10kV配电线路安装避雷器后雷电感应过电压特性分析
- 格式:docx
- 大小:9.42 KB
- 文档页数:5
10kV架空线路感应雷过电压影响因素分析作为电力系统主要组成部分的架空线,由于长期暴露在野外,极易受雷擊,造成线路故障,导致巨大的经济损失。
本文首先分析了感应雷的原理,结合常见的地形分析了架空线感应雷的受雷宽度。
其次,从闪络次数角度分析了架空线自身特性与感应雷的关系。
最后,本文分析了避雷线和避雷器降低感应雷跳闸率的效果并提出线路设计与改造的建议。
标签:架空线路;防雷;避雷线;避雷器;闪络次数;跳闸率;0 引言以广州市从化区为例,从化10kV配电网共有馈线226回,线路总长2960.8km,其中电缆线路584km,架空裸导线2198.8km,架空绝缘导线178km。
从化地区山地多,年平均雷暴日80天。
另外,线路以架空为主,容易受雷击。
2018年变电站开关总跳闸次数为263次,重合闸不成功24次,因雷击造成的跳闸事故占比5.5%。
雷击故障中,直击雷占比15%,感应雷占比85%。
因此,通过对感应雷进行分析研究,具有十分重要的意义。
1感应雷过电压的原理1.1 感应雷的形成当雷电击中架空配电线路附近的地面时,在雷电的放电过程中,空间电磁场急剧变化,是处于电磁场中的架空线路上感应出过电压。
感应雷过电压幅值的构成上,以静电分量为主。
雷电负电荷被迅速中和,使先导放电通道电场强度急剧减弱。
由于束缚导线上正电荷的电场消失,导线上的束缚电荷迅速的沿导线向两端运动,形成感应雷过电压的静电分量。
1.2 规程法计算感应雷过电压工程中实际计算按DL/T620-1997标准取值,如雷云对地放电时,落雷地点距架空导线的垂直距离S≥65m时,无避雷线的架空配电线路导线上产生的感应雷过电压最大值可按下式估算:式中:--雷击大地时感应雷过电压最大值,单位为kV;--雷电流幅值,单位为kA;--导线平均高度,单位为m;--雷击点与线路的垂直距离,单位为m。
2 10kV无避雷线线路电气几何模型原理图1为经典的EGM用于无避雷线的配电线路屏蔽保护计算时的几何模型图。
10kV 配电线路雷击故障分析及防雷措施摘要:在现代的快节奏生活中,电逐渐渗透到人们的日常中,比如做饭、看电视等等,因此确保电的安全是很重要的。
这篇文章讲述的就是提高十千伏配线线路的抗雷击水平,这样才能在雷雨时候能安全使用电,给人们的生产及生命安全提供了一个重要的保障。
这篇文章就着重分析了配电线路抗击故障的原因、遭受雷击造成的危害及防雷的措施。
关键词: 10KV配电线路;雷击故障;防雷措施引言:随着我国经济实力的提高,人民的物质生活逐渐提高,对生活的质量也要求更高。
再加上现代的快节奏时代,电已经成为人们生活的一部分。
但是由于雷击天气的影响,会经常造成电路故障的发生。
现在10KV的配电网络已经是相关系统的最主要网络,正因为如此,雷击造成的影响更严重。
首先,雷击会造成线路的跳闸或者短路、断路,这直接扰乱了人们的生产生活相关的设备也有了一些的损害。
因此,必须要提高配电线路的防雷水平或者防雷设备的质量,这样才能让人们的生产生活得到一个好的保障。
1.10kV配电线路遭受雷击的形式和危害雷电是将于的水滴分布不均导致,空气对流的过程是云层上、下不部产生不等量的电荷,形成一定的电位差而形成的雷电。
10KV配电线路遭受雷击的形式大概有两种:感应雷过电压和直接雷电。
感应雷过电压又分为静电感应过电压和电磁感应雷过电压。
雷电放电时。
通道中的电荷对线路产生感应,线路上的正电荷被拉到附近的电场从而变成束缚电荷。
放电的时候又中和了导致束缚电荷又变为自由电荷,自由电话根据导线的流向而产生的电压称为静电感应过电压。
是积累,又会产生一个脉冲磁场,这个磁场线与大地之间形成回路,又形成了一个电磁感应雷过电压。
