
二、工法特点EKAC系列模块式风冷热泵机组系统施工工法具有以下特点:1. 模块化设计:系统采用模块化设计,每个模块可以独立运行,便于工地各个部位同时施工,提高施工效率。
2. 空间灵活:系统的结构紧凑,可以根据现场实际情况进行空间布置,节省施工空间。
3. 节能环保:采用高效节能的风冷热泵技术,系统运行能耗低,对环境友好。
4. 操作简便:系统的操作界面友好,易于操作和维护。
三、适应范围EKAC系列模块式风冷热泵机组系统适用于各类建筑物的空调供热、供冷需求,尤其适用于商业综合体、办公楼、住宅小区等大型建筑。
四、工艺原理EKAC系列模块式风冷热泵机组系统的工艺原理是利用空气中的热能进行供热和供冷。
系统根据室内外温差采取不同的工作方式,通过风冷热泵循环流体的加热和降温来实现空调效果。
系统通过一系列控制参数的调节,保证系统在不同工况下的高效运行。
五、施工工艺EKAC系列模块式风冷热泵机组系统的施工工艺分为准备工作、基础施工、设备安装、管道连接、电气布线、系统调试等阶段。
在准备工作阶段,需要了解项目要求、设计方案和材料需求等。
基础施工包括地基处理、基础浇筑等。
设备安装包括机组安装、风道安装等。
管道连接包括冷、热水管道、系统连接等。
电气布线涉及设备电气接线、控制系统的布线等。
系统调试包括系统启动、运行参数的调试等。
六、劳动组织EKAC系列模块式风冷热泵机组系统施工需要组织合理的劳动力,包括项目经理、工程师、技术工人等。
在施工过程中,需要进行协调和配合,确保各个环节顺利进行。
风冷热泵机组的原理、选型、设计来源:暖通空调在线版权归原作者所有,侵权请联系删除一、风冷热泵机组是什么?风冷热泵机组是由压缩机——换热器——节流器——吸热器——压缩机等装置构成的一个循环系统。
风冷热泵的基本原理是基于压缩式制冷循环,利用冷媒作为载体,通过风机的强制换热,从大气中吸取热量或排放热量,以达到制冷或制热的需求。
风冷热泵机组是中央空调机组的一部分,它主要区别于风冷冷水机组,风冷热泵在机组内部至少增加了一个四通换向阀,作为制冷或制热的功能切换,除具备风冷冷水机组制取冷水的功能外,风冷热泵机组还能切换到制热工况制取热水,通过强制换热,来满足室内温度的需要。
和大型中央空调采用水冷热泵机组不同,风冷热泵主要用于家用中央空调领域以及一些轻型工业、商用领域。
二、风冷热泵工作原理风冷热泵机组是空调系统中的主机,由于采用风冷冷凝器不需要冷却塔,而蒸发器是水冷的,夏天制冷时提供冷水,冬季制热时提供热水,风机盘管是空调系统的末端装置,装在室内如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。
所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体),其工作原理与制冷机相同,都是按照逆卡诺循环工作的、风冷热泵相对于空气源热泵来说它的能力要低一点,进出水温差是5℃左右(大部分公司的设置参数),而空气源的进出水温差能达到40℃。
风冷热泵机组与风机盘管共同使用,前者提供冷水或热水,后者将冷水或热水通过热交换,吸出冷风或热风。
我们可以形象的把风冷热泵机组比作是中央空调的大脑,如果大脑不工作了,那中央空调将丧失全部功能,系统也将停止运行。
