11kV配电线路的雷电感应过电压特性
- 格式:pdf
- 大小:130.31 KB
- 文档页数:1
第25卷 第1期2021年1月 电 机 与 控 制 学 报Electric Machines and ControlVol 25No 1Jan.202110kV运行配电线路雷电感应过电压波形在线监测王建国, 王守鹏, 蔡力, 孔争, 樊亚东(武汉大学电气与自动化学院,武汉430072)摘 要:雷电感应过电压是造成配电网故障的重要原因之一,针对雷电感应过电压波形特征不清晰的问题,作者采用过电压在线监测系统,对实际运行的佛山10kV富油甲线雷电感应过电压波形进行观测,根据波形特征给出了过电压的波形参数。
结果表明,配电线路各相感应电压叠加在运行电压波形上,不同相上感应过电压与对应的回击电流在幅度、时间间隔和波形上都存在同时性,该线路观测的雷电感应电压波形表现为波头时间短、后续发生双极性高频振荡并逐渐转变为低频振荡的波形特点,首次回击感应过电压幅值大于后续回击过电压幅值,首次回击过电压的波头时间比后续过电压长,观测结果对于配电线路雷电保护具有重要意义。
关键词:配电线路;雷电过电压;在线监测;波形特征;过电压幅值;波头时间DOI:10.15938/j.emc.2021.01.001中图分类号:TM866文献标志码:A文章编号:1007-449X(2021)01-0001-07收稿日期:2019-11-26基金项目:国家自然科学基金(51807144)作者简介:王建国(1968—),男,博士,教授,博士生导师,研究方向为雷电防护与接地技术、高电压绝缘与测试技术;王守鹏(1994—),男,硕士,研究方向为配电线路雷电过电压;蔡 力(1987—),男,博士,副教授,研究方向为雷电物理与雷电探测技术、雷高电压试验技术;孔 争(1990—),男,硕士,研究方向为配电线路雷电过电压;樊亚东(1967—),女,博士,教授,博士生导师,研究方向为工程电磁场及应用、雷电防护与接地技术。
通信作者:蔡 力On linemonitoringoflightninginducedvoltagewaveformon10kVdistributionlinesWANGJian guo, WANGShou peng, CAILi, KONGZheng, FANYa dong(SchoolofElectricalEngineeringandAutomation,WuhanUniversity,Wuhan430072,China)Abstract:Lightningover voltageisamaincauseofdistributionnetworkfault.Aimingattheproblemthatthewaveformcharacteristicsoflightninginducedover voltagearenotclear,theon lineover voltagemo nitoringsystemwasusedtoobservethelightninginducedover voltagewaveformof10kVFuyoujialineinFoshancity,andthewaveformparametersofover voltageweregivenaccordingtothewaveformcharacter istics.Theresultsshowthattheinducedvoltageofeachphaseofthedistributionlineissuperimposedontheoperationvoltagewaveform,andtheinducedover voltageondifferentphasesandthecorrespondingreturnstrokecurrenthavesimultaneityinamplitude,timeintervalandwaveform.Thevoltagewaveformshowshortfronttime,bipolarhigh