当前位置:文档之家› 生物化学:第七章 生物代谢参考答案

生物化学:第七章 生物代谢参考答案

生物化学:第七章 生物代谢参考答案
生物化学:第七章 生物代谢参考答案

第七章 生物代谢

1、说明糖酵解的主要过程。

答:共分为以下四个阶段(1)磷酸己糖激酶催化葡萄糖与ATP反应,生成6-磷酸葡萄糖;磷酸己糖异构酶催化6-磷酸葡萄糖异构化,转变成6-磷酸果糖→磷酸果糖激酶催化6-磷酸果糖与ATP反应,生成1, 6-二磷酸果糖。(2)醛缩酶催化下1,6- 二磷酸果糖分解为3- 磷酸甘油醛和磷酸二羟丙酮。(3)3-磷酸甘油醛脱氢酶催化3-磷酸甘油醛脱氢氧化生成1,3- 二磷酸甘油酸;磷酸甘油酸激酶催化1,3-二磷酸甘油酸将其高能磷酰基转移给ADP,生成3-磷酸甘油酸和ATP;磷酸甘油酸变位酶催化3-磷酸甘油酸的变位反应,产物为2-磷酸甘油酸。(4)2-磷酸甘油酸烯醇酶催化脱水反应,得到另一个高能磷酸酯类化合物磷酸烯醇式丙酮酸;丙酮酸激酶催化磷酸烯醇式丙酮酸上的高能磷酰基转移到ADP上,形成ATP和烯醇式丙酮酸。

2、举例说明什么是底物水平磷酸化。

答:物质在生物氧化过程中,常生成一些含有高能键的化合物,而这些化合物可直接与ATP或GTP的合成相偶联,这种产生ATP等高能分子的方式称为底物水平磷酸化。如在糖的分解代谢过程中,3-磷酸甘油醛脱氢并磷酸化生成1, 3-二磷酸甘油酸,在分子中形成一个高能磷酸基团,在酶的催化下,1, 3-二磷酸甘油酸可将高能磷酸基团转给ADP,生成3-磷酸甘油酸与ATP。又如2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸时,也能在分子内部形成一个高能磷酸基团,然后再转移到ADP生成ATP。

3、说明三羧酸循环的主要过程。

答:丙酮酸氧化脱羧产物乙酰CoA与草酰乙酸(三羧酸循环中与乙酰CoA结合点)结合生成柠檬酸进入循环。在循环过程中,乙酰CoA被氧化成H2O和CO2 ,并释放出大量能量。主要分以下几步进行:

①乙酰CoA与草酰乙酸缩合形成柠檬酸:这是循环的起始步骤。在柠檬酸合成酶催化下,乙酰CoA与草酰乙酸缩合形成柠檬酸。

②柠檬酸异构化形成异柠檬酸:在乌头酸酶催化下,柠檬酸经过脱水,然后再加水过程,生成异柠檬酸。催化脱水和加水过程在同一种酶的催化下进行,中间产物为顺乌头酸。

③异柠檬酸氧化脱羧生成α-酮戊二酸:催化此反应的酶为异柠檬酸脱氢酶。反映的中间产物为草酰琥珀酸。

④α-酮戊二酸氧化脱羧生成琥珀酰CoA:催化此反应的酶为α-酮戊二酸脱氢酶系。

⑤琥珀酰CoA转变成琥珀酸:琥珀酰CoA中的硫酯键是一个高能磷酸键。在琥珀酰CoA合成酶催化下,琥珀酰CoA的反应与GDP磷酸化反应偶联,直接产生高能磷酸酯类化合物GTP。

⑥琥珀酸脱氢生成延胡索酸:催化此反应的酶为琥珀酸脱氢酶,氢受体是酶的辅机FAD。

⑦延胡索酸水化成苹果酸:在延胡索酸酶催化下,延胡索酸加水生成L-苹果酸。

⑧苹果酸脱氢生成草酰乙酸:苹果酸在L-苹果酸脱氢酶催化下,脱氢氧化生成草酰乙酸。氢受体为NAD+。此反应是三羧酸循环的终点。

4、说明磷酸戊糖途径的主要过程及其意义。

答:磷酸戊糖途径是糖分解代谢的另一条途径,此代谢途径的主要特点是产生NADPH和戊糖。在磷酸戊糖循环中,还能够发生三碳糖、四碳糖、五碳糖、六碳糖和七碳糖之间的相互转化。磷酸戊糖途径的起始物质是6-磷酸葡萄糖,主要包括如下三个阶段:

①第一阶段:6-磷酸葡萄糖→5-磷酸戊糖

6-磷酸葡萄糖+2NADP++H2O→5-磷酸戊糖+2NADPH+2H++CO2

6-磷酸葡萄糖经脱氢、水解和氧化脱羧生成5-磷酸核酮糖。5-磷酸核酮糖在异构酶的催化下,转变成5-磷酸核糖或5-磷酸木酮糖。

②第二阶段:5-磷酸戊糖→6-磷酸果糖

3×5—磷酸戊糖→2×6—磷酸果糖+3—磷酸甘油醛

第一阶段产生的5—磷酸核糖和5—磷酸木酮糖相互作用,生成7—磷酸庚酮糖和3—磷酸甘油醛。催化此反应的酶是转酮酶。上述转酮反应产物7—磷酸庚酮糖和3—磷酸甘油醛在转醛酶的作用下能够进一步反应,生成4—磷酸赤藓糖和6—磷酸果糖。

③第三阶段:6-磷酸果糖→6-磷酸葡萄糖

此反应生成的6-磷酸葡萄糖又可以作为磷酸戊糖途径的起点。

意义:磷酸戊糖代谢广泛存在于动物、植物及微生物中。此途径除了为机体提供生物合成所需要的NADPH和核糖等外,同时也是组织细胞的重要供能形式之一。磷酸戊糖途径是糖酵解和三羧酸循环的重要补充。动物体中,大约有30%的葡萄糖经过磷酸戊糖途径分解代谢。

5、说明由糖发酵生成乙醇的主要过程.

答:葡萄糖转化为酒精,主要是依靠酵母菌的发酵,也就是无氧呼吸的过程产生

的。

总反应式:C6H12O6→2CH3CH2OH+2CO2↑

具体变化过程为:C6H12O6+H2O→CH3COCOOH(丙酮酸)→ C2H5OH(酒精)

这是一个生化过程,是在一系列酶的作用下,在无氧条件下通过发酵作用而完成的。具体来说是:葡萄糖经糖酵解途径生成丙酮酸,丙酮酸在丙酮酸脱羧酶的作用下生成乙醛,进一步在乙醇脱氢酶的催化下生成乙醇。

6、葡萄糖到乳酸的总反应式。当葡萄糖浓度为5 mmol/L,乳酸0.05 mmol/L,ATP 2 mmol/L,ADP 0.2 mmol/L时,此反应的自由能变化(ΔG0′)为多少?

答:

7、写出辅酶硫辛酸的结构,并说明硫辛酸的生理功能。

答:有图为氧化型硫辛酸的化学结构。分子中的二硫

键是起作用的关键部位,它通过还原断开及氧化重新

结合为二硫键,起到辅酶的作用。例如,硫辛酸存在

于丙酮酸脱氢酶系和α?酮戊二酸脱氢酶系中,作为

一种酰基载体,在α?酮酸氧化作用和脱羧作用时起

酰基转移和电子转移的功能。

8、甲醇本身是无毒的物质。但是当它转变成甲醛后则表现出强的毒性。试说明饮用甲醇产生中毒的原因,常用的救治甲醇中毒方法是让患者喝酒,试解释原因。

答:由于甲醇与乙醇结构极其类似,会与乙醇竞争同乙醇脱氢酶的结合。但是乙醇是乙醇脱氢酶的最佳底物,因此,增加乙醇的量可以有效的阻止乙醇脱氢酶与

甲醇的结合,从而减少甲醇代谢为有害的甲醛。

9、用14C标记葡萄糖的第三个碳原子,将这种标记的葡萄糖在无氧条件下与肝组织匀浆、保温,产生的乳酸中哪一个碳原子是14C?如果此匀浆液通入氧气,则乳酸将进一步氧化,所含的标记碳原子将在哪一步反应生成CO2?