这两个电压的叠加的幅值在四五百千伏左右,已经超过了平常设备的冲击耐压,进而导致雷电事故发生。
另一种是直击雷,但是由于能直接击中配电线路情况的概率很小,所以不会在低千伏配电线路的地方设置独立的避雷装置。
由于生活中需要的各种电都是来自外部的,高压,低压、通信电缆等等一系列都是从外部引入。
10kV配电线路的雷电感应过电压特性韩军摘要:当前,10kV配电线路架设过程中防护配电线路雷电过电压现象已经成为了该领域关注和研究的重点。
实验和研究的结果表明,将地线架设置在配电线路的上方可以在满足底线和导线安全距离的基础上,有效缩短底线、导线之间的距离,从而提高接地的效果。
当接地电阻率上升时,绝缘电子的电压也会相应的降低,配电线路防御雷电的能力就会显著提升。
关键词:10kV配电线路;雷电感应;过电压特性1前言感应雷过电压易造成配电线路跳闸,从而影响电力系统安全运行,而线路上感应雷过电压的影响因素较多,有必要深入研究以减少雷击事故发生。
2当前我国10KV配电线路产生雷击的原因2.1配电线路自身具有的特性我国10KV的配电线路一般是应用在中小城市或者是县级城市的电力运输,随着我国电力设施的不断完善,传统的35KV电力系统逐渐被10KV的配电网络系统代替。
当前配电线路出现雷击过电压有两种情况:其一,雷直接击中配电线路;其二,雷击中配电线路附近的物体,因为电磁感应的存在产生了过电压。
随着10KV配电线路的使用,雷击事故已经明显减少,其本身有一定的防雷能力,但是这种配电线路会受到两种雷击过电压的影响,进而对相关的电气设备产生很大的破坏作用。
配电线路中的导线和塔杆等设施有一些金属物质,使其容易吸引雷电云层中的电荷,导致雷击事故的发生。
2.2人工设计的10KV配电线路防雷设施存在漏洞在对10KV配电线路进行设计的时候没有依据当地的实际情况以及天气的特点进行设计,这使得防雷设施的作用得不到充分的发挥,甚至还有的地方没有安装相应的防雷装置,这些都造成了防雷效率降低。
3雷电感应过电压波特性影响雷电感应过电压形成的因素包括雷电与配电线路之间的距离、雷电流波动的距离、配电线路的高度等。
除了上述的主要因素外,雷电流波前时间、回波速度、大地导电率、接地电阻等都会对雷电感应过电压的形成产生影响。
在雷电感应过电压的计算过程中,接地电阻和雷电同波速度很小,因此可以忽略不计,相应的,雷电同波速度和接地电阻在雷电过电压的变化过程中所产生的影响也很小,同样的可以忽略。
10kV配网线路防雷措施雷云击中杆塔、电力装置等物体时,强大的雷电流流过该物体泻入大地,在该物体上产生很高的电压降称为直击雷过电压。
由于线路的引雷特性,当雷击点与线路的最近距离小于65m时,雷电直击线路概率较大[1]。
雷电直击配电线路可产生远高于线路绝缘水平的过电压,通常会导致设备损坏。
(二)感应雷过电压当雷电击线路附近的大地时,导线上由于电磁感应产生过电压称为感应雷过电压。
配网线路中,感应过电压故障一般占雷击故障的 80% 以上[1]。
根据实测数据,感应过电压峰值一般可达300kV-400kV[2]。
在开阔地区,配电线路遭受直击雷概率增加;附近有高耸建筑物、构筑物或高大树木屏蔽,遭受直击雷的概率大幅下降,遭受感应过电压的概率增大。
二、配网典型雷害(一)雷击跳闸目前10kV线路通常设置了零序保护,雷击线路发生闪络后电弧持续燃烧,线路上采集到零序电流,将导致线路跳闸。
对于同杆架设的多回配电线路,在雷电直击或较高感应过电压的作用下,容易发生多回线路同跳故障。
此外,由于各回路间距离较小,若雷击闪络后工频续流较大,持续的接地电弧将使空气发生热游离和光游离,同样会导致多回短路故障和同时跳闸。