三、风冷热泵机组的特点风冷热泵机组的特点介绍,我们对比水冷热泵机组和变频多联机(VRV系统)一起来讲。
风冷热泵机组 VS 水冷热泵机组一、水冷热泵机组的特点:1、应用范围广,造价较低。
2、技术最成熟,也是目前应用最广的空调系统。
风冷热泵空调系统原理
风冷热泵空调系统是一种利用热泵原理来进行室内空气调节的空调系统。
其工作原理可简要概括为以下几个步骤:
1. 蒸发器换热:空气中的热量被传递至冷媒中,将冷媒从液态转化为气态。
2. 蒸汽压缩:气态的冷媒进入压缩机,通过压缩使冷媒温度升高,压力增加。
3. 冷凝器换热:高温高压的冷媒进入冷凝器,通过与室外空气进行热交换,使冷媒温度下降,从而散热。
4. 膨胀阀节流:冷媒进入膨胀阀,通过节流使冷媒压力下降,温度降低。
5. 蒸发器换热:冷媒进入蒸发器,低温低压的冷媒通过与室内空气进行热交换,吸收室内热量,将室内空气温度降低。
通过不断循环上述工作步骤,风冷热泵空调系统能够将室外的热量吸收并排出室外,而室内的热量则被吸收并通过蒸发器释放,从而实现对室内温度的调节。
此外,由于热泵原理的使用,该系统能够在供冷和供暖两种模式下运行,具有较高的能效。
风冷热泵机组风冷热泵机组工作原理风冷热泵机组特点风冷热泵机组性能分析风冷热泵机组系统分析风冷热泵机组安全保护与控制风冷热泵机组工程设计风冷热泵机组工作原理风冷热泵机组特点风冷热泵机组性能分析风冷热泵机组系统分析风冷热泵机组安全保护与控制风冷热泵机组工程设计风冷热泵机组工作原理风冷热泵机组是由压缩机——换热器——节流器——吸热器——压缩机等装置构成的一个循环系统。
冷媒在压缩机的作用下在系统内循环流动。
它在压缩机内完成气态的升压升温过程(温度高达100℃),它进入换热器后释放出高温热量加热水,同时自己被冷却并转化为流液态,当它运行到吸热器后,液态迅速吸热蒸发再次转化为气态,同时温度下降至零下20℃——30℃,这时吸热器周边的空气就会源源不断地将低温热量传递给冷媒。
冷媒不断地循环就实现了空气中的低温热量转变为高温热量并加热冷水过程。
风冷热泵机组特点1.风冷热泵机组属中小型机组,适用于200-10000平方米的建筑物。
2.空调系统冷热源合一,更适用于同时采暖和制冷需求的用户,同时省去了锅炉房。
3.机组户外安装,省去了冷冻机房,节约了建筑投资。
4.风冷热泵机组的一次能源利用率可达90%,节约了能源消耗,大大降低了用户成本。
5.无须冷却塔,同时省去了冷却水泵和管路,减少了附加设备的投资。
6.无冷却水系统动力消耗,无冷却水损耗,更适用于缺水地区。
风冷热泵机组性能分析冷热量这个参数是决定风冷热泵正常使用的最关键参数,它是指风冷热泵的进风温度、进出水温度在设计工况下时其所具备的制冷量或制热量。
它可从有关厂家提供的产品样本中查得。
但目前在设计中也发现这样的情况,那就是有的厂商所提供的样本参数并未经过测试而是抄自其它厂家的相关样本。
这给设计人员的正确选型带来了一定困难。
因此笔者建议在有条件的情况下设计人员可根据有关厂家的风冷热泵所配置的压缩机型号,从压缩机生产厂家处获得该压缩机的变工况性能曲线,根据热泵的设计工况查得该压缩机在热泵设计工况下的制冷量和制热量,从而判断该样本所提供参数的真伪。
