高等数学(下)无穷级数.
- 格式:ppt
- 大小:3.13 MB
- 文档页数:100
高等数学无穷级数知识点总结
无穷级数是高等数学中的一个重要内容,它涉及到很多重要的概念和定理。
以下是一些高等数学无穷级数的知识点总结:
1. 无穷级数的基本概念:无穷级数是指一个数列的项按一定规律相加而成的数列。
其中,无穷级数的定义域可以是实数集或复数集。
2. 无穷级数的分类:无穷级数可以分为数项级数和函数项级数两大类。
数项级数是指以常数项级数的形式表示的无穷级数,而函数项级数则是以函数项的形式表示的无穷级数。
3. 无穷级数的敛散性:无穷级数的敛散性是指级数是否收敛或发散。
如果一个无穷级数收敛,则称其为收敛级数,反之则称为发散级数。
4. 无穷级数的判别法:无穷级数的判别法是指判断一个无穷级数是否收敛的方法。
常用的判别法包括比较判别法、比值判别法、根值判别法和莱布尼兹判别法等。
5. 无穷级数的和应用:无穷级数在数学中有着广泛的应用,例如求和、积分、微积分等。
在实际应用中,无穷级数往往被用来求解各种问题。
6. 无穷级数的和函数:无穷级数的和函数是指级数的每一项相加得到的总和。
无穷级数的和函数具有很多重要的性质,例如连续性、可导性等。
7. 无穷级数的广义性质:无穷级数的广义性质是指关于无穷级数的一些扩展概念和定理。
例如,无穷级数的前 n 项和的广义性质、
无穷级数的广义收敛性等。
以上是高等数学无穷级数的一些重要知识点总结。
希望能对读者有所帮助。
高数无穷级数知识点总结一、引言无穷级数是数学中一个重要的概念,它在数学和其他学科的研究中有着广泛的应用。
在高等数学中,无穷级数是一个重要的知识点。
本文将从无穷级数的基本概念、收敛性与发散性、常见的收敛判别法和应用等方面,对高数无穷级数进行总结。
二、无穷级数的基本概念无穷级数是指由一个数列的项求和而得到的数值。
具体地说,对于一个实数数列{an},其无穷级数可以表示为∑an。
其中,an表示数列的第n项,∑表示对数列的所有项进行求和。
三、收敛性与发散性1. 收敛性当无穷级数的部分和Sn在n趋于无穷大时存在有限极限L,即lim (n→∞) Sn = L时,称该无穷级数收敛,L称为该无穷级数的和。
2. 发散性当无穷级数的部分和Sn在n趋于无穷大时不存在有限极限,即lim (n→∞) Sn不存在或为无穷大时,称该无穷级数发散。
四、常见的收敛判别法1. 正项级数判别法对于无穷级数∑an,若该级数的每一项an都是非负数,并且该级数的部分和Sn有上界,则该级数收敛;若Sn没有上界,则该级数发散。
2. 比值判别法对于无穷级数∑an,若lim (n→∞) |an+1/an| = L,其中L为常数,若L<1,则该级数收敛;若L>1,则该级数发散;若L=1,则判别不出。
3. 根值判别法对于无穷级数∑an,若lim (n→∞) |an|^1/n = L,其中L为常数,若L<1,则该级数收敛;若L>1,则该级数发散;若L=1,则判别不出。
4. 整项判别法对于无穷级数∑an,若存在另一个级数∑bn,使得|an|≤bn,且∑bn 收敛,则∑an也收敛;若∑bn发散,则∑an也发散。
五、应用无穷级数在数学和其他学科中有广泛的应用,下面举几个例子进行说明。
1. 泰勒级数泰勒级数是一种用无穷级数表示函数的方法。
根据泰勒级数,我们可以将一个函数在某个点的邻域内展开为无穷级数的形式,从而可以近似计算函数的值。
2. 统计学中的无穷级数在统计学中,无穷级数经常用于描述随机变量的分布。
第十二章无穷级数【本章网络构造图】第一节常数项级数概念与性质一、常数项级数收敛与发散给定一个数列将各项依次相加, 简记为,即,称该式为无穷级数,其中第项叫做级数一般项,级数前项与称为级数局部与。
假设存在,那么称无穷级数收敛,并称为级数与,记作;假设不存在,那么称无穷级数发散。