(二)线路故障1.配电线路雷击断线线路使用绝缘导线,雷击造成单相闪络或相间短路时,绝缘击穿最易发生在靠近绝缘子的位置,被击穿的绝缘层呈针孔状,并靠近绝缘子两侧特别是负荷侧。
工频短路电流的电弧弧根受周围绝缘层阻隔,固定在击穿点燃烧,在较短时间内烧断导线。
而当线路采用裸导线时,电弧在电磁力的作用下,高温弧根沿导线表面不断滑移,直至电弧熄灭,不会集中在某一点燃弧,因此不会严重烧伤导线,通常在工频续流烧断导线或损坏绝缘子之前,就会引起断路器动作切断电弧,因此,裸导线的雷击断线故障率明显低于绝缘导线。
由于绝缘导线易断线,宜采取雷击断线保护措施,可采取加强绝缘(如采用柱式绝缘子)、装设架空地线及安装线路避雷器(无间隙、带间隙)等堵塞式防雷措施,或安装防弧金具(剥线型、穿刺型)、放电钳位绝缘子(剥线型、穿刺型)、长闪络路径熄弧装置等疏导式防雷措施。
10kV线路雷击过电压分析及防雷措施作者:何伟兵来源:《科学与财富》2019年第27期摘要:10kV配电线路在电力系统中发挥着十分重要的作用。
但是10kV配电线路的雷击过电压严重影响着配电线路的安全、稳定与可靠运行。
本文首先对10kV线路的雷击过电压形式进行了简要的阐述,其次,对10kV线路雷击过电压的原因进行了详细的分析,再次,对10kV线路雷击过电压危害进行了阐述,最后,在此基础上有针对性地提出了一些10kV线路雷击过电压的防范措施,可以为保障10kV线路的安全、稳定与可靠运行提供一定的借鉴与参考。
关键词:10kV线路;雷击过电压;防雷1引言随着社会的不断前进发展,电力在人们的日常生活中发挥着越来越重要的作用,已经成为人们日常生活中不可缺少的重要组成部分。
与此同时,社會发展与人们的生活对电力的需求在不断的增长,这对电力系统运行的安全、稳定与可靠运行提出了更高的要求与标准。
虽然,近些年来,我国的配电系统的供电质量在不断的提升,但是,线路的雷击过电压现象仍然严重威胁着电网系统运行的安全与可靠。
10kV配电线路作为我国电力系统的重要组成部分,在电力输送与电力分配中发挥着不可缺少的重要作用。
由于防雷意识的缺乏、防雷技术的不成熟及电力系统防雷工作的疏忽等原因,导致10kV配电线路雷击过电压现象时有发生,不仅给电力系统的安全、稳定与可靠运行带来了严重的威胁,甚至还有可能导致安全事故的发生,严重影响到人们的正常用电,并给电力企业带来不可估量的经济损失。
因此,本文开展10kV线路雷击过电压分析分析及防雷措施的研究具有一定的现实意义。
本文从安装架空地线、安装氧化锌避雷器和完善10kV线路的防雷设施管理三个方面提出了一系列有效防范雷击过电压现象的措施与建议。
2 10kV线路雷击过电压的形式2.1 直击雷过电压通常情况下,雷云相对于地面具有较高的电压,巨大的电压差之下,雷电很容易通过电力设备来传输到地面,例如:配电线路等。
探讨10kV配电线路雷击故障特性分析及防雷策略摘要:10kV配电线路在电力系统中的应用非常普遍,但其容易受到外界因素的一些影响而发生故障。
因此本文简要介绍10kV配电线路雷击事故的原因和影响并主要分析其故障特性和防雷措施,仅供相关工作人员参考借鉴。
关键词:10kV配电线路;防雷击;故障特性引言:10kV配电线路极易发生雷击事故,尤其在夏天,雷击故障会严重影响电力系统正常工作,还可能给周边人员造成人身威胁。
因此分析故障产生的原因,制定合理有效的防雷击措施非常重要。
110kV配电线路雷击事故产生的原因及影响1.1雷击事故产生的原因(1)管理制度缺失:分析大部分10kV配电线路雷击故障可以发现,很多雷击故障频发的区域,其配电线路的管理都缺乏完善的管理制度,使得10kV配电线路的防雷击工作落实不到位,且缺乏有效的监管,防雷作业到底能够发挥多大作用不能被有效保障。
(2)方案缺乏针对性:雷击事故的发生有明显的区域性特点,在制定防雷击方案时,若没有充分考虑当地的实际情况,就会影响方案的防雷效果。
