电路分析10-4
- 格式:ppt
- 大小:1.00 MB
- 文档页数:10
《电路分析基础》各章习题参考答案第1章习题参考答案1-1 (1) SOW; (2) 300 V、25V,200V、75V; (3) R=12.50, R3=1000, R4=37.5021-2 V =8.S V, V =8.S V, V =0.S V, V =-12V, V =-19V, V =21.S V U =8V, U =12.5,A mB D 'AB B CU =-27.S VDA1-3 Li=204 V, E=205 V1-4 (1) V A=lOO V ,V=99V ,V c=97V ,V0=7V ,V E=S V ,V F=l V ,U A F=99V ,U c E=92V ,U8E=94V,8U BF=98V, u cA=-3 V; (2) V c=90V, V B=92V, V A=93V, V E=-2V, V F=-6V, V G=-7V, U A F=99V, u c E=92V, U B E=94V, U BF=98V, U C A =-3 V1-5 R=806.70, 1=0.27A1-6 1=4A ,11 =llA ,l2=19A1-7 (a) U=6V, (b) U=24 V, (c) R=SO, (d) 1=23.SA1-8 (1) i6=-1A; (2) u4=10V ,u6=3 V; (3) Pl =-2W发出,P2=6W吸收,P3=16W吸收,P4=-lOW发出,PS=-7W发出,PG=-3W发出1-9 l=lA, U5=134V, R=7.801-10 S断开:UAB=-4.SV, UA0=-12V, UB0=-7.2V; S闭合:12 V, 12 V, 0 V1-12 UAB=llV / 12=0.SA / 13=4.SA / R3=2.401-13 R1 =19.88k0, R2=20 kO1-14 RPl=11.110, RP2=1000第2章习题参考答案2-1 2.40, SA2-2 (1) 4V ,2V ,1 V; (2) 40mA ,20mA ,lOmA 2-3 1.50 ,2A ,1/3A2-4 60 I 3602-5 2A, lA2-6 lA2-7 2A2-8 lOA2-9 l1=1.4A, l2=1.6A, l3=0.2A2-10 11=OA I l2=-3A I p l =OW I P2=-l8W2-11 11 =-lA, l2=-2A I E3=10V2-12 11=6A, l2=-3A I l3=3A2-13 11 =2A, l2=1A ,l3=1A ,14 =2A, l5=1A2-14 URL =30V I 11=2.SA I l2=-35A I I L =7.SA2-15 U ab=6V, 11=1.SA, 12=-lA, 13=0.SA2-16 11 =6A, l2=-3A I l3=3A2-17 1=4/SA, l2=-3/4A ,l3=2A ,14=31/20A ,l5=-11/4A12-18 1=0.SA I l2=-0.25A12-19 l=1A32-20 1=-lA52-21 (1) l=0A, U ab=O V; (2) l5=1A, U ab=llV。
第一章答案一、(1)(c) (2)(c) (3)(b) (4)(c) (5)(d) (6)(a) 7(d)二、(1)4Ω(2)4A(3)7V,7Ω(4)(5)40W (6)5Ω,20Ω三、1.解:电路为一平衡电桥,c、d两点为等位点。
将连接于c、d间的支路断开,可得2.解:如图2所示。
图2求的电路可改画为图2(a),则求的电路可改画为图2(b),则求的电路可改画为图2(c),则3.解:(1)由题3图(a),有(2) 应用Y–Δ等效变换,将题3图(b)电路等效变换为图3(c),则图3(c)4.解:将无限网络看成无限多个梯形节组成,每一节如图4虚线框中所示。
当去掉第一节后,从cd 看去仍是个无限网络,应有。
作出图4(a)的等效电路如图4(b)所示。
