人造卫星运动物理知识点
- 格式:docx
- 大小:10.67 KB
- 文档页数:1
神舟六号物理知识点总结在神舟六号的飞行过程中,涉及了许多物理知识点。
从航天器发射到返回地面,都离不开物理学知识的支持。
下面我们将从航天器的发射、太空适应症、重力、微重力环境、大气层再入等方面对神舟六号的物理知识点进行总结。
首先,从航天器的发射过程来看,神舟六号的发射离不开物理学原理的支持。
航天器的发射需要克服地球的引力,需要使用火箭发射器将航天器送入太空。
在火箭发射过程中,涉及到火箭喷射推力、动量守恒、牛顿第三定律等物理学原理。
通过火箭的燃料燃烧产生的高速气流,产生巨大的向下的推力,将航天器送入太空。
同时,火箭的动量与燃料的质量关系有关,动量守恒原理规定了在火箭发射过程中系统的总动量保持不变。
牛顿第三定律指出,物体间的相互作用力相等且方向相反。
这些物理学知识点的支持,为航天器的发射提供了坚实的物理学基础。
其次,根据科学家在坎培拉空间台卫星实验室中的研究,我们知道太空适应症是指进入太空环境后,出现的身体不适症状。
其中,涉及了神经、生理和心理学等多学科知识。
在太空中,由于没有地球上的引力,航天员会产生失重感。
这种失重感会影响航天员的身体平衡、行走和运动等。
同时,太空中的高辐射、低温和微重力环境也会对航天员的身体产生影响。
因此,航天员在太空适应症的症状和对策研究中,需要运用多学科的知识,包括物理学、生理学、心理学等。
例如,生理学知识指导下,航天员在太空中的合理饮食、运动、休息,可以减少太空适应症的发生。
因此,太空适应症的研究离不开物理学的支持。
接着,重力是牛顿关于普遍万有引力定律的应用,它是与引力场有关的非均匀场。
在地球上,重力会影响物体的运动轨迹和速度。
牛顿的万有引力定律指出,两个物体之间的引力与它们之间的质量和距离有关。
在神舟六号的太空飞行中,因为失重感的影响,航天员在执行任务时需要适应微重力环境。
在太空中,微重力环境会影响航天员的身体平衡、动作速度和手眼协调等。
因此,航天员在太空中的行走、工作和操作都需要适应微重力环境。
人造卫星引力势能公式
物理知识点问答
【问:人造卫星引力势能公式?】
答:质量为m的人造卫星,当其与地心距离为r时,引力势能可表示为EP=-GMm/r,其中,G为万有引力常量,M为地球质量。
负号是因为我们规定无穷远处势能为零。
【问:有电磁感应电动势,无感应电流?】
答:这种情况是有的。
来说一个大家都见过的例子,单独的一根导体棒切割磁感线,没有闭合回路,那么导体棒的两端电压是不同的,这种情况有感应电压,电动势的大小BLV,因为没有联通回路,不会形成电荷的定向运动,就没有感应电流。
【问:滑动摩擦力的概念?】
答:相互运动中,阻碍两个物体相对滑动的力,就是滑动摩擦力。
与静摩擦力不同的是,物体之间是有相对运动的。
通俗来说就是一个物体在另一个物体表面上滑动时产生的摩擦。
滑动摩擦力f的大小跟正压力成正比,公式:f=μN(μ为动摩擦因数)。
【问:摩擦力满足什么条件才能存在?】
答:动、静摩擦力的产生都必须具备如下的3个条件:1,相互接触的两个物体间存在压力;2,接触面不光滑;3,存在相对运动(滑动摩擦力产生)或两者有相对运动的趋势(静摩擦力存在),三者缺一不可。
【问:怎么克服忘事的毛病?】
答:知识容易忘,记忆不牢固,这说明你课下的复习不够及时。
物理知识比较抽象,老师讲过的内容,你听懂了不代表理解了,理解了不代表记住了,不代表考试时会用;所以在课下要多下功夫温习,多动脑,多动笔,才能把知识彻底搞扎实。
很多学生总是太自信,太轻视物理知识了,也太相信自己的记忆能力,总觉得掌握了,到了考场上才发现自己并没有掌握好,典型的眼高手低,一定要克服掉。
人造卫星 宇宙速度物理考点 1.会比较卫星运动的各物理量之间的关系.2.理解三种宇宙速度,并会求解第一宇宙速度的大小.3.会分析天体的“追及”问题.考点一 卫星运行参量的分析基础回扣1.天体(卫星)运行问题分析将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供.2.基本公式:(1)线速度:G =m ⇒v =Mmr 2v 2r GM r (2)角速度:G =mω2r ⇒ω=Mmr 2GMr 3(3)周期:G =m 2r ⇒T =2πMmr 2(2πT )r 3GM(4)向心加速度:G =ma ⇒a =Mmr 2GMr 2结论:r 越大,v 、ω、a 越小,T 越大.技巧点拨1.公式中r 指轨道半径,是卫星到中心天体球心的距离,R 通常指中心天体的半径,有r =R +h .2.近地卫星和同步卫星卫星运动的轨道平面一定通过地心,一般分为赤道轨道、极地轨道和其他轨道,同步卫星的轨道是赤道轨道.(1)近地卫星:轨道在地球表面附近的卫星,其轨道半径r =R (地球半径),运行速度等于第一宇宙速度v =7.9 km/s(人造地球卫星的最大运行速度),T =85 min(人造地球卫星的最小周期).(2)同步卫星①轨道平面与赤道平面共面.②周期与地球自转周期相等,T =24 h.③高度固定不变,h =3.6×107 m.④运行速率均为v =3.1×103 m/s. 卫星运行参量与轨道半径的关系例1 (2020·浙江7月选考·7)火星探测任务“天问一号”的标识如图1所示.若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的( )图1A .轨道周长之比为2∶3B .线速度大小之比为∶32C .角速度大小之比为2∶323D .