(3)重视程度不足:我国10kV配电线路主要用于中小城市、乡村等地的电力系统中,相关部门对其重视程度并不高。
财政支持的缺乏就使得防雷系统升级困难,防雷设备、线路等的配置与现实需要相差甚远。
(4)维护工作疏忽:日常维护检修工作不到位,使得10kV配电线路中存在的一些问题、漏洞不能被及时发现,影响其本身的防雷性能,为事故埋下隐患。
1.2雷击事故对10kV配电线路的影响雷击是一种自然想象,无法避免,只能通过一定的手段来减轻雷击带来的伤害。
雷击会对10kV配电线路的导线、元器件、配电线缆等造成严重的影响。
雷击事故发生时,10kV配电线路会受到过高的电压,甚至可能高于电气设备的绝缘体,从而导致跳闸故障,影响周围区域的正常供电[1]。
比较严重的故障,还可能导致火灾、行人触电等,带来严重的经济损失。
210kV配电线路雷击故障特性分析雷击故障在10kV配电线路总体故障中站的比例较高,因此掌握当地发生雷击事故的特点和有效的预防措施非常关键。
/2024 0310kV配电系统防雷分析与应对措施杜晓昕(国网山阴县供电公司)摘 要:在配电网运检工作中,防雷是一项重要的工作。
本文首先对10kV配电系统防雷进行了分析,从雷云的形成、雷电参数和雷电跳闸计算三个方面分别对雷电进行了论述。
最后,针对10kV配电系统,提出了六点防雷措施。
关键词:雷云;雷电参数;雷电跳闸;防雷措施0 引言电能作为现代社会生活不可缺少的一部分,在各行各业中,配电网系统肩负着重大的责任,为避免供电不稳定而影响社会生活用电,许多学者均对10kV配电系统进行研究,以保证配电网稳定、安全地运行。
雷电作为影响配电网安全稳定运行的一个重要现象,防雷一直是学者们的研究重点。
学者们分别从雷云的形成、雷电参数、雷电跳闸等方面做了详细的研究分析。
作为影响配电系统稳定运行的最重要的一个参数,雷电跳闸计算也成为防雷分析的重要参考。
本文将从雷云的形成、雷电参数、雷电跳闸计算三个方面进行防雷分析。
最后,针对目前的配电网系统,提出了相应的防雷措施。
1 10kV配电系统防雷分析1 1 雷云形成雷云的形成是一个极其复杂的过程。
我们生活的地球,可以看作是一个巨大的电容,在地表上存在着约50000C的电荷,同时在距地表约6000~8000m的高处,存在着一个电荷都为正极性的电离层,地表与电离层共同形成了一个电压约为3000kV的巨大电场。
随着地球上大气循环的进行,地表水分跟随大气循环,蒸发上升至电离层,在正负极的作用下发生极化,水蒸气遇冷凝成水成物。
正负电荷在重力与电场力的共同作用下,向下运动,其下落的速度明显增快。
在下落过程中,电荷粒子与周围的云粒子发生不规则碰撞,碰撞后,水成物和云粒子相互吸收,水成物吸收了部分云粒子,而云粒子也吸收了水成物的部分正电荷。
相互吸收了对方的粒子后,水成物的下降速度进一步增快,而带有正电荷的云粒子的下降速度由于受到电场力的作用而变缓。
两者速度的不同,使得带有正电荷的云粒子聚集于云层顶部,而带有负电荷的水成物聚集于云层底部,构成了一个巨大的空间电场,其场强的方向与地表和电离层形成的电场方向相同。
10kV线路雷击过电压分析及防雷措施研究摘要:随着经济的不断发展,社会在不断的进步,本文对10kV架空线路感应雷击过电压的产生机理进行了探讨;通过建立雷击静电感应过电压模型并求解,给出了感应雷过电压的计算方法,通过计算绘制出感应雷过电压波形图;针对感应雷的危害,提出了避雷线、降低杆塔接地电阻、氧化锌避雷器(MOA)等多种感应雷击的防护措施,分析其在应用中的不足,结合10kV水头线多次感应雷断线情况,采用无工频续流放电间隙装置对线路进行防雷综合治理,通过改造前后防雷击断线效果比对,说明其实施效果。