风冷热泵群控方案全文共四篇示例,供读者参考第一篇示例:风冷热泵是一种利用空气作为热源的系统,通过压缩机的工作原理将空气中的热能提取出来,然后利用热泵技术将热能转移到需要加热或者冷却的区域。
风冷热泵具有环保、节能、安全等优势,被广泛应用于建筑暖通空调系统。
而随着社会的发展和科技的进步,风冷热泵群控方案逐渐成为建筑节能管理的重要手段。
风冷热泵群控方案是指通过智能化系统将多台风冷热泵进行统一控制,实现最佳运行效果和节能管理。
在传统的风冷热泵系统中,每台风冷热泵都是独立运行的,难以协调和调节,容易出现能耗浪费和不均衡运行的问题。
而采用群控方案可以实现风冷热泵之间的协同运行,提高系统整体效率,降低能耗,延长设备寿命。
在风冷热泵群控方案中,通过安装智能控制系统和传感器,实现对风冷热泵的远程监控和调节。
管理员可以随时随地通过手机或电脑监测系统运行状态,及时调整设定温度,优化能耗管理。
群控系统还可以进行数据分析和统计,提供运行报告和节能建议,帮助管理者更好地了解系统运行情况,制定相关管理策略。
在实际应用中,风冷热泵群控方案可以根据建筑的需求和系统的特点制定不同的控制策略。
在办公楼或商业中心中,可以根据建筑的使用时间和人流量调整风冷热泵的工作模式,实现动态调节。
在住宅小区或工业园区,可以通过分区控制和定时控制实现精细化管理,将能源利用率提高到最大程度。
风冷热泵群控方案还可以与其他智能设备进行联动,实现能源互补和共享。
比如结合太阳能发电系统,将太阳能转化为电能供给风冷热泵使用,实现绿色能源的利用。
再比如与空气净化系统、智能照明系统等设备进行协同控制,提高整体建筑的管理水平和舒适程度。
风冷热泵群控方案是建筑节能管理的关键环节,可以实现系统的智能化运行和能耗的最优化管理。
随着科技的不断发展和智能化技术的推广应用,相信风冷热泵群控方案将会在建筑行业得到更广泛的应用,为节能减排、建设智慧城市做出更大的贡献。
第二篇示例:一、风冷热泵群控简介风冷热泵群控是指将多台风冷热泵通过中央控制系统进行统一管理,实现集中控制、监测和优化运行。
空调负荷包括空调冷负荷和空调热负荷。
空调冷(热)负荷指为将室内的空气参数维持在设计参数状态,单位时间内需向建筑提供的冷(热)量。
这是一个受室内设计参数,室内人员、设备等散热和散湿量,围护结构性质,室外空气环境参数(包括温度、湿度、气流速度等),太阳辐射强度等诸多因素影响的变量。
让空调系统恰如其分地提供冷(热)量,以满足设计计算状态下建筑物的需求,并随时适应建筑物空调冷(热)负荷及其变化的需要是空调设计的根本目的。
在空调系统设计过程中,空调负荷计算是第一步。
空调负荷的计算应包括空调设计计算负荷的确定和各时段负荷的分析;其次,设备的容量必须满足空调设计计算冷(热)负荷的要求;另外设备的配置应适应空调负荷变化的特点。
在以空气源热泵型冷热水机组为冷源的空调系统设计中,热泵机组的容量既要考虑到大楼各部分的同时使用系数,还应考虑到热泵的实际制冷量和实际供热量会因设备间距限制等原因造成通风不畅,部分气流短路(这部分的出力损失约占5左右)而受到影响,和室外换热器表面积灰和表面结垢、设备衰减等因素的影响,故所选择的热泵机组应考虑安全系数。
由公式来表示:Q=β1?β2?QD.