向心加速度大小之比为9∶4答案 C解析 轨道周长C =2πr ,与半径成正比,故轨道周长之比为3∶2,故A 错误;根据万有引力提供向心力有=m ,得v =,得==,故B 错误;由万有引力提供GMmr 2v 2r GMr v 火v 地r 地r 火23向心力有=mω2r ,得ω=,得==,故C 正确;由=ma ,得GMm r 2GMr 3ω火ω地r 地3r 火32233GMmr 2a =,得==,故D 错误.GMr 2a 火a 地r 地2r 火249 同步卫星、近地卫星及赤道上物体的比较例2 (2019·青海西宁市三校联考)如图2所示,a 为放在赤道上相对地球静止的物体,随地球自转做匀速圆周运动,b 为沿地球表面附近做匀速圆周运动的人造卫星(轨道半径约等于地球半径),c 为地球的同步卫星.下列关于a 、b 、c 的说法中正确的是( )图2A .b 卫星转动线速度大于7.9 km/sB .a 、b 、c 做匀速圆周运动的向心加速度大小关系为a a >a b >a cC .a 、b 、c 做匀速圆周运动的周期关系为T a =T c <T bD .在b 、c 中,b 的线速度大答案 D解析 b 为沿地球表面附近做匀速圆周运动的人造卫星,根据万有引力定律有G =m ,MmR 2v 2R 解得v =,又=mg ,可得v =,与第一宇宙速度大小相同,即v =7.9 km/s ,故GMR GMmR 2gR A 错误;地球赤道上的物体与同步卫星具有相同的角速度,所以ωa =ωc ,根据a =rω2知,c 的向心加速度大于a 的向心加速度,根据a =得b 的向心加速度大于c 的向心加速度,GMr 2即a b >a c >a a ,故B 错误;卫星c 为地球同步卫星,所以T a =T c ,根据T =2π得c 的周r 3GM 期大于b 的周期,即T a =T c >T b ,故C 错误;在b 、c中,根据v =,可知b 的线速度GMr 比c 的线速度大,故D 正确.1.(卫星运行参量的比较)(2020·浙江1月选考·9)如图3所示,卫星a 、b 、c 沿圆形轨道绕地球运行.a 是极地轨道卫星,在地球两极上空约1 000 km 处运行;b 是低轨道卫星,距地球表面高度与a 相等;c 是地球同步卫星,则( )图3A .a 、b 的周期比c 大B .a 、b 的向心力一定相等C .a 、b 的速度大小相等D .a 、b 的向心加速度比c 小答案 C解析 根据万有引力提供向心力有=m =mω2r =m r =ma ,可知v =,ω=GMmr 2v 2r 4π2T 2GM r,T =,a =,由此可知,半径越大,线速度、角速度、向心加速度越小,周GM r 32πr 3GM GMr 2期越长,因为a 、b 卫星的半径相等,且比c 小,因此a 、b 卫星的线速度大小相等,向心加速度比c 大,周期小于卫星c 的周期,选项C 正确,A 、D 错误;由于不知道三颗卫星的质量关系,因此不清楚向心力的关系,选项B 错误.2.(同步卫星)关于我国发射的“亚洲一号”地球同步通信卫星的说法,正确的是( )A .若其质量加倍,则轨道半径也要加倍B .它在北京上空运行,故可用于我国的电视广播C .它以第一宇宙速度运行D .它运行的角速度与地球自转角速度相同答案 D解析 由G =m 得r =,可知轨道半径与卫星质量无关,A 错误;同步卫星的轨道Mmr 2v 2r GMv 2平面必须与赤道平面重合,即在赤道上空运行,不能在北京上空运行,B 错误;第一宇宙速度是卫星在最低圆轨道上运行的速度,而同步卫星在高轨道上运行,其运行速度小于第一宇宙速度,C 错误;所谓“同步”就是卫星保持与赤道上某一点相对静止,所以同步卫星的角速度与地球自转角速度相同,D 正确.3.(卫星运动分析)(2016·全国卷Ⅰ·17)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A .1 hB .4 h C .8 h D .16 h 答案 B解析 地球自转周期变小,卫星要与地球保持同步,则卫星的公转周期也应随之变小,由开普勒第三定律=k 可知卫星离地球的高度应变小,要实现三颗卫星覆盖全球的目的,则卫r 3T 2星周期最小时,由数学几何关系可作出卫星间的位置关系如图所示.卫星的轨道半径为r ==2R Rsin 30°由=得r 13T 12r 23T 22=(6.6R )3242(2R )3T 22解得T 2≈4 h .考点二 宇宙速度的理解和计算基础回扣第一宇宙速度(环绕速度)v 1=7.9 km/s ,是物体在地面附近绕地球做匀速圆周运动的最大环绕速度,也是人造地球卫星的最小发射速度第二宇宙速度(脱离速度)v 2=11.2 km/s ,是物体挣脱地球引力束缚的最小发射速度第三宇宙速度(逃逸速度)v 3=16.7 km/s ,是物体挣脱太阳引力束缚的最小发射速度技巧点拨1.第一宇宙速度的推导方法一:由G =m ,得v 1== m/s ≈7.9×103MmR 2v 12R GMR 6.67×10-11×5.98×10246.4×106m/s.方法二:由mg =m 得v 1== m/s ≈7.9×103 m/s.v 12R gR 9.8×6.4×106第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2π=5 078 s ≈85 min.Rg 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球表面做匀速圆周运动.