图4则解,得5.解:(1)题图5(a)所示电路的简化过程如图所示。
图5(a)(2)图5(b)所示电路的简化过程如图5(b)所示。
图5(b)(3)图5(c)所示电路的简化过程如图5(c)所示。
图5(c)6.解:应用电源等效变换,将题6图所示电路等效为图6(a)所示电路。
图6(a)由KVL,有7.解:应用电源等效变换及电阻串并联,先将题7图所示电路等效为图7(a)所示电路。
(由于待求量I、U所在支路属于2U受控源与2Ω并联支路的外电路,故求I、U时可将与受控源并联的2Ω电阻去掉)(a) (b)图7由KVL,有将代入上式,得再由7(b)所示电路求出受控源支路的电流。
由KCL,有受控源的功率为(发出功率)8、解:在端口加一电压源U,流过电流I,如图8所示。
(a) (b) (c) 图8(1)由KCL,有把代入上式,得由KVL,有(2)由KCL,有 (1)由KVL,有 (2)(1)式代入(2)式,得由KVL,有(3)由KCL,有(3)(4)由KVL,有(5)把(3)、(4)代入上式,得(6) 把(3)、(6)式代入(5)式,得9、解:15V电压源、4A电流源单独作用时的电路如图9(a)、(b)所示。
4-2 试用外施电源法求图题4-2 所示含源单口网络VCR ,并绘出伏安特性曲线。
解:图中u 可认为是外加电压源的电压。
根据图中u 所示的参考方向。
可列出(3)(6)(5)20(9)50u i i A VA i V=Ω+Ω++=+4-5试设法利用置换定理求解图题4-5所示电路中的电压0u 。
何处划分为好?置换时用电压源还是电流源为好?解:试从下图虚线处将电路划分成两部分,对网路N 1有(节点法)1111967(11)uu u u i ⎧⎛⎫+-=⎪⎪+⎝⎭⎨⎪-++=-⎩ 整理得:1511714u i =- 对网络2N 有251133u i i i =⨯+⨯=解得3i A =,用3A 电流源置换N 1较为方便,置换后利用分流关系,可得:()121031V 1V u +=⨯⨯=4-9 求图题4-7所示电路的输入电阻R i ,已知0.99α=解: 施加电源t u 于输入端可列出网孔方程:12335121(25100)100 (1)100(100100101010)100.990(2)t i i u i i i +-=-++⨯+⨯-⨯=将(2)代入(1)得135ti u R i ==Ω4-14求图题4-10所示各电路的等效电路。
解解: 图(a):因电压的计算与路径无关,所以[5(1)]4(13)4ad ac cd ad ab bd u u u V V u u u V V=+=---=-=+=--=-图(b): 流出a 点的电流(521)8a i A =++=,流入b 点多的电流(541)8b i A =+-=。
所以ab 之间的等效电路为8A 的电流源,电流从b 端流出。
图(c):导线短接。
4-23 电路如图题4-15 所示,已知非线性元件A 的VCR 为2u i =。
试求u ,i ,i 1.解: 断开A ,求得等效内阻:1o R =Ω 开路电压a u 所满足的方程:()(11)12111/21c a c a u u u u +-⨯=⎧⎪⎨-⨯++=⎪⎩ 求得2a u V =,最后将A 接到等效电源上,如上图所示。
4-2.5μF 电容的端电压如图示。
(1)绘出电流波形图。
(2)确定2μs t =和10μs t =时电容的储能。
解:(1)由电压波形图写出电容端电压的表达式:10 0μs 1μs10 1μs 3μs ()1040 3μs 4μs 0 4μs t t t u t t t t≤≤⎧⎪≤≤⎪=⎨-+≤≤⎪⎪≤⎩式中时间t 的单位为微秒;电压的单位为毫伏。
电容伏安关系的微分形式:50 0μs 1μs 0 1μs 3μs()()50 3μs 4μs 0 4μs t t du t i t C t dt t<<⎧⎪<<⎪==⎨-<<⎪⎪<⎩上式中时间的单位为微秒;电压的单位为毫伏;电容的单位为微法拉;电流的单位为毫安。