答:

10、比较糖酵解途径和糖异生途径,分别指出两个途径的能量产生或消耗情况。试从热力学观点分析糖异生途径不能是糖酵解途径的逆过程。

答:

(1)糖酵解过程如下:

葡萄糖→ 6-磷酸葡萄糖→ 6-磷酸果糖→1,6-二磷酸果糖→磷酸二羟丙酮? 3-磷酸甘油醛→ 1,3-二磷酸甘油酸→ 3-磷酸甘油酸→ 2-磷酸甘油酸→磷酸烯醇式丙酮酸→烯醇式丙酮酸?丙酮酸

在此过程中:

葡萄糖→ 6-磷酸葡萄糖,消耗1个ATP

6-磷酸果糖→ 1,6-二磷酸果糖,消耗1个ATP

3-磷酸甘油醛→ 1,3-二磷酸甘油醛,由1个NAD+生成1个NADH,NADH 分解可得到3个ATP

1,3-二磷酸甘油醛→ 3-磷酸甘油酸,生成1个ATP

磷酸烯醇式丙酮酸→烯醇式丙酮酸,生成1个ATP

由于1个葡萄糖能生成两个3-磷酸甘油醛,所以总的能量产生为:-1+(-1)+2(3+1+1) = 8个ATP

(2)糖异生途径基本是糖酵解的逆反应,但糖酵解途径中有三处是不可逆过程,因此糖异生途径有三个过程与糖酵解不同:

A. 丙酮酸→磷酸烯醇式丙酮酸:

丙酮酸+ ATP + CO2→草酰乙酸 + ADP

草酰乙酸 + GTP →磷酸烯醇式丙酮酸+ GDP + CO2

此过程消耗1个ATP和1个GTP

B. 1,6-二磷酸果糖→磷酸葡萄糖

此过程不消耗ATP

C. 6-磷酸葡萄糖→葡萄糖

此过程不消耗ATP

由于两个丙酮酸生成1个葡萄糖,因此总的能量消耗为:

2(1+1+3)-1-1 = 8 个ATP 和2个GTP

(3)由(2)可知,糖酵解有三个不可逆过程,因此在糖异生过程中必须通过别的途径绕过这三步。在这三步中:

糖酵解产生的能量为:-1+(-1)+2×1 = 0 个ATP

而糖异生消耗为:2个ATP和2个GTP

其余反应均可逆

因此,葡萄糖→丙酮酸→葡萄糖这一循环净消耗2个ATP和2个GTP,所以ΔG不为零,因此糖异生非糖酵解的逆过程。

11、计算甘油完全氧化可以合成多少ATP?

答:

12、什么是光合作用?

答:光合作用是指绿色植物等以CO2为碳源,水为供氢体,利用叶绿素分子捕获的光能为能源,合成以糖类物质为主的有机化合物,同时释放出氧气的过程。光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介,也是糖类代谢的主要途径。

13、说明光反应和暗反应的基本过程及其之间的联系。

答:植物的光合作用可分为光反应和暗反应两个步骤,其中光反应是光能转变成化学能的反应,植物中的叶绿素吸收光能进行光化学反应,使水活化裂解出氧气、氢离子,释放电子,并产生NADPH和ATP,具体过程如下:

①水的光解:H2O→2H+ + 2e- + 1/2O2↑

②光合磷酸化:ADP + Pi→ ATP

③ NADPH合成:NADP+ + 2e- + H+→NADPH

暗反应是有光反应产生的NADPH在ATP供能的条件下,二氧化碳被还原为简单糖类,具体过程如下:

6CO2 + 12H2O + 18ATP + 12NADPH + 12H+→C6H12O6 + 18ADP + 18Pi +

12NADP+

联系:光反应中的NADPH及ATP是暗反应中所需的物质,同样地,暗反应过程中产生的NADP+及ADP也是光反应的原料。

14、叙述C3和C4途径的过程及其相互之间的关系。

答:(1)C3途径:

第一阶段: CO2与1,5-二磷酸核酮糖加合后在二磷酸核酮糖羧化酶的催化下,产生2分子3-磷酸甘油酸。

第二阶段:3-磷酸甘油酸消耗1个ATP,在3-磷酸甘油酸激酶的作用下形成1,3二磷酸甘油酸,又消耗1个NADPH,形成3-磷酸甘油醛。

第三阶段:3-磷酸甘油醛在磷酸丙糖酶的作用下,生成二磷酸核酮糖,1分子的二磷酸核酮糖固定1分子CO2,生成6-磷酸果糖,其中5/6分子的6-磷酸果糖参与再循环,1/6分子的6-磷酸果糖则转变成葡萄糖。

第四阶段:6-磷酸果糖和3-磷酸甘油醛在转酮酶催化作用下,生成4-磷酸赤藓糖和5-磷酸木酮糖。5-磷酸木酮糖在磷酸戊糖异构酶催化下转化为5-磷酸核酮糖。第五阶段:4-磷酸赤藓糖→7-磷酸庚酮糖。

第六阶段:7-磷酸庚酮糖→5-磷酸核酮糖。

第七阶段:5-磷酸核酮糖→1,5-二磷酸核酮糖。

(2)C4途径:

第一阶段:大气中的CO2在叶肉细胞中与在磷酸烯醇式丙酮酸羧化酶的催化下草酰乙酸。

第二阶段:草酰乙酸被NADPH还原成苹果酸。

第三阶段:苹果酸从叶肉细胞运输到维管束鞘细胞,在苹果酸酶催化下脱羧生成CO2和丙酮酸。

第四阶段:CO2在维管束鞘细胞中通过与1,5-二磷酸核酮糖结合进入C3循环,丙酮酸再运回叶肉细胞再生成磷酸烯醇式丙酮酸。

C3与C4途径的相互关系:C4循环对CO2进行有效固定和浓缩,并以苹果酸的形式转运至维管束鞘细胞作为C3循环的CO2源。

15、说明脂肪酸β-氧化的过程。

答:脂肪酸β-氧化作用是指脂肪酸在氧化分解时,碳链的断裂发生在脂肪酸的β位,即脂肪酸碳链的断裂方式是每次切除两个碳原子。此过程要经过四步反应,即脱氢、加水、再脱氢和硫解,生成一分子乙酰CoA和一个少两个碳的新的脂酰CoA。

(1)脱氢反应。由脂酰CoA脱氢酶活化,辅基为FAD,脂酰CoA在α和β碳原子上各脱去一个氢原子生成具有反式双键的α,β-烯脂肪酰辅酶A。

(2)加水反应。由烯脂酰CoA水合酶催化,α,β-烯脂肪酰辅酶A水化,生成具有L-(+)-β-羟脂酰CoA。

(3)脱氢反应。在β-羟脂酰CoA脱氢酶(辅酶为NAD+)催化下,β-羟脂酰CoA脱氢生成β-酮脂酰CoA。

(4)硫解(thiolysis)反应。由β-酮脂酰CoA硫解酶催化,β-酮酯酰CoA 与CoA作用,生成一分子乙酰CoA和一分子一个少两个碳原子的脂酰CoA。

16、计算一分子硬脂酸完全氧化生成二氧化碳和水产生的ATP分子数。

答:硬脂酸的结构简式为CH3(CH2)16COOH,活化消耗了2个ATP,完全氧化需经过8次β-氧化,产生8个FADH2、8个NADH 、9个乙酰CoA。相应地进入呼吸链后,1个FADH2产生2个ATP,1个NADH产生3个ATP,1个乙酰CoA 产生12个ATP。

即:8×2+8×3+9×12 – 2 = 146 (ATP)

17、在脂肪酸的合成过程中,乙酰CoA如何穿过线粒体内膜?

答:乙酰CoA不能自由通过线粒体内膜,需借助于柠檬酸—丙酮酸循环将乙酰CoA从线粒体内运出到胞质中。首先在线粒体内,乙酰CoA与草酰乙酸经柠檬酸合成酶催化缩合生成柠檬酸,然后再由线粒体内膜上相应的载体协助进入胞质。在胞质内存在的柠檬酸裂解酶可使柠檬酸裂解产生乙酰CoA与草酰乙酸,前者可用于合成脂肪酸,后者可返回线粒体,补充合成柠檬酸时的消耗。

18、为什么说:草酰乙酸浓度的升高,有利于脂肪酸的生物合成?答:脂肪酸合成的原料乙酰CoA产生于线粒体中,其必须经柠檬酸转运系统转运到胞浆中才能合成脂肪酸。由于这一转运系统需要消耗草酰乙酸,所以草酰乙酸浓度升高,有利于脂肪酸的生物合成。

19、什么是酮体?为什么糖尿病患者在代谢过程中容易产生酮体?过量的酮体对机体有何危害?