(2)7.9 km/s<v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆.(3)11.2 km/s ≤v 发<16.7 km/s ,卫星绕太阳运动的轨迹为椭圆.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.例3 (2020·北京卷·5)我国首次火星探测任务被命名为“天问一号”.已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )A .火星探测器的发射速度应大于地球的第二宇宙速度B .火星探测器的发射速度应介于地球的第一和第二宇宙速度之间C .火星的第一宇宙速度大于地球的第一宇宙速度D .火星表面的重力加速度大于地球表面的重力加速度答案 A解析 火星探测器需要脱离地球的束缚,故其发射速度应大于地球的第二宇宙速度,故A正确,B 错误;由G =m 得,v 火===v 地,故火星的第一宇宙速MmR 2v 2R GM 火R 火0.1M 地G0.5R 地55度小于地球的第一宇宙速度,故C 错误;由=mg 得,g 火=G =G =0.4gGMmR 2M 火R 火20.1M 地(0.5R 地)2地,故火星表面的重力加速度小于地球表面的重力加速度,故D 错误.4.(第一宇宙速度的计算)地球的近地卫星线速度大小约为8 km/s ,已知月球质量约为地球质量的,地球半径约为月球半径的4倍,下列说法正确的是( )181A .在月球上发射卫星的最小速度约为8 km/s B .月球卫星的环绕速度可能达到4 km/s C .月球的第一宇宙速度约为1.8 km/sD .“近月卫星”的速度比“近地卫星”的速度大答案 C解析 根据第一宇宙速度v =,月球与地球的第一宇宙速度之比为GMR ===,月球的第一宇宙速度约为v 2=v 1=×8 km/s ≈1.8 km/s ,在月球上v 2v 1M 2R 1M 1R 2481292929发射卫星的最小速度约为1.8 km/s ,月球卫星的环绕速度小于或等于1.8 km/s ,“近月卫星”的速度为1.8 km/s ,小于“近地卫星”的速度,故C 正确.5.(宇宙速度的理解和计算)宇航员在一行星上以速度v 0竖直上抛一质量为m 的物体,不计空气阻力,经2t 后落回手中,已知该星球半径为R .求:(1)该星球的第一宇宙速度的大小;(2)该星球的第二宇宙速度的大小.已知取无穷远处引力势能为零,物体距星球球心距离为r 时的引力势能E p =-G .(G 为万有引力常量)mMr 答案 (1) (2)v 0Rt 2v 0R t解析 (1)由题意可知星球表面重力加速度为g =v 0t由万有引力定律知mg =m v 12R解得v 1==.gR v 0Rt (2)由星球表面万有引力等于物体重力知=mgGMmR 2又E p =-G mMR解得E p =-m v 0Rt 由机械能守恒有m v 22-=012m v 0R t 解得v 2=.2v 0Rt 考点三 天体的“追及”问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA -ωB )t =2n π(n =1,2,3…).2.相距最远当两卫星位于和中心连线的半径上两侧时,两卫星相距最远,从运动关系上,两卫星运动关系应满足(ωA -ωB )t ′=(2n -1)π(n =1,2,3…).例4 当地球位于太阳和木星之间且三者几乎排成一条直线时,称之为“木星冲日”,2016年3月8日出现了一次“木星冲日”.已知木星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动,木星到太阳的距离大约是地球到太阳距离的5倍.则下列说法正确的是( )A .下一次的“木星冲日”时间肯定在2018年B .下一次的“木星冲日”时间肯定在2017年C .木星运行的加速度比地球的大D .木星运行的周期比地球的小答案 B解析 地球公转周期T 1=1年,由T =2π可知,土星公转周期T 2=T 1≈11.18r 3GM 125年.设经时间t ,再次出现“木星冲日”,则有ω1t -ω2t =2π,其中ω1=,ω2=,解得2πT 12πT 2t ≈1.1年,因此下一次“木星冲日”发生在2017年,故A 错误,B 正确;设太阳质量为M ,行星质量为m ,轨道半径为r ,周期为T ,加速度为a .对行星由牛顿第二定律可得G =ma =m r ,解得a =,T =2π,由于木星到太阳的距离大约是地球到太阳Mmr 24π2T 2GMr 2r 3GM 距离的5倍,因此,木星运行的加速度比地球的小,木星运行的周期比地球的大,故C 、D 错误.6.(天体的“追及”问题)(多选)(2020·山西太原市质检)如图4,在万有引力作用下,a 、b 两卫星在同一平面内绕某一行星c 沿逆时针方向做匀速圆周运动,已知轨道半径之比为r a ∶r b =1∶4,则下列说法中正确的有( )图4A .a 、b 运动的周期之比为T a ∶T b =1∶8B .a 、b 运动的周期之比为T a ∶T b =1∶4C .从图示位置开始,在b 转动一周的过程中,a 、b 、c 共线12次D .从图示位置开始,在b 转动一周的过程中,a 、b 、c 共线14次答案 AD解析 根据开普勒第三定律:半径的三次方与周期的二次方成正比,则a 、b 运动的周期之比为1∶8,A 对,B 错;设图示位置ac 连线与bc 连线的夹角为θ<,b 转动一周(圆心角为π22π)的时间为T b ,则a 、b 相距最远时:T b -T b =(π-θ)+n ·2π(n =0,1,2,3…),可知2πTa 2πTb n <6.75,n 可取7个值;a 、b 相距最近时:T b -T b =(2π-θ)+m ·2π(m =0,1,2,3…),可2πTa 2πTb 知m <6.25,m 可取7个值,故在b 转动一周的过程中,a 、b 、c 共线14次,C 错,D 对.