式中:Q——热泵机组在设计工况下的制冷(供热)量,KW
QD——设计计算负荷,KW
β1——同时使用系数,由具体工程定,一般为0.75~1.0
β2——安全系数,一般取1.05~1.10
另外,热泵机组既要满足系统夏季的供冷要求,又要满足系统冬季的供暖要求。
不同供应商的热泵机组的额定制冷量、额定供热量的参数不尽相同,与各地区空调室外设计参数不一定一致。
对南京而言,一般供应商所提供的热泵机组额定制冷工况条件与实际一致或相近,一般空气干球温度为35℃,空调冷冻水进出水温度分别为12℃、7℃左右。
而冬季制热的额定工况条件为室外空气温度7~8℃,进出水水温为50-55℃。
这一条件与南京地区冬季空调设计计算温度相差甚远。
南京气候特征为冬冷夏热。
对于一般办公、酒店为主的综合楼,冬季空调供暖设计计算热负荷约为夏季空调设计计算冷负荷的70-85.在热泵机组选择时,应查看热泵机组对应于当地设计计算气象参数条件的真实出力。
如果热泵机组在设计计算室外参数条件下的制冷量大于设计计算冷负荷,而制热量等于热负荷,则应以热负荷为准选择热泵。
反之,如果制冷量满足设计计算冷负荷要求,而供热量大于所需热量,则可考虑部分选用风冷型冷水机组,部分选用风冷型热泵机组,以减少投资。
一般情况下,按夏季冷负荷选定的热泵,能满足冬季供暖的要求。
机组类型与台数的确定
风冷热泵型冷热水机组根据压缩机的不同可分为涡旋式热泵机组、活塞式热泵机组和螺杆式热泵机组;按机组结构大小、组合规模不同,热泵机组可分为整体式热泵机组和模块式热泵机组。
整体式热泵机组与模块式热泵机组没有本质的区别,所谓模块式热泵就是指一台热泵机组由若干台热泵单元(有独立的制冷回路,独立的蒸发、冷凝,独立的框架,甚至有独立的控制板)并联而成,各单元增减组合灵活方便,任意一单元的故障不影响其余各单元的工作。
国内的热泵机组生产企业以生产模块式热泵机组为多,而整体式热泵机组从外观上看是一组合单元、一整体框架,虽然内部可有多台压缩机,甚至有两个以上的制冷回路,但它们之间一般不可再分解。
模块式热泵机组的主要优点是噪音低、振动小,由于系统总的制冷回路多,冬季化霜时对系统水温影响小。
系统互备性也好。
另外,热泵机组一般置于屋顶,模块式热泵机组由于各单元组合灵活,各单元尺寸小、重量轻,故具有运输、吊装、安装方便等优点。
如工程较大,模块式热泵机组会由于制冷单元数量较多,而存在故障点多、维护量大的可能性,额定工况下的效率也略低于整体式机组。
另外,由于模块化热泵一般采用板式换热器,对水质要求较高,对各单元之间水力平衡的要求也较高。
综上所述,对较小系统,或对尺寸、重量、吊装等有特殊要求的场合,模块式热泵有其优越性。
至于活塞式热泵机组与螺杆式热泵机组,从理论上讲,螺杆式热泵机组的运动部件少,维护量少,效率高,噪音也低。
但由于热泵的噪音很大一部分来源于风机,而且压缩机的噪音可以通过加隔音罩等办法降低,故实际上螺杆式热泵的噪音比活塞式热泵的噪音略低(约3-5dB(A))。
另外,对于热泵机组的热阻主要在室外换热器侧,热泵的效率受两器面积等因素的影响,故从工程角度出发,螺杆式热泵与活塞型热泵在效率上的差异有限,但螺杆式热泵的价格高于活塞式热泵。
关于制冷剂问题,有条件时尽可能选用对环境影响小的制冷剂,如R134a、R407C等,其中应优选R407C,其次是R134a;从制冷剂价格考虑,目前最便宜的是R22.