答:脂肪酸在β-氧化过程中产生的乙酰CoA在一定的条件下可以转变为乙酰乙酸、β-羟基丁酸和丙酮等中间产物,这些产物统称为酮体。在糖尿病患者中,由于草酰乙酸转入糖异生途径而使三羧酸循环不畅,糖不能有效氧化,造成乙酰CoA累积和酮体的合成,结果造成酮体在血液中的浓度增加,当超过肝外组织的利用能力时,引起酮血、酮尿等,以至酸中毒。

20、由乙酰CoA合成1分子油酸(18 : 1),需要多少分子NADPH?请简述之。

答:18个碳的脂肪酸链需要8次循环完成合成。每加两个碳需用2个NADPH,8次共需16个NADPH,但其中有一个不饱和键(结构简式:CH3(CH2)7CH=CH- (CH2)7COOH),少用一个还原剂NADPH,因此共需15个NADPH。

21、说明转氨酶催化的转氨基反应特点。写出谷丙转氨酶(GPT)催化的反应过程。为什么肝炎患者的血液中GPT含量高。

答:(1)通过转氨酶将氨基酸上的氨基转到另一酮酸分子上,使酮酸转变成相应的氨基酸,而样本的氨基酸则因失去氨基形成酮酸。这反应只能转移氨基,不能脱去氨基。

(2)下图为谷丙转氨酶所催化的转氨基过程:

(3)在正常情况下,转氨酶主要存在于细胞内,在肝中活性最高,在血清中的活性很低。当肝发生炎症时,由于细胞膜的通透性增加,转氨酶大量进入血液,使血清中谷丙转氨酶的活性增高,同时谷丙转氨酶的含量也增高。

22、说明氨基酸的代谢产物氨由组织细胞和肌肉细胞转运到肝中的过程。

答:(1)组织细胞内:NH4+ + Glu + ATP谷氨酰胺合成酶Gln + ADP + Pi + H+ 通过以上反应将谷氨酸发生酰基化生成谷氨酰胺。谷氨酰胺是无毒的中性物质,容易透过细胞膜并由血液运送到肝。

(2)肌肉细胞内:NH4+ + α-酮戊二酸 + NADPH + H+Glu + NADP+ + H2O

Glu + 丙酮酸谷丙转氨酶α-酮戊二酸 + Ala

通过以上反应,氨先与α-酮戊二酸作用,生成谷氨酸。由于谷氨酸带有负电荷,不能通过细胞膜。谷氨酸与丙酮酸进行转氨作用,生成丙氨酸。丙氨酸是中性物质,可以跨膜进入血液循环而输送到肝。

23、说明尿素的生成机制。

答:氨从组织细胞或肌肉细胞输送到肝后,在肝线粒体中与三羧酸循环产生的

CO2和ATP作用,生成氨基甲酰磷酸,后者将氨基甲酰基转移给鸟氨酸,形成瓜氨酸。瓜氨酸形成后即透过线粒体膜进入细胞液。在细胞液中,在ATP作用下,瓜氨酸与门冬氨酸结合,生成精氨基琥珀酸,精氨基琥珀酸再裂解成精氨酸和延胡索酸。在精氨酸酶作用下,精氨酸水解成鸟氨酸和尿素。

24、写出丙氨酸在排尿动物体内完全氧化的总反应式。

答:

25、简述谷氨酸在氨基酸分解代谢中的重要地位。

答:在氨基酸分解代谢中,由于许多氨基酸并不能像谷氨酸那样通过氧化脱氨将氨直接脱去,必需首先将分子中的氨通过转氨基作用转移给 -酮戊二酸,生成谷氨酸,然后谷氨酸再经氧化脱氨将氨基以游离形式脱去(联合脱氨)。此外,谷氨酰胺的分解代谢以及门冬氨酸(尿素形成的必需物质)的生成也都与谷氨酸有关。再者,氨的运输(从组织细胞或肌肉细胞到肝细胞)也与谷氨酸密切相关。因此,谷氨酸在氨基酸分解代谢中的处于中心地位。

26、解释生酮氨基酸和生糖氨基酸的不同之处。

答:生糖氨基酸在分解代谢中可以产生丙酮酸、α-酮戊二酸、草酰乙酸、延胡索酸或琥珀酰CoA等中间产物,这些中间产物可以通过代谢途径转变成糖;生酮氨基酸在分解代谢中产生的中间产物乙酰CoA或乙酰乙酰CoA,可以通过代谢途径转变成酮体。

27、氨基酸生物合成的起始物质有哪些?这些物质与糖代谢和脂代谢有何关系?

答:氨基酸生物合成的起始物质有α-酮戊二酸、草酰乙酸、丙酮酸、3-磷酸甘油酸、4-磷酸赤藓糖、磷酸烯醇式丙酮酸、磷酸核糖焦磷酸。这些起始物质是糖代谢或脂代谢的中间产物。

28、如果用甲基碳用14C标记了的丙氨酸作为起始原料,通过生物合成生成葡萄糖。试推测14C将出现在葡萄糖哪个碳原子上?

答:

29、什么是生物固氮?说明生物固氮的意义。

答:某些微生物和藻类将分子状态的氮转化成氨的过程称为生物固氮。

意义:生物固氮将大气中游离态的氮元素转变成生物体能直接吸收利用的氮元素,而氮元素是生物体蛋白质组成的必需元素,也是生物生长必须的大量元素之一,同时还参与多种生命活动。大气中的氮气以氮氮三键结合,结合非常紧密,很不容易被生物直接吸收。人工固氮的效率不高,而且高温高压的条件也比较苛刻,而雷电固氮火山喷发固氮所固定的氮素很难被收集。同时生物固氮所固定的

氮素站世界上固氮量的90%,占绝对的数量,同时促进了生态圈物质的循环,因此生物固氮作用在整个生物界具有极为重要的意义。

30、说明嘌呤碱基和嘧啶碱基骨架碳原子和氮原子的来源。

答:如图所示。

31、试简述代谢的共同特点。

答:共同特点如下:

(1)都是酶促反应。

(2)都是分步进行的,由许多中间反应和中间产物组成。这一连串的中间反应过程称为中间代谢。

(3)在物质代谢过程中,总伴随着能量代谢。通过能量代谢将合成和分解代谢联系起来。

(4)同一物质,其分解代谢和合成代谢途径一般不同。

(5)同一物质,其分解代谢和合成代谢的场所可以不同。

(6)分解代谢和合成代谢可共同利用一些代谢环节。如:三羧酸循环中的草酰乙酸。

(7)糖、脂和蛋白质的分解代谢途径的共同之处是:经一系列分解反应后都生成丙酮酸并进入三羧酸循环,最后被氧化成CO2和H2O。大体都可分为三个阶段:首先,大分子分解为结构单元分子;随后,结构单元分子降解为共同的中间产物;最后,共同的中间产物降解为简单的终产物。

(8)一般来讲,分解代谢是收敛的,合成代谢是发散的。即不同的产物经过分解代谢产生一些共同的中间产物和终产物,而一个起始物可以通过不同的合成代谢途径产生各种不同的合成产物。代谢过程不仅有直线型途经和分支途径,而且还有循环途径。

生物化学三大代谢重点总结

第八章生物氧化 1.生物氧化:物质在生物体内进行氧化称生物氧化,主要指糖、脂肪、蛋白质等在体内彻底分解时逐步释放能量,最终生成CO2 和 H2O的过程。 2.生物氧化中的主要氧化方式:加氧、脱氢、失电子 3.CO2的生成方式:体内有机酸脱羧 4.呼吸链:代谢物脱下的成对氢原子通过位于线粒体内膜上的多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水,这一系列酶和辅酶称为呼吸链,又称电子传递链。 NADH →复合物I→ CoQ →复合物III →Cyt c →复合物IV →O 产2.5个ATP (2)琥珀酸氧化呼吸链:3-磷酸甘油穿梭 琥珀酸→复合物II→ CoQ →复合物III → Cyt c →复合物IV →O 产1.5个ATP 含血红素的辅基:血红蛋白、肌红蛋白、细胞色素、过氧化物酶、过氧化氢酶 5.细胞质NADH的氧化:胞液中NADH必须经一定转运机制进入线粒体,再经呼吸链进行氧化磷酸化。 转运机制 (1)3-磷酸甘油穿梭:主要存在于脑和骨骼肌的快肌,产生1.5个ATP (2)苹果酸-天冬氨酸穿梭:主要存在于肝、心和肾细胞;产生2.5个ATP 6.ATP的合成方式: (1)氧化磷酸化:是指在呼吸链电子传递过程中偶联ADP磷酸化,生成ATP,又称为偶联磷酸化。 偶联部位:复合体Ⅰ、III、IV (2)底物磷酸化:是底物分子内部能量重新分布,通过高能基团转移合成ATP。 磷/氧比:氧化磷酸化过程中每消耗1摩尔氧原子(0.5摩尔氧分子)所消耗磷酸的摩尔数或合成ATP的摩尔数。 7.磷酸肌酸作为肌肉中能量的一种贮存形式 第九章糖代谢 一、糖的生理功能:(1)氧化供能 (2)提供合成体内其它物质的原料 (3)作为机体组织细胞的组成成分 吸收速率最快的为-半乳糖 二、血糖

