sn
,
这时级数发散.
若q 1,这时sn na (n ),因此级数发散. 若q 1,这时级数成为a a a a 此级数发散。
第12页/共122页
综上所述,几何级数
aqn a aq aq2 aqn
当|q|<1时级数收敛,且收敛于 n0,当|q|≥1时级a数发散.
1 q
第13页/共122页
对于无穷级数 un u1 u2 un
n1
记S1 u1,
S2 u,1 u2,
Sn u1 u2 un ,
称Sn为级数的部分和, 称 { Sn} 为级数的部分和数列.
考察下列级数的部分和: 1
1 2
1 22
1 23
1 2n1
1 23 n
第4页/共122页
对于 1 1 1 1 1
p 1 时, p 1 时,
收敛 发散
注意
几何级数
n1
1 pn
当 当
p p
1 时, 1 时,
收敛 发散
1 收敛 3
n1 n 2
1 发散
n1 n
1 收敛
n1 n n
1 收敛
n1 2n
第30页/共122页
例5 判别级数
解
因为
的敛1散性.
n1 n 1 n
1
1
1
1
n 1
n2
n1 2
2n 2
第22页/共122页
定理1 正项级数 它的部分和数列{sn}有上界.
u 收敛的充要条件是: n n1
证 必要性:
若
{Sn} 有界
un 收敛
n1
lim
n
Sn
存在
{Sn} 有上界.