frequencyoscillationatwavetailwhichgraduallyconvertstolow fre quencyoscillation.Theamplitudeofthefirstover voltageisgreaterthanthatofthesubsequentover volt age.Thefronttimeofthefirstover voltageismuchlongerthanthatofthesubsequentover voltage.Theobservationresultsareofgreatsignificanceforlightningprotectionofdistributionline.Keywords:distributionline;lightninginducedover voltage;on linemonitoring;waveformcharacteris tics;theamplitudeoftheover voltage;thefronttimeoftheover voltage0 引 言雷电过电压是配电线路故障及电气设备损坏的主要因素之一[1-2]。
浅谈低压配电线路的雷电过电压保护问题电源线路因多种原因产生脉冲过电压,如不采取有效措施,不仅直接威胁用电设备的安全,甚至还可能危及操作人员的生命安全。
文章通过对电源线路脉冲过电压产生的原因、如何抑制方法的分析,结合多部防雷技术规范的要求,对多年来防雷施工图审核中遇到的各种问题提出修改意见,供防雷设计、施工、施工图审核的同行参考和商讨。
标签:电源线路过电压;低压配电系统防雷技术;分析1 电源线路上脉冲过电压的产生供电回路或回路负荷的突然变化,特别是感性负荷的频繁操作,在电源线路上产生很强的反电动势,叠加到电源电压上,形成脉冲过电压;负荷(特别是大容量的负荷)电源插头座间的接触不良也会产生火花放电,形成脉冲过电压;积累大量静电荷的金属导体放电也会产生脉冲过电压;雷电产生的脉冲过电压,上述方式都将在电源线路上产生过电压。
其中雷电以如下方式产生脉冲过电压:(1)当雷击发生在电源、信号线路或附近时,在线路上会产生很强的雷电流,以波的形式沿线路快速传输,使线路和大地间形成很高的电位差,也可能产生很强的脉冲雷电流流过负载;(2)静电感应:雷云形成时,受云中电荷吸引,在下方导线上产生异性电荷接闪时空中雷云电荷中和,瞬间消失,线路上的感应电荷来不及释放,线地间产生很强的静电感应电压;(3)雷电感应:雷电接闪时会向周围空中发射很强的电磁波,频带可达几百kHz以上,幅度随着频率降低,电磁波传播距离可达几百公里以上。
雷电波不仅干扰通信设备和其它电子设备的工作,而且在周围导体上会产生很强的感应电动势,在电源、信号线路上产生感应电压。
电源、信号线路上产生脉冲过电压的原因很多,当其超过设备的承受能力,设备就会损坏。
随着科学技术的快速发展,以电子计算机为核心的电子产品日益广泛应用,雷电通过电源、信号线路对设备的危害越来越严重,为此,各种对应的防护办法相继产生。
在常用的方法中有等电位连接、屏蔽、将线路埋地引入等方法,在这里讲的是最常用的方法,即采用电涌保护器。
电气工程师-专业基础(供配电)-电气工程基础-4.9过电压及绝缘配合[单选题]1.电力系统内部过电压不包括()。
[2018年真题]A.操作过电压B.谐振过电压C.雷电过电压D(江南博哥).工频电压升高正确答案:C参考解析:电力系统过电压分为内部过电压和外部过电压(雷电过电压)。
内部过电压主要分两大类:①因操作或故障引起的暂态电压升高,称操作过电压。
②在暂态电压后出现的稳态性质的工频电压升高或谐振现象,称暂时过电压。
暂时过电压包括工频过电压和谐振过电压。
暂时过电压虽具有稳态性质,但只是短时存在或不允许其持久存在。
C项,雷电过电压属于外部过电压。