课时精练1.(2020·天津卷·2)北斗问天,国之夙愿.如图1所示,我国北斗三号系统的收官之星是地球静止轨道卫星,其轨道半径约为地球半径的7倍.与近地轨道卫星相比,地球静止轨道卫星( )图1A.周期大B.线速度大C.角速度大D.加速度大答案 A解析 根据万有引力提供向心力有G=m()2r、G=m、G=mω2r、G=maMmr22πTMmr2v2rMmr2Mmr2可知T=2π、v=、ω=、a=,因为地球静止轨道卫星的轨道半径大于近r3GMGMrGMr3GMr2地轨道卫星的轨道半径,所以地球静止轨道卫星的周期大、线速度小、角速度小、向心加速度小,故选项A正确.2.(2020·四川泸州市质量检测)我国实施空间科学战略性先导科技专项计划,已经发射了“悟空”“墨子”“慧眼”等系列的科技研究卫星,2019年8月31日又成功发射一颗微重力技术实验卫星.若微重力技术实验卫星和地球同步卫星均绕地球做匀速圆周运动时,微重力技术实验卫星的轨道高度比地球同步卫星低,下列说法中正确的是( )A.该实验卫星的周期大于地球同步卫星的周期B.该实验卫星的向心加速度大于地球同步卫星的向心加速度C.该实验卫星的线速度小于地球同步卫星的线速度D.该实验卫星的角速度小于地球同步卫星的角速度答案 B解析 万有引力提供向心力,由G=m2r=m=mω2r=ma,解得:v=,T=2πMmr2(2πT)v2rGMr ,ω=,a=.实验卫星的轨道半径小于地球同步卫星的轨道半径,可知该实验r3GMGMr3GMr2卫星周期比地球同步卫星的小,向心加速度、线速度、角速度均比地球同步卫星的大,故选项B 正确,A 、C 、D 错误.3.(2019·天津卷·1)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”,如图2.已知月球的质量为M 、半径为R .探测器的质量为m ,引力常量为G ,嫦娥四号探测器围绕月球做半径为r 的匀速圆周运动时,探测器的( )图2A .周期为B .动能为4π2r 3GM GMm2RC .角速度为D .向心加速度为Gmr 3GMR 2答案 A解析 嫦娥四号探测器环绕月球做匀速圆周运动时,万有引力提供其做匀速圆周运动的向心力,由=mω2r =m =m r =ma ,解得ω=、v =、T =、a =,GMmr 2v 2r 4π2T 2GMr 3GMr 4π2r 3GM GMr 2则嫦娥四号探测器的动能为E k =m v 2=,由以上可知A 正确,B 、C 、D 错误.12GMm2r 4.(2019·北京卷·18)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星).该卫星( )A .入轨后可以位于北京正上方B .入轨后的速度大于第一宇宙速度C .发射速度大于第二宇宙速度D .若发射到近地圆轨道所需能量较少答案 D解析 同步卫星只能位于赤道正上方,A 项错误;由=知,卫星的轨道半径越大,GMmr 2m v 2r 卫星做匀速圆周运动的线速度越小,因此入轨后的速度小于第一宇宙速度(近地卫星的速度),B 项错误;同步卫星的发射速度大于第一宇宙速度,小于第二宇宙速度,C 项错误;若发射到近地圆轨道,所需发射速度较小,所需能量较少,D 正确.5.(多选)(2020·江苏卷·7改编)甲、乙两颗人造卫星质量相等,均绕地球做圆周运动,甲的轨道半径是乙的2倍.下列应用公式进行的推论正确的有( )A .由v =可知,甲的速度是乙的倍gr 2B .由a =ω2r 可知,甲的向心加速度是乙的2倍C .由F =G 可知,甲的向心力是乙的Mm r 214D .由=k 可知,甲的周期是乙的2倍r 3T 22答案 CD解析 人造卫星绕地球做圆周运动时有G =m ,即v =,因此甲的速度是乙的Mmr 2v 2r GMr 倍,故A 错误;由G =ma 得a =,故甲的向心加速度是乙的,故B 错误;由22Mmr 2GMr 214F =G 知甲的向心力是乙的,故C 正确;由开普勒第三定律=k ,绕同一天体运动,k Mmr 214r 3T 2值不变,可知甲的周期是乙的2倍,故D 正确.26.(2020·全国卷Ⅲ·16)“嫦娥四号”探测器于2019年1月在月球背面成功着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K 倍.已知地球半径R 是月球半径的P 倍,地球质量是月球质量的Q 倍,地球表面重力加速度大小为g .则“嫦娥四号”绕月球做圆周运动的速率为( )A. B. C. D.RKg QP RPKgQ RQgKP RPgQK答案 D解析 在地球表面有G =mg ,“嫦娥四号”绕月球做匀速圆周运动时有M 地mR 2G =m ′,根据已知条件有R =PR 月,M 地=QM 月,联立以上各式解得v =M 月m ′(KR 月)2v 2KR 月,故选D.RPgQK 7.如图3,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动.下列说法正确的是( )图3A .甲的向心加速度比乙的小B .甲的运行周期比乙的小C .甲的角速度比乙的大D .甲的线速度比乙的大答案 A8.