生物化学氨基酸代谢试题及答案

【测试题】 一、名词解释 1.氮平衡 2.必需氨基酸 3.蛋白质互补作用 4.内肽酶 5.外肽酶 6.蛋白质腐败作用 7.转氨基作用 8.氧化脱氨基作用9.联合脱氨基作用10.多胺11.一碳单位12. PAPS 13. SAM 二、填空题 14.氮平衡有三种,分别是氮的总平衡、____、____ ,当摄入氮<排出氮时称____。 15.正常成人每日最低分解蛋白质____克,营养学会推荐成人每日蛋白质需要量为____克。 16.必需氨基酸有8种,分别是苏氨酸、亮氨酸、赖氨酸、____、____ 、____ 、_____、____。17.胰腺分泌的外肽酶有____、____,内肽酶有胰蛋白酶、____和____。 18.氨基酸吸收载体有四种,吸收赖氨酸的载体应是____ ,吸收脯氨酸的载体是____。 19.假神经递质是指____和____,它们的化学结构与____相似。 20.氨基酸代谢去路有合成蛋白质、____、____、____,其中____ 是氨基酸的主要分解代谢去路。21.肝脏中活性最高的转氨酶是____,心肌中活性最高的转氨酶是____。 22.L-谷氨酸脱氢酶的辅酶是____或____,ADP和GTP是此酶的变构激活剂,____ 和____是此酶的变构抑制剂。 23.生酮氨基酸有____和____。 24.氨的来源有____、____、____,其中____是氨的主要来源。 25.氨的转运有两种方式,分别是____、____,在肌肉和肝脏之间转运氨的方式是____。 26.鸟氨酸循环又称____或____。 28.γ-氨基丁酸是由____脱羧基生成,其作用是____。 27.尿素分子中碳元素来自____,氮元素来自____和____,每生成1 分子尿素消耗____个高能磷酸键。29.一碳单位包括甲基、____、____、____、____,其代谢的载体或辅酶是____。 30.可产生一碳单位的氨基酸有____、____、____、____。 31.肌酸激酶有三种同工酶分别是____、____、____,其中____ 主要存在于心肌中。 32.体内可产生硫酸根的氨基酸有____、____、____,其中____ 是体内硫酸根的主要来源。 33.儿茶酚胺包括____、____、____,帕金森氏病是由于脑组织中____生成减少。 34.支链氨基酸包括____、____、____。 三、选择题 A型题 35.下列哪种氨基酸是生糖兼生酮氨基酸 A. Gly B. Ser C. Cys D. Ile E. Asp 36.下列哪种不是必需氨基酸 A. Met B. Thr C. His D. Lys E. Val 37.苯酮酸尿症是由于先天缺乏: A.酪氨酸酶 B.酪氨酸羟化酶 C.酪氨酸转氨酶 D.苯丙氨酸转氨酶 E.苯丙氨酸羟化酶 38.不参与构成蛋白质的氨基酸是: A.谷氨酸 B.谷氨酰胺 C.鸟氨酸 D.精氨酸 E.脯氨酸 39.体内氨基酸脱氨基的主要方式是: A.转氨基 B.联合脱氨基 C.氧化脱氨基 D.非氧化脱氨基 E.脱水脱氨基 40.肌肉组织中氨基酸脱氨基的主要方式是: A.转氨基 B.嘌呤核苷酸循环 C.氧化脱氨基 D.转氨基与谷氨酸氧化脱氨基联合 E.丙氨酸-葡萄糖循环 41.体内氨的主要代谢去路是: A.合成尿素 B.生成谷氨酰胺 C.合成非必需氨基酸

生物化学真题之脂类代谢与合成

脂代谢 2014简述细胞质内脂肪酸氧化降解的三个步骤及其相关活性载体 (未) 第一个步骤是脂肪酸的 -氧化。 -氧化又包括活化、氧化、水合、氧化、断裂这五个步骤。每一轮氧化切下两个碳原子即乙酰辅酶A 第二个步骤是 氧化形成的乙酰辅酶A进入柠檬酸循环,继续被氧化最后脱出二氧化碳。 第三个大步骤中脂肪酸氧化过程中产出还原型的电子传递分子一一NADH和FADH2它们在第三步骤中把电子送到线粒体呼吸链,经过呼吸链,电子被运送给氧原子,伴随这个电子的流动,ADP经磷酸化作用转化为ATP。 所涉及的相关活性载体包括 -氧化中将脂肪酸的形式乙酰辅酶A转送到线粒体的载体肉碱。第三个步骤电子传递的载体包括:NADH-Q还原酶、琥珀酸一Q还原酶、细胞色素还原酶、细胞色素氧化酶等 2011脂肪酸 氧化和载体 脂肪酸 氧化共包括五个步骤 1?活化:脂肪酸在硫激酶的作用下形成脂酰辅酶A 2?氧化:脂酰辅酶A的羧基邻位被脂酰辅酶A脱氢酶作用,脱下两个氢原子转化为反式-2-烯酰辅酶A,同时产生FADH2

3?水合:反式-2-烯酰辅酶A水合成3-羟脂酰辅酶A,这部反应是在烯酰辅酶A 水合酶的作用下完成的 4?氧化:3-羟脂酰辅酶A在3-羟脂酰辅酶A脱氢酶的作用下转化为3-酮脂酰辅酶A,并产生NADH 5?硫解:3-同脂酰辅酶A受第二个辅酶A的作用发生硫解,断裂为乙酰辅酶A和一个缩短了两个碳原子的脂酰辅酶A,这部反应是在-酮硫解酶的催化下。 其总结果是脂肪酸链以乙酰辅酶A形式自羧基端脱下两个碳原子单元,缩短了的脂肪酸以脂酰辅酶A形式残留,又进入下一轮-氧化。 2010磷脂合成的共性 脂质合成所包括的绝大多数反应发生在膜结构的表面,与之相关的各种酶具有两亲性。 甘油磷脂合成的第一阶段是甘油-3-磷酸形成磷脂酸的反应途径,甘油酸和脂酰辅酶A在脂酰转移酶的作用下生成磷脂酸。磷脂酸一旦形成就很快转移为二脂酰甘油和CDP-二脂酰甘油。 常见的磷脂如磷脂酰乙醇胺、磷脂酰甘油、二磷脂酰甘油,这三种甘油磷脂的生物合成途径从开始到CDP-二脂酰甘油的生物合成途径是共通的,自CDP-二脂酰甘油一下就分别有各自的途径。这里说的CDP是5—胞苷二磷 酸。 2009某细胞内草酰乙酸的浓度对脂肪酸的合成有何影响? 草酰乙酸是柠檬酸循环的中间产物,其浓度在柠檬酸循环中有重要作用,是循环中最关键的底物之一。在肝脏中,决定乙酰辅酶A去向的是草酰乙酸,它带动乙酰辅酶A进入柠檬酸循环。进而影响到脂肪酸合成。 当草酰乙酸浓度低时,则不能充分带动乙酰辅酶 A 进入柠檬酸循环,换言之就是无法合成足够的柠檬酸。而柠檬酸又是脂肪酸合成中将乙酰辅酶 A 从线粒体转运到细胞溶胶中的三羧酸转运体系的基础,柠檬酸是乙酰基的载体。所以脂肪酸必然受到抑制。当草酰乙酸浓度高时,即能合成充分的柠檬酸,也意味着细胞溶胶中将会有