[单选题]2.避雷线架设原则正确的是()。
[2017年真题]A.330kV及以上架空线必须全线架设双避雷线进行保护B.110kV及以上架空线必须全线架设双避雷线进行保护C.35kV线路需要全线架设双避雷线进行保护D.220kV及以上架空线必须全线架设双避雷线进行保护正确答案:D参考解析:根据《交流电气装置的过电压保护和绝缘配合设计规范》(GB/T50064—2014)第5.3.1条第2款规定,少雷区除外的其他地区的220kV~750kV线路应沿全线架设双地线。
110kV线路可沿全线架设地线,在山区和强雷区宜架设双地线。
在少雷区可不沿全线架设地线,但应装设自动重合闸装置。
35kV及以下线路不宜全线架设地线。
[单选题]3.下面操作会产生谐振过电压的是()。
[2017年真题]A.突然甩负荷B.切除空载线路C.切除接有电磁式电压互感器的线路D.切除有载变压器正确答案:C参考解析:谐振过电压主要由变压器励磁电感与对地电容或电磁式电压互感器过饱和等引起。
A属于工频过电压,B、D属于操作过电压,C属于谐振过电压。
[单选题]4.电磁式电压互感器引发铁磁谐振的原因是()。
[2016年真题]A.非线性元件B.热量小C.故障时间长D.电压高正确答案:A参考解析:铁磁谐振是由铁芯电感元件,如发电机、变压器、电压互感器、消弧线圈等,与电力系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。
10 kV配电线路防雷分析计算作者:刘波崔朋来源:《硅谷》2014年第22期摘要本文针对以裸导线为主的10 kV配电线路进行实际运行情况研究,分析了雷电对配电线路的危害。
对常规的避雷器、降低接地电阻等防雷措施进行分析,由分析结果提出防雷措施的适用场合。
关键词 10 kV配电线路;防雷;分析中图分类号:TM862 文献标识码:A 文章编号:1671-7597(2014)22-0106-0110 kV配电线路能够可靠运行且安全供电,对人员安全和企业正常用电均具有重要意义[1]。
因此,为了降低雷电导致的跳闸,需要不断提高10 kV配电线路的防雷水平。
配电线路的安全可靠性、稳定运行、跳闸率的降低均与雷击损坏率密切相关[2]。
为了增强配电线路的防雷水平,应充分考虑线路的运行方式和重要程度,以及所在区域雷电环境、地形地貌的接地电阻等条件,结合以往的当地防雷操作经验积累,进行技术、经济、可操作性等多方面的比较,经充分比较分析后,确定合理有效、现有条件便于操作的保护措施[3]。
1 配电线路防雷水平性能指标用来表征配电线路的防雷能力的两个重要指标时防雷水平和跳闸率。
当雷击配电线路时,线路的防雷水平是此时绝缘子不发生闪络的最大电流值,当雷击线路产生的电流低于最大电流值时,不会产生闪络,否则必然会导致闪络。
雷击的跳闸率是指折算到40个雷雨天气下每100 km的配电线路在一年内由雷击导致的跳闸次数,跳闸率是表征防雷能力的综合指标。
因此,高的防雷水平和低的雷击跳闸率表征配电线路具有良好的防雷能力。
在考虑提高线路的防雷能力措施时,雷击的跳闸率是否能够得到降低是衡量防雷措施设计工作的重要指标。
2 雷击跳闸的条件当雷击配电线路时,线路上的雷击电流值超过最大电流值将导致闪络现象的发生。
闪络具有瞬态特性,持续冲击的时间很短,如果仅仅是闪络的出现一般不会导致跳闸事故的发生。
能引起配电线路跳闸的原因是由于雷击过电压产生的电弧引起的。
一般来说,10 kV配电线路不具备很高的绝缘条件,雷击会不可避免的引起线路对地的闪络,因此配电线路在雷击情况下跳闸必须要满足一下两个条件:第一个是雷击时引起冲击闪络,但是电压超过绝缘子产生的闪络是瞬态的,是微秒级的冲击,在这么短的时间段内,不会引起配电线路的跳闸事故;第二个是闪络转换为工频短路电流电弧,由于电弧持续时间较长,并且相较于闪络冲击更稳定,是导致配电线路跳闸的主要原因。
10kV配网线路防雷措施雷云击中杆塔、电力装置等物体时,强大的雷电流流过该物体泻入大地,在该物体上产生很高的电压降称为直击雷过电压。