星球上的物体脱离星球引力所需要的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=v 1.已知某星球的半径为r ,它表面的重力加速度为地2球表面重力加速度g 的.不计其他星球的影响.则该星球的第二宇宙速度为( )16A. B.gr 3gr 6C. D.gr 3gr 答案 A解析 该星球的第一宇宙速度满足:G =m ,在该星球表面处万有引力等于重力:G Mmr 2v 12r =m ,由以上两式得v 1=,则第二宇宙速度v 2=×=,故A 正确.Mmr 2g6gr62gr6gr39.(2019·安徽宣城市第二次模拟)有a 、b 、c 、d 四颗地球卫星,卫星a 还未发射,在地球赤道上随地球表面一起转动,卫星b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图4,则有( )图4A .a 的向心加速度等于重力加速度gB .b 在相同时间内转过的弧长最长C .c 在4 h 内转过的圆心角是π6D .d 的运动周期有可能是20 h 答案 B解析 同步卫星的周期、角速度与地球自转周期、角速度相同,则知a 与c 的角速度相同,根据a =ω2r 知,c 的向心加速度大于a 的向心加速度.由G =mg ,解得:g =,卫星Mmr 2GMr 2的轨道半径越大,向心加速度越小,则c 的向心加速度小于b 的向心加速度,而b 的向心加速度约为g ,则a 的向心加速度小于重力加速度g ,故A 错误;由G =m ,解得:v =Mmr 2v 2r ,卫星的半径r 越大,速度v 越小,所以b 的速度最大,在相同时间内转过的弧长最长,GMr故B 正确;c 是地球同步卫星,周期是24 h ,则c 在4 h 内转过的圆心角是×4=,故C 2π24π3错误;由开普勒第三定律=k 可知:卫星的半径r 越大,周期T 越大,所以d 的运动周期r 3T 2大于c 的周期24 h ,即不可能是20 h ,故D 错误.10.(多选)(2019·贵州毕节市适应性监测(三))其实地月系统是双星模型,为了寻找航天器相对地球和月球不动的位置,科学家们作出了不懈努力.如图5所示,1767年欧拉推导出L 1、L 2、L 3三个位置,1772年拉格朗日又推导出L 4、L 5两个位置.现在科学家把L 1、L 2、L 3、L 4、L 5统称地月系中的拉格朗日点.中国“嫦娥四号”探测器成功登陆月球背面,并通过处于拉格朗日区的“嫦娥四号”中继卫星“鹊桥”把信息返回地球,引起众多师生对拉格朗日点的热议.下列说法正确的是( )图5A .在拉格朗日点航天器的受力不再遵循万有引力定律B .在不同的拉格朗日点航天器随地月系统运动的周期均相同C .“嫦娥四号”中继卫星“鹊桥”应选择L 1点开展工程任务实验D .“嫦娥四号”中继卫星“鹊桥”应选择L 2点开展工程任务实验答案 BD解析 在拉格朗日点的航天器仍然受万有引力,在地球和月球的万有引力作用下绕地月双星系统的中心做匀速圆周运动,A 错误;因在拉格朗日点的航天器相对地球和月球的位置不变,说明它们的角速度一样,因此周期也一样,B 正确;“嫦娥四号”探测器登陆的是月球的背面,“鹊桥”要把探测器在月球背面采集的信息传回地球,L 2在月球的背面,因此应选在L 2点开展工程任务实验,所以C 错误,D 正确.11.经长期观测发现,A 行星运行轨道的半径近似为R 0,周期为T 0,其实际运行的轨道与圆轨道存在一些偏离,且周期性地每隔t 0(t 0>T 0)发生一次最大的偏离,如图6所示,天文学家认为形成这种现象的原因可能是A 行星外侧还存在着一颗未知行星B ,已知行星B 与行星A 同向转动,则行星B 的运行轨道(可认为是圆轨道)半径近似为( )图6A .R =R 0B .R =R 03t 02(t 0-T 0)2t 0t 0-T 0C .R =R 0D .R =R 0t 03(t 0-T 0)3t 0t 0-T 0答案 A解析 A 行星运行的轨道发生最大偏离,一定是B 对A 的引力引起的,且B 行星在此时刻对A 有最大的引力,故此时A 、B 行星与恒星在同一直线上且位于恒星的同一侧,设B 行星的运行周期为T ,运行的轨道半径为R ,根据题意有t 0-t 0=2π,所以T =,由开2πT 02πT t 0T 0t 0-T 0普勒第三定律可得=,联立解得R =R 0,故A 正确,B 、C 、D 错误.R 03T 02R 3T 23t 02(t 0-T 0)212.(2019·河南郑州市第一次模拟)“玉兔号”月球车与月球表面的第一次接触实现了中国人“奔月”的伟大梦想.“玉兔号”月球车在月球表面做了一个自由下落实验,测得物体从静止自由下落h 高度的时间为t ,已知月球半径为R ,自转周期为T ,引力常量为G .求:(1)月球表面重力加速度的大小;(2)月球的质量和月球的第一宇宙速度的大小;(3)月球同步卫星离月球表面高度.答案 (1) (2) (3)-R2ht 22R 2hGt 22hRt 23T 2R 2h2π2t 2解析 (1)由自由落体运动规律有:h =gt 2,所以有:g =.122ht 2(2)月球的第一宇宙速度为近月卫星的运行速度,根据重力提供向心力mg =m ,v 12R 所以:v 1==gR 2hRt 2在月球表面的物体受到的重力等于万有引力,则有:mg =GMm R 2所以M =.2R 2hGt 2(3)月球同步卫星绕月球做匀速圆周运动,根据万有引力提供向心力有:=m (R +h ′)GMm(R +h ′)24π2T 2解得h ′=-R .3T 2R 2h2π2t 213.