生物化学糖代谢知识点总结

各种组织细胞 体循环小肠肠腔 第六章糖代谢 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G )、果糖(F ),半乳糖(Gal ),核糖 双糖:麦芽糖(G-G ),蔗糖(G-F ),乳糖(G-Gal ) 多糖:淀粉,糖原(Gn ),纤维素 结合糖: 糖脂 ,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体内葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代谢概况——分解、储存、合成 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃肠腔肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收吸收途径:

第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 第四阶段:氧化磷酸化 CO 2 NADH+FADH 2 H 2 O [O] TAC 循环 ATP ADP 变 五、糖的有氧氧化 1、反应过程 -1 NAD + 乳 酸 NADH+H + 调节方式 ① 别构调节 ② 共价修饰调 第一阶段:糖酵解途径 G (Gn ) 丙酮酸乙酰CoA 胞液 线粒体

○1糖酵解途径(同糖酵解,略) ②丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。 总反应式: ③乙酰CoA 进入柠檬酸循环及氧化磷酸化生成ATP 概述:三羧酸循环(Tricarboxylic acid Cycle, TAC )也称为柠檬酸循环或 Krebs 循环,这是因为循环反应中第一个中间产物是含三个羧基的柠檬酸。它由一连串反应组成。 反应部位:所有的反应均在线粒体(mitochondria)中进行。 涉及反应和物质:经过一轮循环,乙酰CoA 的2个碳原子被氧化成CO 2;在循 环中有1次底物水平磷酸化,可生成1分子ATP ;有4次脱氢反应,氢的接受体分别为NAD +或FAD ,生成3分子NADH+H+和1分子FADH2。 总反应式:1乙酰CoA + 3NAD + + FAD + GDP + Pi + 2H 2O2CO 2 + 3(NADH+H + ) + FADH 2 + CoA + GTP 特点:整个循环反应为不可逆反应 生理意义:1. 柠檬酸循环是三大营养物质分解产能的共同通路 。 2. 柠檬酸循环是糖、脂肪、氨基酸代谢联系的枢纽。 丙酮酸乙酰CoA + + 丙酮酸脱氢酶复合体

生物化学氨基酸代谢知识点汇总

生物化学氨基酸代谢知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

第九章氨基酸代谢 第一节:蛋白质的生理功能和营养代谢 蛋白质重要作用 1.维持细胞、组织的生长、更新和修补 2.参与多种重要的生理活动(免疫,酶,运动,凝血,转运) 3.氧化供能 氮平衡 1.氮总平衡:摄入氮= 排出氮(正常成人) 氮正平衡:摄入氮> 排出氮(儿童、孕妇等) 氮负平衡:摄入氮< 排出氮(饥饿、消耗性疾病患者)2.意义:反映体内蛋白质代谢的慨况。 蛋白质营养价值 1.蛋白质的营养价值取决于必需氨基酸的数量、种类、量质比 2.必需氨基酸-----甲来写一本亮色书、假设梁借一本书来 3.蛋白质的互补作用,指营养价值较低的蛋白质混合食用,其必需氨 基酸可以互相补充 而提高营养价值。 第二节:蛋白质的消化、吸收与腐败 外源性蛋白消化 1.胃:壁细胞分泌的胃蛋白酶原被盐酸激活,水解蛋白为多肽和氨基

酸,主要水解芳香族氨基酸 2.小肠:胰液分泌的内、外肽酶原被肠激酶激活,水解蛋白为小肽和氨基酸;生成的寡肽继续在小肠细胞内由寡肽酶水解成氨基酸 氨基酸和寡肽的主动吸收 1.吸收部位:小肠,吸收作用在小肠近端较强 2.吸收机制:耗能的主动吸收过程 ○1通过转运蛋白(氨基酸+小肽):载体蛋白与氨基酸、Na+组成三联体,由ATP供能将氨基酸、Na+转入细胞内,Na+再由钠泵排出细胞。○2通过r-谷氨酰基循环(氨基酸):关键酶----r--谷氨酰基转移酶, 具体过程参P199图

第十一章 糖类代谢--王镜岩《生物化学》第三版笔记(完美打印版)

第十一章糖类代谢 第一节概述 一、特点 糖代谢可分为分解与合成两方面,前者包括酵解与三羧酸循环,后者包括糖的异生、糖原与结构多糖的合成等,中间代谢还有磷酸戊糖途径、糖醛酸途径等。 糖代谢受神经、激素和酶的调节。同一生物体内的不同组织,其代谢情况有很大差异。脑组织始终以同一速度分解糖,心肌和骨骼肌在正常情况下降解速度较低,但当心肌缺氧和骨骼肌痉挛时可达到很高的速度。葡萄糖的合成主要在肝脏进行。不同组织的糖代谢情况反映了它们的不同功能。 二、糖的消化和吸收 (一)消化 淀粉是动物的主要糖类来源,直链淀粉由300-400个葡萄糖构成,支链淀粉由上千个葡萄糖构成,每24-30个残基中有一个分支。糖类只有消化成单糖以后才能被吸收。 主要的酶有以下几种: 1.α-淀粉酶哺乳动物的消化道中较多,是内切酶,随机水解链内α1,4糖苷键,产生α-构型的还原末端。产物主要是糊精及少量麦芽糖、葡萄糖。最适底物是含5个葡萄糖的寡糖。 2.β-淀粉酶在豆、麦种子中含量较多。是外切酶,作用于非还原端,水解α-1,4糖苷键,放出β-麦芽糖。水解到分支点则停止,支链淀粉只能水解50%。 3.葡萄糖淀粉酶存在于微生物及哺乳动物消化道内,作用于非还原端,水解α-1,4糖苷键,放出β-葡萄糖。可水解α-1,6键,但速度慢。链长大于5时速度快。 4.其他α-葡萄糖苷酶水解蔗糖,β-半乳糖苷酶水解乳糖。 二、吸收 D-葡萄糖、半乳糖和果糖可被小肠粘膜上皮细胞吸收,不能消化的二糖、寡糖及多糖不能吸收,由肠细菌分解,以CO2、甲烷、酸及H2形式放出或参加代谢。 三、转运 1.主动转运小肠上皮细胞有协助扩散系统,通过一种载体将葡萄糖(或半乳糖)与钠离子转运进入细胞。此过程由离子梯度提供能量,离子梯度则由Na-K-ATP酶维持。细菌中有些糖与氢离子协同转运,如乳糖。另一种是基团运送,如大肠杆菌先将葡萄糖磷酸化再转运,由磷酸烯醇式丙酮酸供能。果糖通过一种不需要钠的易化扩散转运。需要钠的转运可被根皮苷抑制,不需要钠的易化扩散被细胞松驰素抑制。 2.葡萄糖进入红细胞、肌肉和脂肪组织是通过被动转运。其膜上有专一受体。红细胞受体可转运多种D-糖,葡萄糖的Km最小,L型不转运。此受体是蛋白质,其转运速度决定肌肉和脂肪组织利用葡萄糖的速度。心肌缺氧和肌肉做工时转运加速,胰岛素也可促进转运,可能是通过改变膜结构。 第二节糖酵解 一、定义 1.酵解是酶将葡萄糖降解成丙酮酸并生成ATP的过程。它是动植物及微生物细胞中葡萄糖分解产生能量的共同代谢途径。有氧时丙酮酸进入线粒体,经三羧酸循环彻底氧化生成CO2和水,酵解生成的NADH则经呼吸链氧化产生ATP和水。缺氧时NADH把丙酮酸还原生成乳酸。 2.发酵也是葡萄糖或有机物降解产生ATP的过程,其中有机物既是电子供体,又是电子受体。根据产物不同,可分为乙醇发酵、乳酸发酵、乙酸、丙酸、丙酮、丁醇、丁酸、琥珀酸、丁二醇等。 二、途径 共10步,前5步是准备阶段,葡萄糖分解为三碳糖,消耗2分子ATP;后5步是放能阶段,

生物化学脂类代谢习题答案

脂类代 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化和脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体; ②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA;③二碳片段的加入与裂解方式:合成是以丙二酰ACP加入二碳片段,氧化的裂解方式是乙酰CoA;④电子供体或受体:合成的供体是NADPH,氧化的受体是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成是柠檬酸转运系统,氧化是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO2和H2O可净生成多少molATP。答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+和1molFADH2 分别生成2.5mol、1.5mol的ATP,因