由于线路的引雷特性,当雷击点与线路的最近距离小于65m时,雷电直击线路概率较大[1]。
雷电直击配电线路可产生远高于线路绝缘水平的过电压,通常会导致设备损坏。
(二)感应雷过电压当雷电击线路附近的大地时,导线上由于电磁感应产生过电压称为感应雷过电压。
配网线路中,感应过电压故障一般占雷击故障的 80% 以上[1]。
根据实测数据,感应过电压峰值一般可达300kV-400kV[2]。
在开阔地区,配电线路遭受直击雷概率增加;附近有高耸建筑物、构筑物或高大树木屏蔽,遭受直击雷的概率大幅下降,遭受感应过电压的概率增大。
二、配网典型雷害(一)雷击跳闸目前10kV线路通常设置了零序保护,雷击线路发生闪络后电弧持续燃烧,线路上采集到零序电流,将导致线路跳闸。
对于同杆架设的多回配电线路,在雷电直击或较高感应过电压的作用下,容易发生多回线路同跳故障。
此外,由于各回路间距离较小,若雷击闪络后工频续流较大,持续的接地电弧将使空气发生热游离和光游离,同样会导致多回短路故障和同时跳闸。
(二)线路故障1.配电线路雷击断线线路使用绝缘导线,雷击造成单相闪络或相间短路时,绝缘击穿最易发生在靠近绝缘子的位置,被击穿的绝缘层呈针孔状,并靠近绝缘子两侧特别是负荷侧。
工频短路电流的电弧弧根受周围绝缘层阻隔,固定在击穿点燃烧,在较短时间内烧断导线。
而当线路采用裸导线时,电弧在电磁力的作用下,高温弧根沿导线表面不断滑移,直至电弧熄灭,不会集中在某一点燃弧,因此不会严重烧伤导线,通常在工频续流烧断导线或损坏绝缘子之前,就会引起断路器动作切断电弧,因此,裸导线的雷击断线故障率明显低于绝缘导线。
由于绝缘导线易断线,宜采取雷击断线保护措施,可采取加强绝缘(如采用柱式绝缘子)、装设架空地线及安装线路避雷器(无间隙、带间隙)等堵塞式防雷措施,或安装防弧金具(剥线型、穿刺型)、放电钳位绝缘子(剥线型、穿刺型)、长闪络路径熄弧装置等疏导式防雷措施。
1912019.7MEC 对策建议MODERNENTERPRISECULTURE配电线路尚存在的雷电感应过电压有两种形式,一种是直击雷过电压,另一种是雷电感应过电压。
经过一系列的研究发现,雷电过电压是影响配电线路正常运行到主要原因,因为雷电过电压会导致配电线路的电闸出现跳闸的现象。
配网架空配电线路联系过电压的关键所在是研究如何对雷感电压进行防护。
且经过一系列的研究发现,雷电避雷器的安装方式也将直接影响配电线路对雷电感应防护的效果,所以这篇文章主要是依据配电线路在日常工作中的实际情况,帮助选择合适的雷电避雷器安装方式。
一、配电线路雷电感应过电压的计算为了能够使配电线路雷电感应计算的更加形象,就需要建立配电线路雷电感应过电压的数学模型。
根据配电线路在雷电感应过程中所形成的磁场的形象图,在对配电线路雷电感应电压计算的过程中,应当把地球看做一理想导体,其导电率无穷大。
依据BUSK 理论,计算在雷电袭击大地过程中配电线路雷电感应过电压,通过将其形成的电场和磁场进行分量而进行求解。
二、配电线路避雷器的安装方式在配电网的三相系统中,雷电感应过电压也分别存在三相导线上。
三相导线在空间分布上存在着不同程度的差异,但它们之间的差异极其的小。
三相导线在雷电天气下所形成的雷电感应过电压的波形、幅度大小基本都相似,并且在一定的条件下,雷电感应过电压也会对三项导向形成不同的闪络。
因此我们可以看出,为了能够使配电线路感应对雷电感应过电压防护效果更加良好,就需要在三相导线上同时安装避雷器。
避雷器的安装方式将对雷电感应过电压的房屋产生直接的影响。
配网架空线之间的距离应当为55米,避雷器的安装方式应遵照下文:(1)第一个方案。
55米一组,每一个电线杆上都应当安装一个避雷器。
(2)第二个方案。
110米为一组,每两个电线杆为一组安装一个避雷器。
(3)第三个方案。
160米为一组。
每三个电线杆为一组安装一个避雷器。
(4)第四个方案。
320米为一组。