(多选)(2019·全国卷Ⅰ·21)在星球M 上将一轻弹簧竖直固定在水平桌面上,把物体P 轻放在弹簧上端,P 由静止向下运动,物体的加速度a 与弹簧的压缩量x 间的关系如图7中实线所示.在另一星球N上用完全相同的弹簧,改用物体Q 完成同样的过程,其a -x 关系如图中虚线所示.假设两星球均为质量均匀分布的球体.已知星球M 的半径是星球N 的3倍,则( )图7A .M 与N 的密度相等B .Q 的质量是P 的3倍C .Q 下落过程中的最大动能是P 的4倍D .Q 下落过程中弹簧的最大压缩量是P 的4倍答案 AC解析 设物体P 、Q 的质量分别为m P 、m Q ;星球M 、N 的质量分别为M 1、M 2,半径分别为R 1、R 2,密度分别为ρ1、ρ2;M 、N 表面的重力加速度分别为g 1、g 2.在星球M 上,弹簧压缩量为0时有m P g 1=3m P a 0,所以g 1=3a 0=G ,密度ρ1==;在星球N 上,M 1R 12M 143πR 139a 04πGR 1弹簧压缩量为0时有m Q g 2=m Q a 0,所以g 2=a 0=G ,密度ρ2==;因为M 2R 22M 243πR 233a 04πGR 2R 1=3R 2,所以ρ1=ρ2,选项A 正确;当物体的加速度为0时有m P g 1=3m P a 0=kx 0,m Q g 2=m Q a 0=2kx 0,解得m Q =6m P ,选项B 错误;根据a -x 图线与x轴围成图形的面积和质量的乘积表示合外力做的功可知,E km P =m P a 0x 0,E km Q =m Q a 0x 0,所32以E km Q =4E km P ,选项C 正确;根据运动的对称性可知,Q 下落时弹簧的最大压缩量为4x 0,P 下落时弹簧的最大压缩量为2x 0,选项D 错误.。
避躲市安闲阳光实验学校第五单元 万有引力定律 人造地球卫星『夯实基础知识』1.开普勒行星运动三定律简介(轨道、面积、比值) 2.万有引力定律及其应用(1) 内容:(2)定律的适用条件: (3) 地球自转对地表物体重力的影响。
地面附近:G2R Mm= mg ⇒GM=gR 2 (黄金代换式) (1)天体表面重力加速度问题 (2)计算中心天体的质量 (3)计算中心天体的密度 (4)发现未知天体 3、人造地球卫星。
1、卫星的轨道平面:由于地球卫星做圆周运动的向心力是由万有引力提供的,所以卫星的轨道平面一定过地球球心,球球心一定在卫星的轨道平面内。
2、原理:由于卫星绕地球做匀速圆周运动,所以地球对卫星的引力充当卫星所需的向心力,于是有实际是牛顿第二定律的具体体现3、表征卫星运动的物理量:线速度、角速度、周期等: 应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s , 地球表面半径6.4x103km 表面重力加速度g=9.8 m/s 2月球公转周期30天4.宇宙速度及其意义(1)三个宇宙速度的值分别为(2)当发射速度v 与宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同5.同步卫星(所有的通迅卫星都为同步卫星) ⑴同步卫星。
⑵特点 『题型解析』【例题1】下列关于万有引力公式221r m m GF =的说法中正确的是( )A .公式只适用于星球之间的引力计算,不适用于质量较小的物体B .当两物体间的距离趋近于零时,万有引力趋近于无穷大C .两物体间的万有引力也符合牛顿第三定律D .公式中万有引力常量G 的值是牛顿规定的【例题2】设想把质量为m 的物体,放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是( )A .2R GMmB .无穷大C .零D .无法确定【例题3】设想人类开发月球,不断地把月球上的矿藏搬运到地球上.假如经过长时间开采后,地球仍可看成均匀球体,月球仍沿开采前的圆轨道运动则与开采前比较A .地球与月球间的万有引力将变大B .地球与月球间的万有引力将减小C .月球绕地球运动的周期将变长D .月球绕地球运动的周期将变短表面重力加速度:轨道重力加速度:【例题4】设地球表面的重力加速度为g ,物体在距地心4R (R 是地球半径)处,由于地球的引力作用而产生的重力加速度g ,,则g/g ,为( )A 、1;B 、1/9;C 、1/4;D 、1/16。
人造卫星宇宙速度素养目标:1.会比较卫星运行的各物理量之间的关系。
2.理解三种宇宙速度,并会求解第一宇宙速度的大小。
3.会分析天体的“追及”问题。
1.北京时间2024年5月3日17时27分,长征五号遥五运载火箭在我国文昌航天发射场点火升空,嫦娥六号顺利发射。
如图所示,嫦娥六号探测器进行多次变轨修正之后,“着陆器、上升器组合体”降落月球表面,下列关于嫦娥六号探测器的说法正确的是( )A.在地球上的发射速度一定大于第二宇宙速度B.在P点由轨道1进入轨道2需要加速C.在轨道1与轨道2上经过P点时,机械能相同D.在轨道2上运行时经过P点时的速度小于经过Q点时的速度【答案】D【解析】A.嫦娥六号发射出去后绕地球做椭圆运动,没有离开地球束缚,故嫦娥六号的发射速度大于第一宇宙速度7.9km/s,小于第二宇宙速度11.2km/s。
故A错误;BC.嫦娥六号在轨道1上的P点处减速,使万有引力大于向心力做近心运动,才能进入轨道2,嫦娥六号的机械能减小,则在轨道1与轨道2上经过P点时,机械能不相等。
故BC 错误;D.由开普勒第二定律可知,在轨道2上运行经过P点时的速度小于经过Q点时的速度。
故D正确。
故选D。