当级数收敛时, 称差值为级数余项。
显然。
【例1】〔93三〕级数与为 .【答案】结论:等比〔几何〕级数:收敛当时发散当时二、收敛级数与假设收敛,那么其与定义为。
三、无穷级数根本性质学习笔记:〔1〕假设级数收敛于,即,那么各项乘以常数所得级数也收敛,其与为。
注:级数各项乘以非零常数后其敛散性不变(2)设有两个收敛级数,,那么级数也收敛, 其与为。
注:该性质说明收敛级数可逐项相加或相减相关结论:〔1〕假设两级数中一个收敛一个发散,那么必发散。
〔2〕假设二级数都发散,不一定发散。
【例】取,,而。
〔3〕在级数前面加上或去掉有限项,不会影响级数敛散性。
〔4〕收敛级数加括弧后所成级数仍收敛于原级数与。
推论:假设加括弧后级数发散,那么原级数必发散。
注:收敛级数去括弧后所成级数不一定收敛。
【例】,但发散。
【例2】判断级数敛散性:【解析与答案】学习笔记:不存在故原级数发散四、级数收敛必要条件必要条件:假设收敛,那么。
逆否命题:假设级数一般项不趋于0,那么级数必发散。
【例】,其一般项为,当时,不趋于0,因此这个级数发散。
注:并非级数收敛充分条件【例】调与级数,虽然,但是此级数发散。
事实上,假设调与级数收敛于,那么,但,矛盾!所以假设不真。
【例3】判断以下级数敛散性,假设收敛求其与:〔1〕〔2〕【答案】〔1〕发散;〔2〕发散五、两个重要级数:几何级数与p级数敛散性学习笔记:〔1〕几何级数:,当时收敛;当时发散.〔2〕级数(或对数级数):,当时收敛,当时发散。
【重点小结】1、常数项级数收敛与发散定义2、常数项级数敛散性质3、常数项级数收敛必要条件4、常用两个常数项级数第二节常数项级数审敛法一、正项级数及其审敛法正项级数:假设,那么称为正项级数。
大一下高数知识点无穷级数大一下高数知识点:无穷级数在大一下的高等数学课程中,无穷级数是一个重要的知识点。
无穷级数是由无穷多个数相加(或相减)所得的结果,它在数学和其它科学领域中都有广泛的应用。
本文将着重介绍无穷级数的定义、性质和一些重要的收敛准则。
一、无穷级数的定义无穷级数可以写作以下形式:S = a₁ + a₂ + a₃ + ... + aₙ + ...其中,a₁、a₂、a₃等为级数的各项。
二、常见的无穷级数1. 等差级数等差级数是最常见的一类无穷级数。
它的通项公式一般为:aₙ = a₁ + (n-1)d其中,a₁为首项,d为公差。
例如,等差级数的前5项可以表示为:S₅ = a₁ + (a₁ + d) + (a₁ + 2d) + (a₁ + 3d) + (a₁ + 4d)2. 等比级数等比级数的通项公式一般为:aₙ = a₁ * r^(n-1)其中,a₁为首项,r为公比。
例如,等比级数的前5项可以表示为:S₅ = a₁ + a₁r + a₁r² + a₁r³ + a₁r⁴三、无穷级数的性质1. 部分和在无穷级数中,我们通常用部分和来近似计算级数的和。
部分和Sn定义为:Sₙ = a₁ + a₂ + a₃ + ... + aₙ其中,n为正整数。
2. 收敛和发散对于无穷级数,如果其部分和Sn在n趋向于无穷大时有极限S,则称该级数收敛,否则称该级数发散。
如果收敛,其收敛值S即为无穷级数的和。
3. 收敛性质无穷级数有以下重要的收敛性质:(1)若级数Sn收敛,则其任意子级数也收敛。
(2)若级数Sn发散,则其任意超级数也发散。
(3)若级数Sn和级数Tn都是收敛的,则它们的和级数Sn + Tn也是收敛的。
4. 绝对收敛和条件收敛若级数的所有项的绝对值构成的级数收敛,则称原级数绝对收敛。
否则,若级数本身收敛但其对应的绝对值级数发散,则称原级数条件收敛。
四、无穷级数的收敛准则在判断无穷级数的收敛性时,有一些常用的收敛准则:1. 正项级数判别法如果级数的所有项都是非负数,并且后一项总是比前一项大或相等,则该级数收敛。