此,1mol甘油彻底氧化成CO2和H2O生成ATP摩尔数为6×2.5+1×1.5+3-1=18.5。 4、1mol硬脂酸(即18碳饱和脂肪酸)彻底氧化成CO2和H2O时净生成的ATP的摩尔数。 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体可转变成哪些重要物质?合成胆固醇的基本原料和关键酶各是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。

生物化学脂类代谢

掌握内容: 必需脂酸的概念及种类: 人体需要但又不能合成,必须从食物中获取的脂酸。人体必需的脂酸是亚油酸,亚麻酸,花生四烯酸。 脂肪动员: 概念及过程:储存于脂肪细胞中的甘油三酯,在三种脂肪酶的作用下逐步水解为游离脂酸和甘油,释放入血供其他组织氧化利用的过程,称脂肪动员。甘油三酯脂肪酶是脂肪动员的限速酶。(过程PPT29、30) 激素敏感性脂肪酶的定义和作用: 甘油三酯脂肪酶是脂肪动员的限速酶,其活性受多种激素调节故称激素敏感性脂肪酶 脂解激素:增加脂肪动员限速酶活性,促进脂肪动员活性的激素。(肾上腺素、去甲状腺激素、胰高血糖素、促肾上腺皮质激素、促甲状腺激素 抗脂解激素:抑制脂肪动员,(胰岛素,前列腺素E2,烟酸) 甘油的代谢甘油的主要去路: *经糖异生转变为葡萄糖 *氧化分解为水、二氧化碳、提供能量 *参与TG和磷脂的合成 甘油→3-磷酸甘油→磷酸二羟丙酮→氧化分解,供能 ↓↓

合成磷脂和TG 糖异生 脂酸的氧化分解 概念:脂酸在胞液中活化成脂酰辅酶A,在肉碱的帮助下进入线粒体基质进行β--氧化,每次β--氧化可产生1MOL乙酰辅酶A和比原来少两个碳原子的脂酰辅酶A,偶数碳脂酸最终产生乙酰辅酶A,奇数碳脂酸除乙酰辅酶A外还有1MOL 丙酰辅酶A. 部位:肝、肌肉(脑和成熟红细胞不行) 反应阶段:1)脂酸的活化(胞液) 2)脂酰辅酶A进入线粒体 3)脂酰COA的β--氧化(线粒体) 过程及酶;

有关能量的计算:脂酰COA+7FAD+7NAD++7COA-SH+7H2O→8乙酰COA+7FADH2+7(NADH+H+) 1)软脂酸(16C饱和脂酸的)活化—2ATP 2)7次β--氧化4*7ATP 3)8乙酰COA进入TCA循环彻底氧化10*8ATP 净生成106ATP 脂酰辅酶Aβ--氧化小结 部位:线粒体 四部连续反应:脱氢、加水、再脱氢、硫解

生物化学脂类代谢习题答案

脂类代谢 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化和脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体; ②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA;③二碳片段的加入与裂解方式:合成是以丙二酰ACP加入二碳片段,氧化的裂解方式是乙酰CoA;④电子供体或受体:合成的供体是NADPH,氧化的受体是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成是柠檬酸转运系统,氧化是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO2和H2O可净生成多少molATP。答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+和1molFADH2 分别生成2.5mol、1.5mol的ATP,因

此,1mol甘油彻底氧化成CO2和H2O生成ATP摩尔数为6×2.5+1×1.5+3-1=18.5。 4、1mol硬脂酸(即18碳饱和脂肪酸)彻底氧化成CO2和H2O时净生成的ATP的摩尔数。 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体内可转变成哪些重要物质?合成胆固醇的基本原料和关键酶各是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。

氨基酸代谢教案

生物化学课程 教 案 课程编号: 总学时:周学时: 适用年级专业(学科类): 开课时间:学年第学期 使用教材: 授课教师姓名:

第八章氨基酸代谢 第一节蛋白质的营养作用 一、蛋白质的生理功能(5分钟) (一)维持组织的生长、更新和修复蛋白质是组织、细胞的重要结构物质,参与组织、细胞的组成。膳食中必须提供足够质和量的蛋白质,才能维持组织、细胞的生长、更新和修复。 (二)参与多种重要的生理功能人体内有多种功能的蛋白质、多肽,执行多种特殊生理功能,如催化功能(如酶)、调节功能(如激素)、运输功能(如血红蛋白、脂蛋白)、储存功能(如肌红蛋白、铁蛋白)、保护功能(如抗体、补体、凝血酶原)、维持体液胶体渗透压(如清蛋白)等。 (三)氧化供能体内蛋白质、多肽分解成氨基酸后,经脱氨基作用生成的α酮酸可直接或间接参加三羧酸循环氧化分解。每克蛋白质在体内氧化分解产生能量,是体内能量来源之一。一般来说,成人每日约有18%的能量来自蛋白质。因为蛋白质的这种功能可由糖及脂肪代替,所以供能是蛋白质的次要生理功能。 (四)转变为糖类和脂肪。 二、氮平衡(5分钟) 蛋白质的含氮量平均约16%,食物中的含氮物质绝大多数是蛋白质,因此机体内蛋白质代谢的概况可根据氮平衡实验来确定。即测定尿与粪中的含氮量(排出氮)及摄入食物的含氮量(摄入氮)可以反映人体蛋白质的代谢概况。氮平衡有三种情况 (1)氮总平衡:摄入氮=排出氮,反映正常成人的蛋白质代谢情况,即氮的“收支”平衡。 (2)氮正平衡:摄入氮>排出氮,部分摄入的氮用于合成体内蛋白质。儿童、孕妇及恢复期病人属于此种情况。 (3)氮负平衡:摄入氮<排出氮。例如饥饿或消耗性疾病患者。 三、蛋白质的营养价值(10分钟) 人体内有8种氨基酸不能合成,即:缬氨酸、亮氨酸、异亮氨酸、苏氨酸、赖氨酸、色氨酸、苯丙氨酸和蛋氨酸,必须由食物供给,称营养必需氨基酸,含有必需氨基酸种类多和数量足的蛋白质营养价值高,反之营养价值低。 第二节蛋白质的消化、吸收与腐败 一、蛋白质的消化与吸收(自学) 二、蛋白质的腐败作用(5分钟) 肠道细菌对未被消化的蛋白质和未被吸收的氨基酸所起的作用称为蛋白质的腐败作用。因

生物化学复习-氨基酸代谢

第七章氨基酸代谢 单选题 1氮平衡是反映体内蛋白质代谢情况的一种表示方法,实际上是指 A 摄入的氮与尿中排出氮的对比关系 B 消化吸收的氮与排出氮的对比关系 C 消化吸收的氮与未吸收的氮的对比关系 D 摄入的氮与排出氮的对比关系 E 体内总的含氮量与每日排出氮量的对比关系 2下列哪组氨基酸均是必需氨基酸? A Lys、Phe、Trp、Tyr B Met、Phe、Val、Tyr C Val、Lys、His、Trp D Cys、Met、Ala、Ser E Leu、Ile、Thr、Lys 3肌肉中氨基酸脱氨的主要方式是 A 联合脱氨作用 B L-谷氨酸氧化脱氨作用 C 转氨作用 D 鸟氨酸循环 E 嘌呤核苷酸循环 4有关S-腺苷蛋氨酸的代谢 A S腺苷同型半胱氨酸甲基化而成 B 蛋氨酸和AMP的缩合而成 C 是合成亚精胺的甲基供给体 D 是合成胆碱的甲基供给体 E 以上都不是 5下列哪一种氨基酸是生酮兼生糖氨基酸? A 丙氨酸 B 苯丙氨酸 C 苏氨酸 D 羟脯氨酸 E 以上都不是 6体内转运一碳单位的载体是 A 叶酸 B 维生素B12 C 四氢叶酸 D S-腺苷蛋氨酸 E 生物素 7下列哪一种物质是体内氨的储存及运输形式? A 谷氨酸 B 酪氨酸 C 谷氨酰胺 D 谷胱甘肽 E 天冬酰胺 8尿素中两个氨基来源于 A 氨基甲酰磷酸和谷氨酸 B 氨基甲酰磷酸和谷氨酰胺 C 氨基甲酰磷酸和天冬氨酸 D 氨基甲酰磷酸和天冬酰胺 E 谷氨酰胺和天冬酰胺 9人体细胞可将某种氨基酸转变为另一种氨基酸,如: A 半胱氨酸转变为蛋氨酸 B 苯丙氨酸转变为酪氨酸 C 天冬氨酸转变为亮氨酸 D 谷氨酸转变为赖氨酸 E 丝氨酸转变为缬氨酸 10下列哪种物质是氨基甲酰磷酸合成酶I的变构激活剂? A 谷氨酰胺 B 乙酰CoA