《装备维修技术》2021年第8期—371—浅谈10kV 配电架空线路防雷措施陈创升(广东电网有限责任公司广州从化供电局)10kV 架空配电架空线路是10kV 配电网的重要组成部分,由于10kV 配电架空线路绝缘水平相对较低,对雷电过电压防护能力非常薄弱,特别是在雷电活动频繁的强雷区,雷击跳闸事故在以10kV 架空线路为主的配电网全口径跳闸事故中占有较高比重,因此,提升10kV 配电架空线路的防雷能力是降低10kV 配电网跳闸率的关键要素。
1.10kV 配电架空线路雷电过电压的特点雷电放电由带电的雷云引起,包括雷云中或雷云间异性电荷引起的放电以及雷云对大地的放电。
在10kV 配电架空线路雷电过电压分析中,主要关注雷云对大地的放电。
雷击故障点与地闪活动空间分布规律及地形地貌变化规律影响具有一定的相关性[1],受地闪时空分布规律和地形地貌等因素的影响,雷击故障点的分布在空间上具有一定规律性。
当雷电先导到达离地面物体上方一定高度时,雷电放电就会表现出对某地面物体放电的选择性,雷击地面物体(包括配电线路和设备)的选择性有以下方面:在平原等空旷地区,突出地面或高耸的物体容易遭受雷击;山顶的突出物体、山坡迎风面、山区盆地、山沟中处于风口的物体容易遭受雷击;地下有矿物质的地面物体容易遭受雷击;在湖沼、低洼地区及地下水位高地区的地面物体容易遭受雷击。
鉴于雷电放电选择性的特征,上述易受雷击区域与主要的10kV 配电架空线路走廊基本吻合,因此10kV 配电架空线路有极大的概率遭受雷击。
当雷云对大地放电时,落雷点地表周围会产生强烈的电磁场,电磁场中的10kV 配电架空线路及电力电子设备就会产生强烈的电磁感应。
当电磁感应传播至10kV 配电架空线路时,10kV 配电架空线路除静电感应外,还会产生一个感应电压。
感应电压的大小与雷电流幅值的大小、距雷云放电通道的远近、架空线路的悬挂高度因素有关,感应电压通常可达到500kV 以上[1]。
配电线路感应雷过电压计算与防护的研究【摘要】经过研究发现,感应雷过电压是导致配电网10kV架空线路产生线路故障和绝缘子闪路的主要原因,故障率可以占到90%。
为了使配电线路的可靠性得到提升并使线路防雷设计有清晰的参考依据,本文对配电线路感应雷过电压计算和防护的研究很有必要。
【关键词】配电线路;感应雷过电压;防护措施1.雷电放电过程及雷电流1.1雷电流的物理过程在运动比较强烈的对流云中,当云体处在零摄氏度一下时,会出现冰晶和过冷水滴共存的现象,冰晶之中存在着大量的自由离子,有的带正电,有的带负电。
在温度升高之后,正负离子的浓度会不断加大,如果在冰晶的两端温差稳定,那么随着温度的升高,较冷的一端会出现多余的正电荷,较热的一端则会出现多余负电荷。
当冰晶发生破裂时,会造成一部分冰晶带正电,一部分带负电。
目前,广大的专家和学者认为温差起电机理是形成雷雨云起电的最主要因素。
当雷云聚集区形成的电场强度达到放电的临界点时,就会出现雷电放电现象,放电的种类分为雷云内部、雷云与大地、雷云和雷云以及雷云与空气。
一般情况下,雷电放电发生在云体的内部,不会威胁到电力系统。
但是当雷云对大地放电时,会引起电磁场机理的变化,进而对电力系统产生严重影响。
雷云和大地之间产生的雷电主要分为向下负雷电、向上正雷电、向下正雷电和向上负雷电四种。
1.2雷电流的数学模型1.2.1 Heidler模型i(0,t)=I0/η[kns/(1+kns)]exp(-t/τ2)式中I0为峰值电流,η为峰值,,ks=t/τ是电流陡度因子,一般情况下取n=10。
这是基于霍德勒模型(Heidlermodel)和传输线模型(TLmodel)提出的,适用于首次雷击(10/350μs)和后续雷击(0.25/100μs)。
这里Heidler函数的上升沿由kns/(1+kns)项决定,而指数项exp(-t/τ2)决定了其衰减部分。
1.2.2脉冲函数模型i(0,t)=I0/η[1-exp(-t/τ1)]nexp(-t/τ2),t≥0脉冲函数第一项为击穿电流,第二项是电晕电流。