热泵机组的位置
热泵机组的位置有下列几种:一是置于裙楼顶,二是置于塔楼顶,三是置于窗台,四是置于净高较高的室内。
考虑到吊装及日后更换等原因,热泵机组较多的置于裙楼顶。
当热泵机组置于裙楼顶时,要评估其对主楼及周围环境的影响,较大的热泵机组(≥200RT),单机噪音在75~85db(A)左右。
有必要时可加隔音屏障,或在主楼靠机组侧避免开门,做双层窗或高质量中空玻璃取代普通单层玻璃窗。
布置于窗台的热泵机组往往是每层要求独立配置、单独计量的场所,只限于较小容量的热泵机组,宜采用侧进风侧排风的形式。
选用上排风热泵机组时应安装导流风管,改成侧排风。
即使室内有较高净空,热泵机组置于室内是不可取的,受条件限制必须设置于室内时,室内应有穿堂风可利用,要有足够的进风面积,并将排风通过风道有组织地排至室外,防止气流短路。
加接排风管时,对风机应作相应的调整,避免因阻力的增加而减少通风量。
比较理想的方法还是将热泵机组置于塔楼顶,使热泵机组有良好的通风条件,并使噪音影响面降为最小。
但应注意,热泵机组不能临近住宅或其他对噪音要求较高的房间布置,不得紧贴住宅(客房)上面或下面布置热泵机组及水泵。
热泵机组宜采用弹簧减振器隔振,减振器型号及布置点经计算确定。
热泵机组靠女儿墙及主楼的距离大于3m,机组间的间距不宜小于3m,有条件时距离应加大。
热泵机组的布置除考虑对周围环境影响小,通风好外,还应考虑管线布置、设备吊装及以后的更换等因素,有条件时留出1~2台机组位置,为以后发展留下余地,并为设备安装及更换考虑足够的荷载条件。
水泵的选择与布置
水泵的数量宜与热泵机组的台数相对应。
热泵机组与水泵的连接方式宜采用一对一串联的方式,热泵机组与水泵联动。
热泵机组数量较多时,水泵可贴临热泵机组布置,水泵应具有防水性能并加挡雨吸音罩;热泵机组数量较少时,水泵宜集中布置于室内。
备用水泵可采用先不安装而临时替换的方法。
如果水泵采用先水泵组并联再与并联的热泵机组相串联的方式,则并联的热泵机组数量不宜超过6台,并应有可靠的水力平衡措施。
这种连接方式应将水泵布置于临近热泵的室内,也可以置于地下室,水泵的台数应考虑1~2台的备用泵。
在选择水泵规格时,尽可能选低转速泵,以减低噪音,水泵的流量可按系统所需流量的1.1倍选取,水泵的扬程应等于系统所需克服的总阻力。
水泵的功耗应控制在热泵出力的1/30之内。
水泵的布置要有一定的间距,有条件时预留1~2台水泵的安装位置以备发展之需。
水泵也应有可靠的隔振措施。
末端设备的选择(一级)
夏季工况条件下,热泵机组额定供回水温度分别为7℃和12℃,这与一般空调器的额定工况相一致,空调器的选择计算与其他形式的空调系统相一致。
冬季工况条件,热泵空调系统在额定条件下(室外空气8℃),热泵机组的额定供回水温度一般分别在47℃、42℃。
而当室外温度较低时,热泵空调系统的供水温度一般维持在39~40℃。
这一水温条件明显低于锅炉供热系统的额定供回水温度(分别为60℃和50℃),也即低于一般空调器性能参数表中给出的额定进出水温度(也分别为60℃和50℃),由于水温不一样,空调器的散热量有明显差异。
有学者因此认为热泵空调系统的末端设备应在夏季工况计算选择结果的基础上有所放大。
但根据我们的
计算,南京地区热泵空调系统的末端可以采用夏季制冷工况条件下的计算选择结果。
这一方面是由于南京地区一般建筑物的采暖热负荷小于夏季供冷冷负荷,另外,同样的空调器,60℃进水温度条件下的供热量明显大于7℃进水条件下的制冷量。
冬季当进水温度降至39~40℃时,空调器的散热量能满足室内供暖的要求。
此外,习惯上按中档参数选择空调器,本身就有一定的裕量。
如果热泵空调系统有4个以上的制冷回路,化霜对水温不会造成明显的波动,故不会影响室内温度的波动。
但当热泵系统只有1~2个回路时,为减少化霜对室内温度的影响,有条件时,可将空调器启停控制与水温同步,如当水温低于35℃时,空调器风机停止运转,当水温高于35℃时风机恢复运转。
这样可有效提高室内的舒适性。