考点一 卫星运行参量的分析1.基本公式(1)线速度大小:由G Mmr 2=m v 2r得v(2)角速度:由GMm r 2=mω2r 得ω(3)周期:由G Mmr 2=m (2πT )2r 得T =(4)向心加速度:由GMm r 2=ma n 得a n =GM r 2。
结论:同一中心天体的不同卫星,轨道半径r 越大,v 、ω、a n 越小,T 越大,即越高越慢。
2.“黄金代换式”的应用忽略中心天体自转影响,则有mg =G Mm R 2,整理可得GM =gR 2。
在引力常量G 和中心天体质量M 未知时,可用gR 2替换GM 。
3.人造卫星卫星运行的轨道平面一定通过地心,一般分为赤道轨道、极地轨道和其他轨道,同步卫星中的静止卫星的轨道是赤道轨道。
高三物理人造卫星知识点人造卫星作为现代科技发展的重要成果之一,在人类的通信、观测、导航等领域发挥着重要的作用。
作为高三物理学生,了解人造卫星的相关知识点对于我们深入理解和应用物理学知识有着积极的意义。
本文将介绍一些高三物理人造卫星的知识点。
一、人造卫星的概念与分类人造卫星是由人类制造并发送到地球轨道上的人造物体。
根据其功能和用途的不同,人造卫星可以分为通信卫星、导航卫星、气象卫星和科学卫星等多个类别。
通信卫星用于实现长距离的通信传输,导航卫星主要用于导航和定位,气象卫星则用于收集地球大气层的各种信息,而科学卫星则用于物理、天文、地理等领域的科学研究。
二、人造卫星的构造和工作原理人造卫星主要由天线、动力系统、能源系统、控制系统和载荷系统等组成。
其中,天线用于接收和发送信号,动力系统提供卫星运动所需的动力,能源系统则负责供应电能,控制系统用于卫星的导航和定位,载荷系统则是卫星的主要功能负载,如进行通信、气象观测等。
人造卫星的工作原理包括发射、轨道、通信和数据处理等多个环节。
首先,卫星通过运载火箭进入预定轨道,然后进入稳定轨道进行工作。
在轨道上,卫星利用天线进行通信,收集和发送各种信号。
收集到的信号经过数据处理后,再传送回地面站进行解析和利用。
三、卫星的运行机制和定位方法人造卫星的运行机制主要依靠地球引力和离心力的平衡。
由于地球的引力作用,卫星在轨道上绕地运动;同时,离心力的作用则保持卫星维持在稳定轨道上运行。
通过综合考虑地球引力和离心力,可以实现卫星的运行和定位。
卫星的定位方法有多种,常见的有GPS(全球定位系统)定位和GLONASS(俄罗斯全球导航卫星系统)定位。
这些定位方法利用卫星之间的测距和信号传输时间差进行计算,进而确定接收地点的精确位置坐标。
四、卫星的应用领域和前景展望人造卫星广泛应用于通信、导航、气象、科研等领域。
通信卫星实现了全球范围内的通信传输,使得距离不再是信息交流的障碍;导航卫星则为车辆导航、航空航海等提供了准确的定位服务;气象卫星可以及时获取气象信息,对气候预测和灾害防范起着重要作用;科学卫星则展开了一系列深空探索和地球观测等科学研究。
高中物理:人造卫星【知识点的认识】人造卫星的加速度、周期和轨道的关系1.卫星的各物理量随轨道半径的变化而变化的规律(1)向心力和向心加速度:向心力是由万有引力充当的,即,再根据牛顿第二定律可得,随着轨道半径的增加,卫星的向心力和向心加速度都减小。
(2)线速度v:由得,随着轨道半径的增加,卫星的线速度减小。
(3)角速度ω:由得,随着轨道半径的增加,做匀速圆周运动的卫星的角速度减小。
(4)周期T:由得,随着轨道半径的增加,卫星的周期增大。
注意:上述讨论都是卫星做匀速圆周运动的情况,而非变轨时的情况。
【命题方向】与轨道半径r的关系:常考题型是卫星的v、ω、T、a向如图。
地球赤道上的山丘e,近地资源卫星p和同步通信卫星q均在赤道平面上绕地心做匀速圆周运动。
设e、p、q,的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则()A.v1>v2>v3B.v1<v2<v3C.a1>a2>a3D.a1<a3<a2分析:要比较线速度的大小关系,可根据p和q是万有引力完全提供向心力,解得v=;而e和q相同的是角速度,根据v=ωR可以得出结论。
不能比较e和p,因为e所受的万有引力不但提供向心力,而且提供重力。
对于p和q来说有=ma,可得a=;根据a=ω2R比较a1和a3。
解:对于卫星来说根据万有引力提供向心力有解得v=故卫星的轨道半R径越大,卫星的线速度v越小。
由于近地资源卫星p的轨道半径小于同步通信卫星q的轨道半径,故同步卫星q的线速度v3小于近地资源卫星p的线速度v2,即v3<v2。
由于同步通信卫星q和赤道上的山丘e的角速度相同,到地心的距离R q>R e即ωe=ωq根据v=ωR可得v1=ωe R ev2=ωq R q即v2>v1故A、B错误。
对于p和q来说有=ma可得a=由于R p<R q则a p>a q即a2>a3根据a=ω2R由于R q>R e可得a q>a e即a3>a1故a2>a3>a1故C错误,D正确。
人造地球卫星的分类人造卫星的分类,可以安装用途,运行轨道等分来,不过在我们高中物理中更加侧重对人造卫星运行轨道的研究,所以,我们就按照卫星的运行方式给予分类(1)、地球同步卫星:①、同步卫星的概念:所谓地球同步卫星,是指相对于地球静止、处在特定高度的轨道上、具有特定速度且与地球具有相同周期、相同角速度的卫星的一种。
②、同步卫星的特性:不快不慢------具有特定的运行线速度(V=3100m/s)、特定的角速度(ω=7.26x10-5ra d/s )和特定的周期(T=24小时)。