电容电流的波形如右图所示。
(2)电容的储能21()()2w t Cu t =,即电容储能与电容端电压的平方成正比。
当2μs t =时,电容端电压为10毫伏,故:()()22631010μs 11()5101010 2.510J 22t w t Cu ---===⨯⨯⨯⨯=⨯当10μs t =时,电容的端电压为0,故当10μs t =时电容的储能为0。
4-3.定值电流4A 从t=0开始对2F 电容充电,问:(1)10秒后电容的储能是多少100秒后电容的储能是多少设电容初始电压为0。
解:电容端电压:()()()00110422t tC C u t u i d d t C τττ+++=+==⎰⎰;()1021020V C u =⨯=; ()1002100200V C u =⨯=()()211010400J 2C w Cu ==; ()()2110010040000J 2C w Cu ==4-6.通过3mH 电感的电流波形如图示。
(1)试求电感端电压()L u t ,并绘出波形图;(2)试求电感功率()L p t ,并绘出波形图;(3)试求电感储能()L w t ,并绘出波形图。
电路中的电势分析在电路分析和计算中,对电路中各点电势高低的分析,往往是正确分析电路结构,判断电流的流向,计算两点间的电势差的基础和关键.下面分别对电路中电势分析的方法,以及电势分析在电路分析和计算中的运用作些说明.一、电路中电势分析的方法在闭合电路中,电源两极的正、负电荷沿电路建立电场,其中电源的正极电势最高,负极的电势最低,分析电路中其它各点电势高低的分布,要把握如下两个要点:1.在外电路中,电流由电势高的正极流向电势低的负极.这之中每流经电阻R,沿电流的方向电势降低,降低的数值等于IR.2.电流流经电动势为ε、内电阻为r的电源时,沿着电流从负极流入由正极流出的方向,电势升高的数值等于电动势ε,同时在内电阻上电势降低的数值等于Ir,即电势升高的数值等于ε-Ir.[例1]如图1所示电路中,电源的电动势ε1= 6.0V,ε2= 4.0V,内电阻r1= r2=1.0Ω,电阻R1= R3= 6.0Ω,R2= 3.0Ω.若c点接地,试比较a、b、d三点电势的高低.[解析]电路中的电流为c点接地,该点电势为零,即U c=0.比较a、b、d三点电势的高低,可选择一段相应的电路,根据前面指出的两点,列出电势升降方程分析判断.在dC段电路上,沿电流方向由d点到c点,电势升高的数值为ε2—Ir2.据此列出的电势升降方程为:U d+ (ε2—Ir2),解得d点电势为U d= U c- (ε2- Ir2) =[0 - (4.0 - 1.0×1.0)]V= -3.0V在ad段电路上,沿电流方向由a点到d点,电势降低的数值为IR3,其电势升降方程为:U a- IR3= U d.解得a点电势为U a= U d+ IR3= ( -3.0 + 1.0×6.0)V= 3.0V在ab段电路上,沿电流方向由b点到a点,电势升高的数值为ε1-Ir1,其电势升降方程为:U b+ (ε1- I r1) = U a.解得b点电势为U b= U a- (ε1- Ir1) = [3.0 - (6.0 - 1.0×1.0)]V=-2.0V综合上述分析可判知:a、b、d三点电势高低的关系为U a>U b>U d.二、电路中电势分析的应用在电路分析和计算中,常涉及到电路结构分析、电流流向判断、不同支路上两点间电势差的计算这样一些问题,这些都与对电路中各点电势高低的分析是密不可分的.下面通过例题来说明电路中电势分析的具体应用.[例2]如图2所示,一段由电阻R1、R2、R3和R4组成的电路.试分析这段电路的结构.[解析]分析一段电路的结构,即分析这段电路中各电阻之间的连接关系,这是正确进行电路计算的基础.分析一段电路上各点电势高低的分布,是分析这段电路结构的基本方法.在图2所示电路中,设a点电势最高,e点电势最低,即U a>U e.a点和c点间用电阻不计的导线连接,a点和c点为等电势点,即U a= U c.