生物化学笔记(完整版)

第一章绪论 一、生物化学的的概念: 生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。 二、生物化学的发展: 1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。 2.动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。 3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。 三、生物化学研究的主要方面: 1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。 2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。 3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。 4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。 5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。 第二章蛋白质的结构与功能 一、氨基酸: 1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。 2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。 二、肽键与肽链: 肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO -NH-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端→C端。 三、肽键平面(肽单位): 肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个α碳原子处在同一个平面上,为刚性平面结构,称为肽键平面。 四、蛋白质的分子结构:

生物化学笔记(完整版)

第一章绪论 一、生物化学的的概念: 生物化学(biochemistry)就是利用化学的原理与方法去探讨生命的一门科学,它就是介于化学、生物学及物理学之间的一门边缘学科。 二、生物化学的发展: 1.叙述生物化学阶段:就是生物化学发展的萌芽阶段,其主要的工作就是分析与研究生物体的组成成分以及生物体的分泌物与排泄物。 2.动态生物化学阶段:就是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。 3.分子生物学阶段:这一阶段的主要研究工作就就是探讨各种生物大分子的结构与其功能之间的关系。 三、生物化学研究的主要方面: 1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。 2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程就是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。 3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。 4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。 5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也就是现代生物化学与分子生物学研究的一个重要内容。 第二章蛋白质的结构与功能 一、氨基酸: 1.结构特点:氨基酸(amino acid)就是蛋白质分子的基本组成单位。构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。 2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu与Asp);④碱性氨基酸(Lys、Arg与His)。 二、肽键与肽链: 肽键(peptide bond)就是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N端)与自由羧基端(C端),肽链的方向就是N端→C端。 三、肽键平面(肽单位): 肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个α碳原子处在同一个平面上,为刚性平面结构,称为肽键平面。 四、蛋白质的分子结构:

生物化学氨基酸代谢知识点总结

第九章氨基酸代谢 第一节:蛋白质的生理功能和营养代谢 蛋白质重要作用 1.维持细胞、组织的生长、更新和修补 2.参与多种重要的生理活动(免疫,酶,运动,凝血,转运) 3.氧化供能 氮平衡 【 1.氮总平衡:摄入氮 = 排出氮(正常成人) 氮正平衡:摄入氮 > 排出氮(儿童、孕妇等) 氮负平衡:摄入氮 < 排出氮(饥饿、消耗性疾病患者)2.意义:反映体内蛋白质代谢的慨况。 蛋白质营养价值 1.蛋白质的营养价值取决于必需氨基酸的数量、种类、量质比 2.必需氨基酸-----甲来写一本亮色书、假设梁借一本书来 3.蛋白质的互补作用,指营养价值较低的蛋白质混合食用,其必需 氨基酸可以互相补充 ~ 而提高营养价值。 第二节:蛋白质的消化、吸收与腐败 外源性蛋白消化 1.胃:壁细胞分泌的胃蛋白酶原被盐酸激活,水解蛋白为多肽和氨基

酸,主要水解芳香族氨基酸 2.小肠:胰液分泌的内、外肽酶原被肠激酶激活,水解蛋白为小肽和氨基酸;生成的寡肽继续在小肠细胞内由寡肽酶水解成氨基酸 氨基酸和寡肽的主动吸收 1.吸收部位:小肠,吸收作用在小肠近端较强 2.吸收机制:耗能的主动吸收过程 、 ○1通过转运蛋白(氨基酸+小肽):载体蛋白与氨基酸、Na+组成三联体,由ATP供能将氨基酸、Na+转入细胞内,Na+再由钠泵排出细胞。○2通过r-谷氨酰基循环(氨基酸):关键酶----r--谷氨酰基转移酶, 具体过程参P199图 !

【 大肠下段的腐败作用 1.产生胺:肠道细菌脱羧基作用生成胺,其中 假神经递质:酪胺和苯乙胺未能及时在肝转化,入脑羟基化成β-羟酪胺,苯乙醇胺,其结构类似儿茶酚胺,它们可取代儿茶酚胺与脑细胞结合,但不能传递神经冲动,使大脑发生异常抑制。 2.产生氨: 3.产生其他物质:有害(多),如胺、氨、苯酚、吲哚; 可利用物质(少),如脂肪酸、维生素 :

(高考生物)生物化学习题脂类代谢

(生物科技行业)生物化学习题脂类代谢

第七讲脂类代谢 一、知识要点 (一)脂肪的生物功能: 脂类是指一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂中的物质。通常脂类可按不同组成分为五类,即单纯脂、复合脂、萜类和类固醇及其衍生物、衍生脂类及结合脂类。 脂类物质具有重要的生物功能。脂肪是生物体的能量提供者。 脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。脂类物质也可为动物机体提供溶解于其中的必需脂肪酸和脂溶性维生素。某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。脂类作为细胞的表面物质,与细胞识别,种特异性和组织免疫等有密切关系。 (二)脂肪的降解 在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。甘油经磷酸化和脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统的帮助下进入线粒体衬质,经β-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。β-氧化过程包括脱氢、水合、再脱氢和硫解四个步骤,每次β-氧化循环生成FADH2、NADH、乙酰CoA和比原先少两个碳原子的脂酰CoA。此外,某些组织细胞中还存在α-氧化生成α羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。 萌发的油料种子和某些微生物拥有乙醛酸循环途径。可利用脂肪酸β-氧化生成的乙酰CoA合成苹果酸,为糖异生和其它生物合成提供碳源。乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者催化乙醛酸与乙酰CoA生成苹果酸。 (三)脂肪的生物合成 脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合成酶系的催化下,以ACP 作酰基载体,乙酰CoA为C2受体,丙二酸单酰CoA为C2供体,经过缩合、还原、脱水、再还原几个反应步骤,先生成含4个碳原子的丁酰ACP,每次延伸循环消耗一分子丙二酸单酰CoA、两分子NADPH,直至生成软脂酰ACP。产物再活化成软脂酰CoA,参与脂肪合成或在微粒体系统或线粒体系统延长成C18、C20和少量碳链更长的脂肪酸。在真核细胞内,饱和脂肪酸在O2的参与和专一的去饱和酶系统催化下,进一步生成各种不饱和脂肪酸。高等动物不能合成亚油酸、亚麻酸、花生四烯酸,必须依赖食物供给。 3-磷酸甘油与两分子脂酰CoA在磷酸甘油转酰酶作用下生成磷脂酸,在经磷酸酶催化变成二酰甘油,最后经二酰甘油转酰酶催化生成脂肪。 (四)磷脂的生成

生物化学试题库及其答案——蛋白质降解和氨基酸代谢

一、填空题 1.根据蛋白酶作用肽键的位置,蛋白酶可分为酶和酶两类,胰蛋白酶则属 于酶。 2.转氨酶类属于双成分酶,其共有的辅基为或;谷草转氨酶促反应中氨基供体为氨酸,而氨基的受体为该种酶促反应可表示 为。 3.植物中联合脱氨基作用需要酶类和酶联合作用,可使大多数氨基酸脱去氨基。 4.在线粒体内谷氨酸脱氢酶的辅酶多为;同时谷氨酸经L-谷氨酸氢酶作用生成的酮酸为,这一产物可进入循环最终氧化为CO2和H2O。 5.动植物中尿素生成是通循环进行的,此循环每进行一周可产生一分子尿素,其尿素分子中的两个氨基分别来自于和。每合成一分子尿素需消 耗分子ATP。 6.根据反应填空 7.氨基酸氧化脱氨产生的a-酮酸代谢主要去向是、、 、。 8.固氮酶除了可使N2还原成以外,还能对其它含有三键的物质还原,如等。该酶促作用过程中消耗的能量形式为。 9.生物界以NADH或NADPH为辅酶硝酸还原酶有三个类别,其中高等植物子叶中则以硝酸还原酸酶为主,在绿藻、酵母中存在着硝酸还原酶或硝酸还原酶。 10.硝酸还原酶催化机理如下图请填空完成反应过程。