不高不低------具有特定的位置高度和轨道半径,高度H=3.58 x107m, 轨道半径r=4.22 x107m.不偏不倚------同步卫星的运行轨道平面必须处于地球赤道平面上,轨道中心与地心重合,只能‘静止’在赤道上方的特定的点上。
证明如下:如图4-1所示,假设卫星在轨道A上跟着地球的自转同步地匀速圆周运动,卫星运动的向心力来自地球对它的引力F引,F引中除用来作向心力的F1外,还有另一分力F2,由于F2的作用将使卫星运行轨道靠向赤道,只有赤道上空,同步卫星才可能在稳定的轨道上运行。
由得∴h=R-R地是一个定值。
(h是同步卫星距离地面的高度) 因此,同步卫星一定具有特定的位置高度和轨道半径。
= 3 \* GB3 ③、同步卫星的科学应用:同步卫星一般应用于通讯与气象预报,高中物理中出现的通讯卫星与气象卫星一般是指同步卫星。
(2)、一般卫星:①、定义:一般卫星指的是,能围绕地球做圆周运动,其轨道半径、轨道平面、运行速度、运行周期各不相同的一些卫星。
②、、卫星绕行速度与半径的关系:由得:即(r越大v越小)③、、卫星绕行角速度与半径的关系:由得:即;(r越大ω越小)④、、卫星绕行周期与半径的关系:由得:即(r越大T越大),(3)双星问题两颗靠得很近的、质量可以相比的、相互绕着两者连线上某点做匀速圆周运的星体,叫做双星.双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供.由于引力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,因两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,线速度与两子星的轨道半径成正比.。
与人造卫星轨道有关的物理知识一、引言人造卫星是由人类发射到地球轨道上的人造飞行器。
它们被用于多种用途,如通信、导航、气象观测、科学研究等。
人造卫星的轨道是其运行的路径,与许多物理原理和概念相关。
二、轨道的类型人造卫星的轨道可以分为地心轨道和地球同步轨道两大类。
1. 地心轨道地心轨道是指卫星绕地球飞行的轨道。
常见的地心轨道有低地球轨道(LEO)、中地球轨道(MEO)和高地球轨道(GEO)。
- 低地球轨道(LEO):位于地球表面上方约500公里至1500公里的轨道。
这种轨道对于观测卫星和通信卫星很有用,因为它们可以更接近地球表面,提供更高的分辨率和更低的信号延迟。
- 中地球轨道(MEO):位于地球表面上方约10000公里至20000公里的轨道。
这种轨道主要用于导航卫星,如全球定位系统(GPS)。
- 高地球轨道(GEO):位于地球表面上方约36000公里的轨道。
这种轨道对于通信卫星最有用,因为它们可以保持与地球上某一固定点的位置相对稳定。
2. 地球同步轨道地球同步轨道是指卫星的轨道与地球自转周期相同,从地面上看,卫星似乎固定在某一点上。
这种轨道对于气象卫星非常重要,因为它们可以提供持续的观测和监测。
三、轨道的稳定性人造卫星的轨道稳定性是其正常运行的关键。
轨道稳定性取决于卫星所受到的引力和离心力的平衡。
1. 引力地球对卫星施加引力,使卫星在轨道上绕地球运动。
根据万有引力定律,引力与卫星和地球质量的乘积成正比,与距离的平方成反比。
2. 离心力卫星在轨道上的运动同时受到离心力的影响。
离心力是由于卫星绕地球运动而产生的离心效应。
离心力与卫星的质量和轨道半径的平方成正比。
3. 平衡卫星轨道的稳定性取决于引力和离心力之间的平衡。
如果离心力超过引力,卫星将离开轨道并飞离地球;如果引力超过离心力,卫星将坠入地球。
四、轨道的调整为了保持卫星在预定轨道上稳定运行,需要进行轨道调整。
1. 推进剂卫星上配备了推进剂,用于调整轨道。
人造卫星运动物理知识点
人造卫星是由人类制造并发射到地球轨道上的人工设备。
它们承载着各种任务,包括通信、导航、科学研究等。
为了正确设计和控制卫星的轨道,我们需要了解一些有关人造卫星运动的物理知识点。
1.地球引力地球对卫星的运动起着重要的作用。
根据万有引力定律,
地球对卫星施加一个向心力,使得卫星绕地球运动。
这个向心力的大小与卫星与地球的距离有关,距离越近,向心力越大。
2.地球的形状地球并不是一个完全的球体,而是稍微扁平的。
这意味
着地球的赤道半径略大于极半径。
由于地球的形状不规则,卫星在地球引力的作用下会受到一些扰动,这被称为“地球形状扰动”。
3.卫星轨道类型卫星的运动轨道可以分为不同类型,包括地球同步轨
道、低地球轨道、中地球轨道等。
不同类型的轨道都有不同的特点和用途。
例如,地球同步轨道的卫星可以与地球保持相对静止,用于通信和气象观测。
4.卫星速度卫星的速度也是决定其运动轨道的重要因素之一。
卫星的
速度必须足够大,以克服地球引力,并保持在所需的轨道上。
如果卫星速度过小,将会落回地球;如果速度过大,卫星将失去控制并飞离轨道。
5.卫星的稳定性卫星在轨道上的运动必须保持稳定。
任何可能引起卫
星偏离轨道的扰动都需要被纳入考虑范围。
这些扰动包括地球的引力、太阳、月球的引力、大气阻力、太阳风等。
为了保持卫星的稳定性,需要根据这些扰动因素进行轨道调整。
6.轨道调整为了保持卫星的轨道稳定,可能需要进行轨道调整。
这可
以通过推进剂进行,例如喷射气体或火箭引擎。
通过调整卫星的速度和方向,可以确保卫星保持在所需的轨道上。
总结起来,人造卫星的运动与地球的引力、地球的形状、卫星的速度以及其他
扰动因素有关。
了解这些物理知识点对于设计和控制卫星的轨道非常重要。
通过正确应用这些知识,可以确保卫星能够顺利地完成其任务,并保持在所需的轨道上。