同理,b点和d点为等电势点,即U b= U d.由U a>U e可判知,这段电路中的电流将由a、c两点经b、d两点流向e点.再由电流流经电阻时,沿电流方向电势降低即可判知,这段电路中各点电势高低分布的情况是:U a=U c>U b=U d>U e.在完成电势分析后,可将电路中a、d、e三个电势高低不同的点选出,如图3所示重新排列.然后再将电路中的各电阻对应画在a、d、e三点间,采用这样的方法将原电路改画后,各电阻间的连接关系便一目了然了.[例3]如图4所示电路中,己知I = 3.0A,I1= 2.0A,电阻R1= 10Ω,R2= 5.0Ω,R3= 30Ω.求流过电流表A的电流大小和方向.<[解析]设a点电势为零,即U a=0.电流I l由a点经R1流到b点,电势降低的数值为I1R1,则b点电势为U b= U a- I1R1=(0 - 2.0×10)V = -20V流过R2的电流I2= I - I1= 1.0A,电流I2由a点经R2流到C点,电势降低的数值为I2 R2,则C点电势为U c= U a- I2R2- (0 - 1.0×5.0)V= -5.0V由U c>U b可判知,流过R3的电流I3由c流向b.再由c、b两点间的电势差U c b = U c - U b= [(-5.0)-(-20)]V=15V,可求出流过R3的电流对c点来说,流入c点的电流一定等于流出c点的电流,现流入c点的电流I2大于流出c点的电流I3,由此判知从c点有一部分电流经电流表A流出,且流过电流表A的电流为I a= I2- I3= (1.0 - 0.50 )A = 0.50A电流I3的方向由c到d.从本题中清楚地看到,要判断局部电路中电流的流向,必须分析局部电路两端的电势高低,为了帮助读者掌握这一思路和方法,请读者自行分析如图5所示电路中,合上开关S的瞬间,通过开关S的电流的方向;然后再分析合上开关S后,通过开关S的电流的方向.(答案均为由b 流向a)[例4]如图6所示电路中,电源电动势ε=10V,内电阻不计,电阻R1=14Ω,R2= 6.0Ω,R3= 2.0Ω,R4= 8.0Ω,R5= 10Ω,电容器的电容C = 2.0μF.求(1)电容器所带的电量?说明电容器哪个极板带正电?(2)若R1突然断路,将有多少电量通过R5?[解析]涉及电路中接有电容器的问题,要注意两点:①注意分析加在电容器两板间的电压,等于电路中哪两点间的电势差,如果电容器两板分别接在不同支路的两点上,必须通过电势分析求出两点间的电势差.②电容器充放电达到稳定后,由于电容器的隔直作用,在电容器所在的支路中没有电流.(1)设d点电势为零,即U d=0.在a、b两点间电容器所在支路中,电流为零,R5两端等电势,因而加在电容器两板间的电压即为a、b两点间的电势差.电流由a点经R2流到d点,电势降低的数值即为R2两端电压,则a点电势为电流由b点经R4流到d点,电势降低的数值即为R4两端电压,则b点电势为由U b>U a判知,电容器下板带正电.再由b、a两点间的电势差U ba= U b- U a= 5.0V,可求出电容器所带的电量为Q = Cu ba= ( 2.0×10-6×5.0) C = 1.0×10-5 C(2)在接有电容器的电路中,当电路结构或状态发生变化时,一般电容器要经历一次充电或放电过程,之后电容所带电量再次达到稳定.本题中,R1断路,当电容器带电再度达到稳定后,加在电容器两板间的电压等于R4两端的电压,此时电容器所带电量为由U b>U d可知,电容器下板仍带正电.由Q'>Q判知,R1断路后电容器经历了一次再充电的过程,电容器极板上所增加的电量,即为电容器在R1断路前后所带电量之差.据此通过R5的电量为q = Q'-Q =(1.6×10-5-1.0×10-5)C = 6.0×10-6 C最后还需强调的一点是,在分析电路各点电势,对于等电势点的分析是十分重要的,在例题2和例题4中都涉及到这一点.出现在电路中的等势点,往往是用电阻不计的导线连接的两个点,或者是没有电流通过的电阻两端,要注意掌握根据上述两种情况来分析判断等电势点.。