关键词:架空线路雷击跳闸配网防雷放电间隙引言配电线路是电力输送的重要媒介,我国电力系统中以10kV配电线路居多,针对10kV配电线路的检修维护一直以来都是电力企业关注的重点。
在新形势下,电力用户数量的提升使得电网负荷不断增加,对配电线路的安全性和可靠性提出了更高的要求。
本文探究降低10kV线路故障率的有效措施,对我国电力事业的发展具有重要意义。
1雷击过电压产生的机理10kV线路的雷击过电压有两种形式:直击雷过电压和感应雷过电压。
经调查,10kV线路中绝大多数的线路闪络或者其他雷击故障都是由感应雷过电压引起的,约占雷害事故的75%。
因此本文主要讨论对感应雷过电压的研究。
以负极性雷云为例,绘制其感应雷过电压的形成过程如图1所示。
在雷云放电初始阶段的先导放电过程中,雷云与先导通道形成一个沿导线方向的电场,场强Ex将对导线两端的正电荷产生吸引力,将其束缚在靠近先导通道的一段导线上;同时,场强Ex 将对导线上的负电荷产生排斥力,使其转移到导线两端,通过泄漏电导流入大地。
先导通道缓慢扩展,使得导线上电荷的转移也较为缓慢,不会形成明显的电流,且导线电位将与远离雷云处的导线电位相同。
在雷云放电的瞬间,先导通道中的负电荷将被迅速中和,电场强度Ex急剧下降,使得导线上的束缚电荷突然得到释放沿导线两侧运动,形成感应雷过电压。
同时,雷电通道中的雷电流在通道周围空间建立了强大的电磁场,该电磁场的变化也将使导线感应出很高电压。
10kV 配电线路安装避雷器后雷电感应过电压特性分析
摘要:配电网10kV 配电线路由雷电引起的绝缘子闪络或线路故障跳闸的主要因素,也称之为感应雷过电压。
感应雷过电压导致线路故障所占的比例在10kV 配网故障中非常大。
因此,本文对10kV 配电线路雷电感应过电压的特性分析,旨在提高农网配电线路的供电可靠性。
关键词:配电线路;雷电感应过电压;模型计算;特性分析
中图分类号:TM862 文献标识码:A 文章编号:1674-7712 (2015)02-0000-01
雷电是一种在大气中激烈的静电中和现象,雷电灾害是指遭受
直击雷、感应雷或雷电侵入而造成的人员事故、财产损失和供电伤害。
可以这么说,前两种危害大多数都没有什么特别的方式手段来降低它的伤害率,除了具有较强的自我安全意识和其他外界因素,没有太多的可能性做到防患于未然。
但是供电伤害这一点,供电企业还是可以通过当代技术来降低它的发生的可能性,至少可以说能够降低它的伤害性。
现在,国内外的配电线路大多数都是以架空线路为主,
这些架空路线,常年都裸露在户外,不仅要经受狂风暴雨等自然现象的洗礼,而且偶尔也会有一些鸟类等在上面栖息,或多或少都会受到一定的损害,因此,配电系统的安全运输便显得非常重要。
这不仅仅是对于广大用电居民的一种安全保护,也是对于社会的一种安全保护。
雷电放电容易引起配电线路过电压,主要包括有:雷击架空线
路附近大地时引起感应雷过电压,雷击杆塔塔顶引起反击过电压,以及雷击架空线路引起直击雷过电压。
架空配电线路绝缘水平低,导致的事故率很高,为了减少这样的危害,因此对10kV 配电线路安装避雷器后雷电感应过电压特性分析。
一、10kV 配电线路雷电感应过电压的计算关于电压的计算方式,首先要建立一个雷电回击的模拟,再建立雷电通道附近的电磁场,并计算出产生出来的电磁场,接着,建立电磁场与传输线的耦合模型,最后,用物理数学方法计算出雷电感应过电压。
雷电回击电流模型有传输线和传输电流源两大类。
在这两种雷电回击电流模型的基础上,国内外的学者对它们进行了完善和发展,又分别提出了MTLL 模型、MTLE 模型,以及DU 模型,目前我们采用最多的便是第一种MTLL 模型和第二种MTLE 模型。
用这两种模型,能够有效地再现雷电通道附近的电磁场状态,可以让运维人员较为准确地计算出雷电感应过电压。