11.亚硝酸还原酶的电子供体为,而此电子供体在还原子时的电子或氢则来自 于或。 12.氨同化(植物组织中)通过谷氨酸循环进行,循环所需要的两种酶分别为 和;它们催化的反应分别表示为和。 13.写出常见的一碳基团中的四种形式、、、;能提供一碳基团的氨基酸也有许多。请写出其中的三种、、。 二、选择题(将正确答案相应字母填入括号中) 1.谷丙转氨酶的辅基是() A、吡哆醛 B、磷酸吡哆醇 C、磷酸吡哆醛 D、吡哆胺 E、磷酸吡哆胺 2.存在于植物子叶中和绿藻中的硝酸还原酶是() A、NADH—硝酸还原酶 B、NADPH—硝酸还原酶 C、Fd—硝酸还原酶 D、NAD(P)H—硝酸还原酶 3.硝酸还原酶属于诱导酶,下列因素中哪一种为最佳诱导物() A、硝酸盐 B、光照 C、亚硝酸盐 D、水分 4.固氮酶描述中,哪一项不正确() A、固氮酶是由钼铁蛋白质构成的寡聚蛋白 B、固氮酶是由钼铁蛋白质和铁蛋白构成寡聚蛋白 C、固氮酶活性中心富含Fe原子和S2-离子 D、固氮酶具有高度专一性,只对N2起还原作用 5.根据下表内容判断,不能生成糖类的氨基酸为() 6.一般认为植物中运输贮藏氨的普遍方式是() A、经谷氨酰胺合成酶作用,NH3与谷氨酸合成谷氨酰胺; B、经天冬酰胺合成酶作用,NH3与天冬氨酸合成天冬酰胺;

生物化学真题之脂类代谢与合成

脂代谢 2014简述细胞质内脂肪酸氧化降解的三个步骤及其相关活性载体(未) 第一个步骤是脂肪酸的 -氧化。 -氧化又包括活化、氧化、水合、氧化、断裂这五个步骤。每一轮氧化切下两个碳原子即乙酰辅酶A 第二个步骤是 氧化形成的乙酰辅酶A进入柠檬酸循环,继续被氧化最后脱出二氧化碳。 第三个大步骤中脂肪酸氧化过程中产出还原型的电子传递分子——NADH和FADH2,它们在第三步骤中把电子送到线粒体呼吸链,经过呼吸链,电子被运送给氧原子,伴随这个电子的流动,ADP经磷酸化作用转化为ATP。 所涉及的相关活性载体包括 -氧化中将脂肪酸的形式乙酰辅酶A转送到线粒体的载体肉碱。第三个步骤电子传递的载体包括:NADH—Q还原酶、琥珀酸—Q还原酶、细胞色素还原酶、细胞色素氧化酶等 2011脂肪酸 氧化和载体 脂肪酸 氧化共包括五个步骤 1.活化:脂肪酸在硫激酶的作用下形成脂酰辅酶A

2.氧化:脂酰辅酶A的羧基邻位被脂酰辅酶A脱氢酶作用,脱下两个氢原子转化为反式-2-烯酰辅酶A,同时产生FADH2 3.水合:反式-2-烯酰辅酶A水合成3-羟脂酰辅酶A,这部反应是在烯酰辅酶A水合酶的作用下完成的 4.氧化:3-羟脂酰辅酶A在3-羟脂酰辅酶A脱氢酶的作用下转化为3-酮脂酰辅酶A,并产生NADH 5.硫解:3-同脂酰辅酶A受第二个辅酶A的作用发生硫解,断裂为乙酰辅酶A和一个缩短了两个碳原子的脂酰辅酶A,这部反应是在-酮硫解酶的催化下。 其总结果是脂肪酸链以乙酰辅酶A形式自羧基端脱下两个碳原子单元,缩短了的脂肪酸以脂酰辅酶A形式残留,又进入下一轮-氧化。 2010磷脂合成的共性 脂质合成所包括的绝大多数反应发生在膜结构的表面,与之相关的各种酶具有两亲性。 甘油磷脂合成的第一阶段是甘油-3-磷酸形成磷脂酸的反应途径,甘油酸和脂酰辅酶A在脂酰转移酶的作用下生成磷脂酸。磷脂酸一旦形成就很快转移为二脂酰甘油和CDP-二脂酰甘油。 常见的磷脂如磷脂酰乙醇胺、磷脂酰甘油、二磷脂酰甘油,这三种甘油磷脂的生物合成途径从开始到CDP-二脂酰甘油的生物合成途径是共通的,自CDP-二脂酰甘油一下就分别有各自的途径。这里说的CDP是5-胞苷二磷酸。 2009某细胞内草酰乙酸的浓度对脂肪酸的合成有何影响? 草酰乙酸是柠檬酸循环的中间产物,其浓度在柠檬酸循环中有重要作用,是循环中最关键的底物之一。在肝脏中,决定乙酰辅酶A去向的是草酰乙酸,它带动乙酰辅酶A进入柠檬酸循环。进而影响到脂肪酸合成。

生物化学氨基酸代谢试题及答案

【测试题】 一、名词解释 1、氮平衡 2、必需氨基酸 3、蛋白质互补作用 4、内肽酶 5、外肽酶 6、蛋白质腐败作用 7、转氨基作用 8、氧化脱氨基作用 9、联合脱氨基作用 10、多胺 11、一碳单位 12、 PAPS 13、 SAM 二、填空题 14.氮平衡有三种,分别就是氮的总平衡、____、____ , 当摄入氮<排出氮时称____。 15.正常成人每日最低分解蛋白质____克, 营养学会推荐成人每日蛋白质需要量为____克。 16.必需氨基酸有8种,分别就是苏氨酸、亮氨酸、赖氨酸、____、 ____ 、 ____ 、_____、____。 17.胰腺分泌的外肽酶有____、____,内肽酶有胰蛋白酶、____与____。 18.氨基酸吸收载体有四种, 吸收赖氨酸的载体应就是____ , 吸收脯氨酸的载体就是____。 19.假神经递质就是指____与____,它们的化学结构与____相似。 20.氨基酸代谢去路有合成蛋白质、____、____、____,其中____ 就是氨基酸的主要分解代谢去路。 21.肝脏中活性最高的转氨酶就是____,心肌中活性最高的转氨酶就是____。 22.L-谷氨酸脱氢酶的辅酶就是____或____,ADP与GTP就是此酶的变构激活剂,____ 与____就是此酶的变构抑制剂。 23.生酮氨基酸有____与____。 24.氨的来源有____、____、____,其中____就是氨的主要来源。 25.氨的转运有两种方式,分别就是____、____, 在肌肉与肝脏之间转运氨的方式就是____。 26.鸟氨酸循环又称____或____。 28.γ-氨基丁酸就是由____脱羧基生成,其作用就是____。 27.尿素分子中碳元素来自____,氮元素来自____与____, 每生成1 分子尿素消耗____个高能磷酸键。 29.一碳单位包括甲基、____、____、____、____,其代谢的载体或辅酶就是____。 30.可产生一碳单位的氨基酸有____、____、____、____。 31.肌酸激酶有三种同工酶分别就是____、____、____,其中____ 主要存在于心肌中。 32.体内可产生硫酸根的氨基酸有____、____、____,其中____ 就是体内硫酸根的主要来源。 33.儿茶酚胺包括____、____、____,帕金森氏病就是由于脑组织中____生成减少。 34.支链氨基酸包括____、____、____。 三、选择题 A型题 35.下列哪种氨基酸就是生糖兼生酮氨基酸? A、 Gly B、 Ser C、 Cys D、 Ile E、 Asp 36.下列哪种不就是必需氨基酸? A、 Met B、 Thr C、 His D、 Lys E、 Val 37.苯酮酸尿症就是由于先天缺乏: A、酪氨酸酶 B、酪氨酸羟化酶 C、酪氨酸转氨酶 D、苯丙氨酸转氨酶 E、苯丙氨酸羟化酶 38.不参与构成蛋白质的氨基酸就是: A、谷氨酸 B、谷氨酰胺 C、鸟氨酸 D、精氨酸 E、脯氨酸 39.体内氨基酸脱氨基的主要方式就是: A、转氨基 B、联合脱氨基 C、氧化脱氨基 D、非氧化脱氨基 E、脱水脱氨基 40.肌肉组织中氨基酸脱氨基的主要方式就是: A、转氨基 B、嘌呤核苷酸循环 C、氧化脱氨基 D、转氨基与谷氨酸氧化脱氨基联合 E、丙氨酸-葡萄糖循环

相关主题
文本预览
相关文档 最新文档