耦合模型现下也有最为广泛的三种,分别是:Taylor 场线耦合模型、Agrawal 场线耦合模型,以及
Rachidi 场线耦合模型。
这三种模型都是同一射入电子场分量引
起的感应电压和电流对总
电压等,通过这些模型可以计算出接近实际情况中的总电压与总电流。
有了电流模型和场线耦合模型,接下来就可以来计算雷电感应过电压的数值了。
上文进行了平行多导线的FDTD 算法,根据带有支路的导体的多导体传输线MTL 系统,得出一个带有向量的MTL 方程,采用装有绝缘子的杆塔制作一个模型,将其转化为一个简易的开关,当两端的电压超过1.5 倍时,冲击闪络电压后,绝缘子闪
络,就等于开关闭合。
通过这些,再采用Rubinstein 提出的方法计算近似值,就能算出考虑有损大地时的水平电场分量,进而就能够算出雷电感应过电压的数值了。
二、雷电感应过电压波形特性在模型过程中,回波传播速率和塔杆接地电阻对最大感应过电压的影响比较小,所以在计算雷电感应过电压时可以忽略回波传播速率和塔杆接地电阻这两个的影响。
在计算过程中可以得知,回波传播的速率越大,距离雷击点最近处的电压达到峰值就会越快,并且还可以发现,峰值越大,它所对应的感应过电压也就越大。
但是如果速率不同的话,它所对应的峰值变化也不会特别大了。
另外,波前时间如果越短的话,距离雷击点最近处的电压达到峰值也会更快,并且峰值更大,不同波前对应的峰值变化也会很大。
因为考虑到大地具有一定的电阻率,在FDTD 算法分析中,
可以发现,线路末端的感应电压的波形形状基本都是一致的,
但是这对局部也有很大的影响。
如果大地电导率越低,那么电压就衰减越大,幅值也就越低。
三、雷电感应过电压的概率和闪络特性根据对雷电流幅值进行取值,采用蒙脱卡罗方法,随机选取了采集点,并且随机产生多次雷击,对这些雷击所产生的最大感应过电压的结果进行统计分析,通过这个统计结果,有n次所引起的最大感应过电压大于等于U,然后再计
算出每年每百公里配电线路产生的总次数N,当U为1.5倍CFO 时,N 就是每年每百公里配电线路的闪络次数。
同时,出于对
有损大地的考虑,对采用的MTL 模型也进行了分析,结果可以发现,随着大地电导率的增大,雷击引起的线路最大感应过电压也会随之减小,雷击次数的变化速率也会随之减小,雷击感应过电压超过某一个特定电压过电压值的次数也会随之减少。
换句话来说,就是指相应的线路中雷击故障率和闪络率降低了。
另外,在雷击事件中,直击雷占的比例比较大,与之相比,伴随着大地电导率的加大,雷电感应所引起的闪络次数减少的速率也增大,而直击雷受到大地电导率的影响却比较小,因此,直击雷所导致的闪络算是最直接最重要的因素。
四、配电线路雷电感应过电压的防护措施通过以上对雷电感应
过电压的特性分析,对症下药,来
谈一谈对它的保护措施
第一,提高线路的绝缘水平。
要提高配电线路的绝缘水平,就必须使用高质量的安全线路,不能使用劣质的绝缘子,并且要定期检查,如果发现有劣质的绝缘子要尽早更换。
从而能够提高线路的可靠性,降低因遭受雷击产生的闪络次数。
第二,要保护好间隙。
可调间隙防雷装置可以有效地保护间隙。
这也需要通过绝缘子的高压试验,选取质量较好的装置,在过电压情况下,保护间隙会先于被保护绝缘子动作,从而有效防止了线路故障。
参考文献:
[1]王希,王顺超,何金良.安装避雷器后10kV 配电线路
的雷电感应过电压特性[J]. 电网技术,2012(07):149-154.
[2]罗大强,唐军,许志荣,陈德智.10kV 架空配电线路防雷措施配置方案分析[J]. 电瓷避雷器,2012(05):113-118.
[3]王希,王顺超,何金良.10kV 配电线路的雷电感应过电压特性[J]. 高电压技术,2011(03):599-605.。